
Oracle Rdb7™

Guide to Database Performance and Tuning,
Volume 1 and Volume 2

Release 7.0

Part No. A41747-1

®

Guide to Database Performance and Tuning

Release 7.0

Part No. A41747-1

Copyright © 1984, 1996, Oracle Corporation. All rights reserved.

This software contains proprietary information of Oracle Corporation; it is provided under
a license agreement containing restrictions on use and disclosure and is also protected by
copyright law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error free.

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are
’ commercial computer software’ and use, duplication and disclosure of the programs shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, programs delivered subject to the Federal Acquisition Regulations are ’ restricted
computer software’ and use, duplication and disclosure of the programs shall be subject to
the restrictions in FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The programs are not intended for use in any nuclear, aviation, mass transit,
medical, or other inherently dangerous applications. It shall be the licensee’s
responsibility to take all appropriate fail-safe, back up, redundancy and other
measures to ensure the safe use of such applications if the programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use
of the programs.

Oracle is a registered trademark of Oracle Corporation, Redwood City, California. Oracle
CDD/Repository, Oracle Expert, Oracle Rdb, Oracle RMU, Oracle Trace, and Rdb7 are
trademarks of Oracle Corporation, Redwood City, California.

All other company or product names are used for identification purposes only and may be
trademarks of their respective owners.

Contents

Send Us Your Comments . xxxi

Preface . xxxiii

Volume I

1 Database Performance Overview

1.1 Performance and Tuning . 1–1
1.2 Performance Factors . 1–2
1.2.1 System Resources and Memory Management 1–4
1.2.2 OpenVMS System Parameters and Process Parameters 1–4
1.2.3 Database Design . 1–5
1.2.4 Application Design . 1–5
1.2.5 Possible Performance-Related Changes . 1–6
1.3 Performance Utilities and Tools . 1–7
1.3.1 Operating System Utilities . 1–7
1.3.2 Oracle RMU Commands . 1–9
1.3.3 Oracle Rdb Logical Names and Configuration Parameters 1–11
1.4 Performance Analysis Methodology . 1–11
1.4.1 Tuning Guidelines . 1–11
1.4.2 Establishing a Context to Interpret Tuning Results 1–12
1.4.3 Using a Test Database . 1–12
1.4.4 Making Changes . 1–13
1.4.4.1 Make Single Changes . 1–13
1.4.4.2 Make Changes in Order of Difficulty . 1–13
1.4.5 Sample Procedure for Performance Evaluation 1–14
1.4.6 Cluster Performance Considerations . 1–15

iii

2 Database Performance Analysis Tools

2.1 RMU Analyze Command . 2–1
2.1.1 RMU Analyze Command Qualifiers . 2–3
2.1.1.1 Excluding Oracle Rdb Information from RMU Analyze Command

Output . 2–7
2.1.2 Creating a Binary Output File for Further Analysis 2–7
2.2 Performance Monitor . 2–16
2.2.1 Using Database Statistics . 2–17
2.2.2 Syntax for the RMU Show Statistics Command 2–19
2.2.3 Selecting a Display Mode in the Character-Cell Interface 2–20
2.2.4 Using the Select Input Control Menu in the Character-Cell

Interface . 2–21
2.2.5 Navigating in the Performance Monitor . 2–23
2.2.6 Selecting a Display Format in the Character-Cell Interface 2–28
2.2.6.1 Graphic Display Format . 2–29
2.2.6.2 Numbers Display Format . 2–30
2.2.6.3 Time Plot Display Format . 2–32
2.2.6.4 Scatter Plot Display Format . 2–33
2.2.6.5 Table Display Format . 2–37
2.2.7 Using the Zoom Menu Option in the Character-Cell Interface 2–37
2.2.8 Writing a Display to a File in the Character-Cell Interface 2–39
2.2.9 Using Performance Monitor Tools in the Character-Cell Interface . . . 2–39
2.2.10 Getting Online Help in the Character-Cell Interface 2–45
2.2.11 Types of Database Statistics . 2–46
2.2.12 Understanding the Performance Monitor Screens 2–49
2.2.13 Getting Statistics Output in a Formatted Binary Output File in the

Character-Cell Interface . 2–53
2.2.14 Customizing the Performance Monitor Display in the Character-Cell

Interface . 2–56
2.2.15 Performance Monitor Database Dashboard Facility 2–61
2.2.16 Performance Monitor Online Analysis Facility 2–63
2.3 Oracle Rdb Logical Names and Configuration Parameters 2–64
2.3.1 Performance Monitor Defined Logicals Screen in the Character-Cell

Interface . 2–76
2.4 Oracle Trace for OpenVMS . 2–78
2.4.1 Oracle Rdb Instrumentation . 2–79
2.4.2 Overview of Using Oracle Trace . 2–93
2.4.2.1 Creating a Selection . 2–93
2.4.2.2 Scheduling Data Collection . 2–94
2.4.2.3 Stopping a Collection . 2–95
2.5 Collecting Workload Information for Oracle Expert for Rdb 2–95
2.5.1 Displaying Event-Data Interactively . 2–96

iv

2.5.2 Creating a Report Based on Collected Data . 2–97
2.5.2.1 Formatting and Merging Data Files . 2–97
2.5.2.2 Generating a Report . 2–98
2.5.3 Creating a Customized Report . 2–99
2.5.4 Improving Report Performance . 2–101

3 Analyzing Performance Factors

3.1 Database Design Considerations . 3–2
3.2 Disk I/O . 3–8
3.2.1 Gathering Disk I/O Information . 3–8
3.2.1.1 Performance Monitor Summary IO Statistics Screen 3–8
3.2.1.2 Performance Monitor IO Stall Time Screen 3–9
3.2.1.3 Performance Monitor Stall Messages Screen 3–9
3.2.1.4 Performance Monitor DBKEY Information Screen 3–14
3.2.1.5 Performance Monitor Active User Stall Messages Screen 3–15
3.2.1.6 Performance Monitor Transaction Duration Screen 3–17
3.2.1.7 Reducing Disk I/O . 3–19
3.2.2 Data Distribution . 3–22
3.2.3 Data Content—Active Versus Inactive Rows 3–22
3.2.4 Asynchronous Prefetch of Database Pages . 3–23
3.2.5 Asynchronous Batch-Write Operations . 3–26
3.3 CPU Utilization . 3–29
3.4 Gathering Database Root File Information . 3–31
3.5 After-Image Journaling . 3–32
3.5.1 Using the AIJ Log Server (ALS) to Improve the Performance of

After-Image Journal File Write Operations to Disk 3–34
3.5.2 Improving ALS Process Performance by Using an AIJ Cache on an

Electronic Disk . 3–38
3.5.3 Improving Performance by Disabling After-Image Journaling for

WORM Storage Areas . 3–39
3.6 Improving the Performance of the RMU Optimize After_Journal

Command . 3–41
3.7 Constraint Optimizations . 3–44
3.7.1 Existence Constraint . 3–44
3.7.2 Uniqueness Constraint . 3–44
3.7.3 Modification Operation . 3–44
3.7.4 Database Key Retrieval and Erasing . 3–45
3.8 Locking . 3–45

v

3.8.1 Gathering Lock Information . 3–46
3.8.1.1 RMU Show Locks Command . 3–46
3.8.1.2 Displaying Integrated Lock Information 3–57
3.8.1.3 Gathering Lock Statistics with the Performance Monitor 3–61
3.8.1.4 Performance Monitor Lock Deadlock History Screen 3–61
3.8.1.5 Performance Monitor Lock Timeout History Screen 3–63
3.8.1.6 System Dump Analyzer . 3–64
3.8.2 Lock Considerations . 3–66
3.8.3 Reserving Options . 3–67
3.8.3.1 Incompatible Share Mode and Lock Type 3–73
3.8.3.2 Carry-Over Locks and the [NO]WAIT Option 3–73
3.8.3.3 Optimizing Update Carry-Over Locks for Tables 3–76
3.8.3.4 Explanation of ‘‘Lock Conflict on Freeze Lock’’ Errors 3–77
3.8.3.5 Batch-Update Transactions . 3–79
3.8.3.6 Update Locking for Cursors . 3–79
3.8.4 Transaction Scope . 3–80
3.8.5 Adjustable Lock Granularity . 3–82
3.8.6 Selecting Page-Level or Row-Level Locking . 3–85
3.8.7 Recoverable Latches . 3–91
3.8.8 Read-Only Storage Areas . 3–91
3.8.9 Using an RDB$SYSTEM Read-Only Storage Area 3–92
3.9 Index Retrieval . 3–94
3.9.1 Types of Indexes . 3–95
3.9.2 Logical Area Names for Indexes . 3–96
3.9.3 Index Compression . 3–97
3.9.3.1 Prefix and Suffix Compression . 3–98
3.9.3.2 SIZE IS Segment Truncation . 3–98
3.9.3.3 MAPPING VALUES Compression . 3–99
3.9.3.4 Run-Length Compression . 3–100
3.9.4 System Index Compression . 3–106
3.9.5 Gathering Index Information . 3–106
3.9.5.1 RMU Analyze Indexes Display . 3–106
3.9.5.2 Gathering Index Information Using the Performance Monitor . . . 3–118
3.9.6 Sorted Index Structure . 3–119
3.9.6.1 Reducing Locking of Chronological Keys 3–126
3.9.6.2 Reducing Locking of Duplicate Nodes Key 3–128
3.9.6.3 Clustering Indexes . 3–130
3.9.6.4 Preventing Performance Degradation That May Occur over Time

Using Sorted Indexes . 3–131
3.9.6.5 Forward and Reverse Scans Using a Sorted Index 3–132

vi

3.9.7 Hashed Index Structure . 3–134
3.9.7.1 Hashed Index Performance Factors . 3–136
3.9.7.2 Potential Sizing Problems . 3–136
3.9.7.3 Shadow Pages . 3–138
3.9.8 Selecting the HASHED SCATTERED or HASHED ORDERED

Hashing Algorithms . 3–139
3.9.9 Sequential Retrieval . 3–143
3.10 Recognizing Poor Insert Performance Caused by Excessive Page

Checking . 3–144
3.10.1 Identifying Excessive I/O in Storage Areas . 3–146
3.10.2 Incorrect Threshold Settings . 3–148
3.10.3 Locked Free Space . 3–148
3.10.4 Stored Values for AIP Lengths May Reflect the Actual Length of

Table Rows . 3–148
3.10.4.1 AIP Length Problems in Indexes That Allow Duplicates 3–149
3.10.4.2 AIP Length Problems in Segmented Strings 3–150

4 Adjusting Parameters

4.1 Adjusting Database Parameters . 4–1
4.1.1 Gathering Database Parameter Information 4–7
4.1.1.1 Performance Monitor Database Parameter Information

Submenu . 4–7
4.1.1.2 Performance Monitor PIO Statistics–Data Writes Screen 4–9
4.1.1.3 Performance Monitor PIO Statistics–Data Fetches Screen 4–9
4.1.1.4 Performance Monitor PIO Statistics–SPAM Fetches Screen 4–10
4.1.1.5 Performance Monitor Asynchronous IO Statistics Screen 4–11
4.1.1.6 Performance Monitor Process Accounting Screen 4–12
4.1.1.7 Performance Monitor Record Statistics Screen 4–14
4.1.1.8 Performance Monitor AIJ Statistics Screen 4–14
4.1.1.9 Performance Monitor AIJ Journal Information Screen 4–15
4.1.1.10 Performance Monitor Snapshot Statistics Screen 4–16
4.1.1.11 Performance Monitor Checkpoint Statistics Screen 4–17
4.1.1.12 Performance Monitor Checkpoint Information Screen 4–20
4.1.2 Managing Buffers . 4–20
4.1.2.1 Specifying Buffer Size . 4–25
4.1.2.2 Specifying the Default Number of User Buffers 4–27
4.1.2.3 Tuning Local Buffers . 4–30
4.1.2.4 Locking Local Buffers into Physical Memory 4–31
4.1.2.5 Global Buffer Pools . 4–32
4.1.2.6 Enabling Global Buffers . 4–37
4.1.2.7 NUMBER IS Parameter . 4–38
4.1.2.8 USER LIMIT Parameter . 4–41

vii

4.1.2.9 Tuning Global Buffers . 4–46
4.1.2.10 Benefits of Global Buffer Overflow Management 4–48
4.1.2.11 Benefits of Data Persistence in Global Buffer Memory 4–52
4.1.2.12 Modifying Parameters When Global Buffers Are Enabled 4–52
4.1.2.13 Analyzing Global Buffer Performance . 4–65
4.1.3 Row Caching . 4–67
4.1.3.1 Requirements for Using Row Caches . 4–69
4.1.3.2 Enabling Row Caching . 4–69
4.1.4 Gathering Row Cache Information . 4–70
4.1.4.1 How to Create and Use a Row Cache . 4–74
4.1.4.1.1 Reserving Slots for Row Caches . 4–75
4.1.4.1.2 Specifying the Size of a Row Cache . 4–75
4.1.4.1.3 Allocating Memory . 4–78
4.1.4.1.4 Assigning Row Caches to Storage Areas 4–82
4.1.4.1.5 Assigning Row Caches to Tables . 4–82
4.1.4.2 Controlling What Gets Cached in Memory 4–83
4.1.4.2.1 Row Replacement Strategy . 4–83
4.1.4.3 Inserting Rows into a Cache . 4–84
4.1.4.4 Row Cache Server (RCS) Process . 4–87
4.1.4.4.1 Row Cache Checkpointing . 4–88
4.1.4.4.2 Row Cache Sweeping . 4–89
4.1.4.5 Using Physical and Logical Area Caches 4–93
4.1.4.6 Performance Monitor Screens and Row Caching 4–95
4.1.4.6.1 Row Cache (One Cache) . 4–96
4.1.5 Fast Commit Transaction Processing . 4–98
4.1.5.1 Fast Commit Processing Method . 4–100
4.1.5.2 Checkpointing . 4–102
4.1.5.3 Journal Optimization Option . 4–107
4.1.5.4 Enabling Fast Commit Transaction Processing 4–110
4.1.5.5 Memory Page Transfers . 4–113
4.1.6 Row (or Record) Fragmentation . 4–114
4.1.7 Specifying the Number of Recovery Buffers . 4–115
4.1.8 Allocation for the After-Image Journal File . 4–116
4.1.9 Allocation for Snapshot Files . 4–117
4.1.10 Extents for After-Image Journal and Snapshot Files 4–118
4.1.11 Accessing the Snapshot File . 4–118
4.1.12 Making the Snapshot File Optional for Oracle Rdb 4–119
4.1.13 Deferred Snapshots Capability . 4–124
4.2 Adjusting Storage Area Parameters . 4–127

viii

4.2.1 Gathering Storage Area Parameter Information 4–130
4.2.1.1 RMU Analyze Areas Command . 4–131
4.2.1.2 RMU Analyze Lareas Display . 4–148
4.2.1.3 Performance Monitor Storage Area Information Screen 4–151
4.2.1.4 Performance Monitor I/O Statistics Screen 4–152
4.2.2 Page Size . 4–155
4.2.3 Allocation Size . 4–156
4.2.4 Page Format . 4–157
4.2.5 General Guidelines for Selecting SPAM Threshold Values 4–157
4.2.5.1 Thresholds for Mixed Format Pages . 4–158
4.2.5.2 Thresholds for Uniform Format Pages . 4–160
4.2.6 Optimizing SPAM Intervals . 4–162
4.2.7 Placing Snapshot, Storage Area, and Database Files on Separate

Disks . 4–163
4.2.8 Initializing, Moving, and Changing the Allocation of Snapshot

Files . 4–163
4.2.9 Snapshot File Growth and Prestarted Transactions 4–166
4.3 Adjusting Storage Map Parameters . 4–173
4.3.1 Gathering Storage Map Parameter Information 4–174
4.3.1.1 Using the RMU Analyze Placement Option=Normal

Command . 4–176
4.3.1.2 Using the RMU Analyze Placement Option=Full Command 4–181
4.3.1.3 Using the RMU Analyze Placement Option=Debug Command . . . 4–186
4.3.2 PLACEMENT VIA INDEX Option . 4–195
4.3.3 Data Compression Option for a Table . 4–196
4.3.3.1 Examples of Setting Data Compression . 4–198
4.3.3.2 Summary of Data Compression Options 4–203
4.4 Adjusting OpenVMS Parameters for Oracle Rdb Applications 4–204
4.4.1 Performance Monitor VM Usage Statistics Screen 4–204
4.4.2 Checking and Setting OpenVMS System Parameters 4–205
4.4.3 Tuning Working Set Adjustment Parameters 4–212
4.4.4 Checking and Setting User Account Parameters 4–213

Volume II

ix

5 The Query Optimizer

5.1 Optimizer Responsibilities . 5–1
5.2 Optimizer Terminology . 5–2
5.2.1 Predicate Selectivity . 5–2
5.2.2 Strategy . 5–2
5.2.3 Cost . 5–3
5.2.3.1 How the Optimizer Estimates Page Size for Tables That Store

Data in Multiple Storage Areas . 5–3
5.3 Optimizer Statistics . 5–4
5.3.1 Cardinality Statistics . 5–4
5.3.1.1 Table Cardinality . 5–4
5.3.1.2 Index Cardinality . 5–5
5.3.1.3 Index Prefix Cardinality . 5–5
5.3.1.4 Correcting Table and Index Cardinality . 5–6
5.3.2 Workload Statistics . 5–6
5.3.2.1 Column Duplicity Factor . 5–7
5.3.2.2 Column Null Factor . 5–7
5.3.3 Storage Statistics . 5–8
5.3.3.1 Index Key Clustering Factor . 5–8
5.3.3.2 Index Data Clustering Factor . 5–8
5.3.3.3 Table Row Clustering Factor . 5–9
5.3.4 Controlling the Collection of Workload and Storage Statistics 5–9
5.4 Query Optimizer Overview . 5–10
5.5 Single Table Retrieval Methods . 5–11
5.6 Multiple Table Access Strategies . 5–17
5.6.1 Cross Join . 5–18
5.6.2 Match Join . 5–19
5.6.3 Match, Zigzag . 5–22
5.6.4 Merge . 5–23
5.6.5 Join Ordering . 5–24
5.6.5.1 Ordering of Join Operators . 5–25
5.6.5.2 Ordering of Join Operands . 5–25
5.6.5.3 Combining Join Operators . 5–25
5.6.5.4 Changing the Join Order . 5–26
5.6.5.5 Using Derived Tables . 5–27
5.7 Dynamic Optimization . 5–28
5.7.1 Dynamic OR Optimization . 5–29
5.7.2 Dynamic Leaf Optimization . 5–33
5.7.2.1 Background Only Retrieval . 5–36
5.7.2.2 Fast First Retrieval . 5–37
5.7.2.3 Index Only Retrieval . 5–38
5.7.2.4 Sorted Order Retrieval . 5–39

x

5.8 Working with the Query Optimizer . 5–40
5.8.1 Views and Query Optimization . 5–40
5.8.2 Concatenated Expressions and Query Optimization 5–41
5.8.3 Queries Not Directly Based on the First Key Segment 5–41
5.8.4 Index Placement . 5–43
5.8.5 Specifying a Preferred Optimization Mode . 5–43
5.8.6 Using the Query Governor . 5–48
5.8.7 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS 5–50
5.8.8 Using Query Cost Estimates . 5–52
5.8.9 Constraint BLR May Not Reflect Actual Execution Strategy 5–54
5.8.10 Miscellaneous Hints . 5–54
5.9 Ensuring Query Stability, Controllability, and Performance with Query

Outlines . 5–55
5.9.1 Using Optimizer Output to Define an Outline to Be Stored 5–57
5.9.2 Specifying Outline Directives . 5–64
5.9.3 Defining and Storing an Outline for a Stored Procedure 5–66
5.9.4 Modifying an Existing Outline . 5–67
5.9.4.1 Creating Multiple Outlines for a Single Query 5–69
5.9.4.2 Complete Outlines . 5–71
5.9.4.3 Partial Outlines . 5–72
5.9.4.4 Mandatory Outlines . 5–73
5.9.4.5 Optional Outlines . 5–75
5.9.5 Using the OPTIMIZE Clause to Choose an Outline for a Query 5–79
5.9.6 Using Logical Names to Control Which Outlines the Optimizer

Uses . 5–83
5.9.7 Visible Effects of Outlines to Users . 5–83
5.9.8 Invalidation of Stored Outlines . 5–84
5.9.9 Deleting an Outline . 5–85

6 Using Oracle Rdb in a VMScluster Environment

6.1 Overview of a VMScluster Environment . 6–2
6.1.1 Definition of a VMScluster Environment . 6–2
6.1.2 Shared Storage Devices . 6–3
6.1.3 Shared Disk Files . 6–5
6.1.4 Dual-Ported Disks . 6–6
6.1.5 Dual Pathing . 6–7
6.1.6 Device-Naming Conventions . 6–8
6.1.7 Common System Disk . 6–9
6.1.8 OpenVMS Lock Manager . 6–10
6.1.9 Distributed Transactions . 6–10
6.1.10 Client/Server Computing . 6–10
6.1.11 Partitioned Data Access and Shared Data Access 6–10

xi

6.2 Oracle Rdb in a VMScluster Environment . 6–11
6.2.1 Single-Node Environments and VMScluster Environments 6–12
6.2.2 Making a Database Accessible and Available in a VMScluster

Environment . 6–12
6.2.3 Specifying Maximum VMScluster Nodes . 6–13
6.2.4 Multiple Monitor Processes . 6–16
6.2.5 Partitioned Lock Trees . 6–17
6.2.6 Deciding Where to Place Oracle Rdb Files in a VMScluster

Environment . 6–18
6.2.7 Oracle CDD/Repository Requirements . 6–21
6.3 Creating the mf_personnel Database in a VMScluster Environment 6–22
6.4 Converting a Single-Node Database to a VMScluster Database 6–27
6.5 Automatic Recovery Procedure . 6–30
6.5.1 Performance Monitor Recovery Statistics Screen 6–31
6.5.2 Performance Monitor DBR Activity Screen . 6–32
6.6 Maintaining and Monitoring Your Database . 6–33
6.6.1 Local Area VMScluster Configuration Considerations 6–33
6.6.2 Monitoring Your Database . 6–34

7 Tuning Concepts and Methodology

7.1 What Is Tuning? . 7–1
7.2 Determining When to Tune . 7–1
7.3 Types of Resources . 7–3
7.4 Sample Database Application . 7–3
7.5 Tuning Methodology . 7–4
7.6 Determining What to Tune . 7–7
7.6.1 Tuning the System . 7–8
7.6.2 Tuning the Database . 7–9
7.6.3 Tuning the Application . 7–10

8 Diagnosing a Database Resource Bottleneck

8.1 Analyzing I/O Resources . 8–2
8.1.1 Detecting I/O Resource Bottlenecks . 8–2
8.1.2 Balancing I/O Load . 8–4
8.1.2.1 Checking Oracle CDD/Repository . 8–7
8.1.2.2 Checking AIJ . 8–7
8.1.2.3 Checking Data Distribution . 8–10

xii

8.1.3 Reducing I/O Operations . 8–17
8.1.3.1 Checking Constraints . 8–28
8.1.3.2 Checking Indexes . 8–30
8.1.3.3 Checking Node Size . 8–33
8.1.3.4 Checking Clustering . 8–35
8.1.3.5 Checking Hashed Indexes . 8–40
8.1.3.6 Checking Snapshots . 8–44
8.2 Analyzing Memory Resources . 8–46
8.3 Analyzing CPU Resources . 8–48
8.4 Analyzing Lock Resources . 8–52

A Oracle Rdb Logical Names and Configuration Parameters

A.1 RDB$CHARACTER_SET . A–1
A.2 RDB$LIBRARY and RDB_LIBRARY . A–2
A.3 RDB$RDBSHR_EVENT_FLAGS . A–2
A.4 RDB$REMOTE_BUFFER_SIZE and

SQL_NETWORK_BUFFER_SIZE . A–3
A.5 RDB$REMOTE_MULTIPLEX_OFF and

SQL_NETWORK_NUMBER_ATTACHES . A–4
A.6 RDB$ROUTINES and RDB_ROUTINES . A–4
A.7 RDBVMS$CREATE_DB and RDB_CREATE_DB A–4
A.8 RDM$BIND_ABS_LOG_FILE and RDB_BIND_ABS_LOG_FILE A–5
A.9 RDM$BIND_ABS_OVERWRITE_ALLOWED and

RDB_BIND_ABS_OVERWRITE_ALLOWED . A–5
A.10 RDM$BIND_ABS_OVERWRITE_IMMEDIATE and

RDB_BIND_ABS_OVERWRITE_IMMEDIATE . A–6
A.11 RDM$BIND_ABS_QUIET_POINT and

RDB_BIND_ABS_QUIET_POINT . A–6
A.12 RDM$BIND_ABW_ENABLED and RDB_BIND_ABW_ENABLED A–6
A.13 RDM$BIND_AIJ_CHECK_CONTROL_RECS and

RDB_BIND_AIJ_CHECK_CONTROL_RECS . A–7
A.14 RDM$BIND_AIJ_EMERGENCY_DIR and

RDB_BIND_AIJ_EMERGENCY_DIR . A–7
A.15 RDM$BIND_AIJ_IO_MAX and RDB_BIND_AIJ_IO_MAX A–7
A.16 RDM$BIND_AIJ_IO_MIN and RDB_BIND_AIJ_IO_MIN A–8
A.17 RDM$BIND_AIJ_STALL and RDB_BIND_AIJ_STALL A–8
A.18 RDM$BIND_AIJ_SWITCH_GLOBAL_CKPT and

RDB_BIND_AIJ_SWITCH_GLOBAL_CKPT . A–8
A.19 RDM$BIND_ALS_CREATE_AIJ and RDB_BIND_ALS_CREATE_AIJ . . . A–9
A.20 RDM$BIND_APF_DEPTH and RDB_BIND_APF_DEPTH A–10
A.21 RDM$BIND_APF_ENABLED and RDB_BIND_APF_ENABLED A–10
A.22 RDM$BIND_BATCH_MAX and RDB_BIND_BATCH_MAX A–11

xiii

A.23 RDM$BIND_BUFFERS and RDB_BIND_BUFFERS A–12
A.24 RDM$BIND_BUFOBJ_ENABLED . A–13
A.25 RDM$BIND_CBL_ENABLED and RDB_BIND_CBL_ENABLED A–13
A.26 RDM$BIND_CKPT_BLOCKS and RDB_BIND_CKPT_BLOCKS A–14
A.27 RDM$BIND_CKPT_TIME and RDB_BIND_CKPT_TIME A–14
A.28 RDM$BIND_CKPT_TRANS_INTERVAL and

RDB_BIND_CKPT_TRANS_INTERVAL . A–14
A.29 RDM$BIND_CLEAN_BUF_CNT and

RDB_BIND_CLEAN_BUF_CNT . A–14
A.30 RDM$BIND_COMMIT_STALL and RDB_BIND_COMMIT_STALL A–15
A.31 RDM$BIND_DAPF_DEPTH_BUF_CNT and

RDB_BIND_DAPF_DEPTH_BUF_CNT . A–15
A.32 RDM$BIND_DAPF_ENABLED and RDB_BIND_DAPF_ENABLED A–16
A.33 RDM$BIND_DAPF_START_BUF_CNT and

RDB_BIND_DAPF_START_BUF_CNT . A–16
A.34 RDM$BIND_HRL_ENABLED and RDM_BIND_HRL_ENABLED A–17
A.35 RDM$BIND_LOCK_TIMEOUT_INTERVAL and

RDB_BIND_LOCK_TIMEOUT_INTERVAL . A–17
A.36 RDM$BIND_MAX_DBR_COUNT and

RDB_BIND_MAX_DBR_COUNT . A–18
A.37 RDM$BIND_OPTIMIZE_AIJ_RECLEN and

RDB_BIND_OPTIMIZE_AIJ_RECLEN . A–18
A.38 RDM$BIND_RCACHE_INSERT_ENABLED and

RDB_BIND_RCACHE_INSERT_ENABLED . A–19
A.39 RDM$BIND_RCACHE_RCRL_COUNT and

RDB_BIND_RCACHE_RCRL_COUNT . A–19
A.40 RDM$BIND_RCS_BATCH_COUNT and

RDB_BIND_RCS_BATCH_COUNT . A–19
A.41 RDM$BIND_RCS_CHECKPOINT and

RDB_BIND_RCS_CHECKPOINT . A–20
A.42 RDM$BIND_RCS_CKPT_BUFFER_CNT and

RDB_BIND_RCS_CKPT_BUFFER_CNT . A–20
A.43 RDM$BIND_RCS_LOG_FILE and RDB_BIND_RCS_LOG_FILE A–20
A.44 RDM$BIND_RCS_MAX_COLD and RDB_BIND_RCS_MAX_COLD A–20
A.45 RDM$BIND_RCS_MIN_COLD and RDB_BIND_RCS_MIN_COLD A–20
A.46 RDM$BIND_RCS_SWEEP_INTERVAL and

RDB_BIND_RCS_SWEEP_INTERVAL . A–21
A.47 RDM$BIND_READY_AREA_SERIALLY and

RDB_BIND_READY_AREA_SERIALLY . A–21
A.48 RDM$BIND_RUJ_ALLOC_BLKCNT and

RDB_BIND_RUJ_ALLOC_BLKCNT . A–22
A.49 RDM$BIND_RUJ_EXTEND_BLKCNT and

RDB_BIND_RUJ_EXTEND_BLKCNT . A–22

xiv

A.50 RDM$BIND_SNAP_QUIET_POINT and
RDB_BIND_SNAP_QUIET_POINT . A–23

A.51 RDM$BIND_STATS_AIJ_ARBS_PER_IO and
RDB_BIND_STATS_AIJ_ARBS_PER_IO . A–23

A.52 RDM$BIND_STATS_AIJ_BKGRD_ARB_RATIO and
RDB_BIND_STATS_AIJ_BKGRD_ARB_RATIO . A–23

A.53 RDM$BIND_STATS_AIJ_BLKS_PER_IO and
RDB_BIND_STATS_AIJ_BLKS_PER_IO . A–24

A.54 RDM$BIND_STATS_AIJ_SEC_TO_EXTEND and
RDB_BIND_STATS_AIJ_SEC_TO_EXTEND . A–24

A.55 RDM$BIND_STATS_BTR_FETCH_DUP_RATIO and
RDB_BIND_STATS_BTR_FETCH_DUP_RATIO A–24

A.56 RDM$BIND_STATS_BTR_LEF_FETCH_RATIO and
RDB_BIND_STATS_BTR_LEF_FETCH_RATIO . A–24

A.57 RDM$BIND_STATS_DBR_RATIO and
RDB_BIND_STATS_DBR_RATIO . A–25

A.58 RDM$BIND_STATS_ENABLED and RDB_BIND_STATS_ENABLED . . . A–25
A.59 RDM$BIND_STATS_FULL_BACKUP_INTRVL and

RDB_BIND_STATS_FULL_BACKUP_INTRVL . A–26
A.60 RDM$BIND_STATS_GB_IO_SAVED_RATIO and

RDB_BIND_STATS_GB_IO_SAVED_RATIO . A–26
A.61 RDM$BIND_STATS_GB_POOL_HIT_RATIO and

RDB_BIND_STATS_GB_POOL_HIT_RATIO . A–26
A.62 RDM$BIND_STATS_LB_PAGE_HIT_RATIO and

RDB_BIND_STATS_LB_PAGE_HIT_RATIO . A–27
A.63 RDM$BIND_STATS_MAX_HASH_QUE_LEN and

RDB_BIND_STATS_MAX_HASH_QUE_LEN . A–27
A.64 RDM$BIND_STATS_MAX_LOCK_STALL and

RDB_BIND_STATS_MAX_LOCK_STALL . A–27
A.65 RDM$BIND_STATS_MAX_TX_DURATION and

RDB_BIND_STATS_MAX_TX_DURATION . A–28
A.66 RDM$BIND_STATS_PAGES_CHECKED_RATIO and

RDB_BIND_STATS_PAGES_CHECKED_RATIO A–28
A.67 RDM$BIND_STATS_RECS_FETCHED_RATIO and

RDB_BIND_STATS_RECS_FETCHED_RATIO . A–28
A.68 RDM$BIND_STATS_RECS_STORED_RATIO and

RDB_BIND_STATS_RECS_STORED_RATIO . A–28
A.69 RDM$BIND_STATS_RUJ_SYNC_IO_RATIO and

RDB_BIND_STATS_RUJ_SYNC_IO_RATIO . A–29
A.70 RDM$BIND_STATS_VERB_SUCCESS_RATIO and

RDB_BIND_STATS_VERB_SUCCESS_RATIO . A–29
A.71 RDM$BIND_SYSTEM_BUFFERS_ENABLED . A–29
A.72 RDM$BIND_TSN_INTERVAL and RDB_BIND_TSN_INTERVAL A–30

xv

A.73 RDM$BIND_VM_SEGMENT and RDB_BIND_VM_SEGMENT A–30
A.74 RDM$BUGCHECK_DIR and RDB_BUGCHECK_DIR A–31
A.75 RDM$BUGCHECK_IGNORE_FLAGS and

RDB_BUGCHECK_IGNORE_FLAGS . A–32
A.76 RDM$MAILBOX_CHANNEL . A–33
A.77 RDM$MONITOR and RDB_MONITOR . A–34
A.78 RDM$MON_USERNAME . A–35
A.79 RDMS$AUTO_READY and RDB_AUTO_READY A–36
A.80 RDMS$BIND_OUTLINE_FLAGS and

RDB_BIND_OUTLINE_FLAGS . A–37
A.81 RDMS$BIND_OUTLINE_MODE and RDB_BIND_OUTLINE_MODE . . . A–38
A.82 RDMS$BIND_PRESTART_TXN and RDB_BIND_PRESTART_TXN A–38
A.83 RDMS$BIND_QG_CPU_TIMEOUT and

RDB_BIND_QG_CPU_TIMEOUT . A–39
A.84 RDMS$BIND_QG_REC_LIMIT and RDB_BIND_QG_REC_LIMIT A–40
A.85 RDMS$BIND_QG_TIMEOUT and RDB_BIND_QG_TIMEOUT A–40
A.86 RDMS$BIND_SEGMENTED_STRING_BUFFER and

RDB_BIND_SEGMENTED_STRING_BUFFER . A–41
A.87 RDMS$BIND_SEGMENTED_STRING_COUNT and

RDB_BIND_SEGMENTED_STRING_COUNT . A–43
A.88 RDMS$BIND_SEGMENTED_STRING_DBKEY_SCOPE and

RDB_BIND_SEGMENTED_STRING_DBKEY_SCOPE A–44
A.89 RDMS$BIND_SORT_WORKFILES and

RDB_BIND_SORT_WORKFILES . A–45
A.90 RDMS$BIND_VALIDATE_CHANGE_FIELD and

RDB_BIND_VALIDATE_CHANGE_FIELD . A–48
A.91 RDMS$BIND_WORK_FILE and RDB_BIND_WORK_FILE A–48
A.92 RDMS$BIND_WORK_VM and RDB_BIND_WORK_VM A–50
A.93 RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS A–50
A.94 RDMS$DEBUG_FLAGS_OUTPUT and

RDB_DEBUG_FLAGS_OUTPUT . A–50
A.95 RDMS$DIAG_FLAGS and RDB_DIAG_FLAGS . A–51
A.96 RDMS$KEEP_PREP_FILES . A–52
A.97 RDMS$RUJ and RDB_RUJ . A–52
A.98 RDMS$USE_OLD_CONCURRENCY and

RDB_USE_OLD_CONCURRENCY . A–52
A.99 RDMS$USE_OLD_COST_MODEL and

RDB_USE_OLD_COST_MODEL . A–54
A.100 RDMS$USE_OLD_COUNT_RELATION and

RDB_USE_OLD_COUNT_RELATION . A–55
A.101 RDMS$USE_OLD_SEGMENTED_STRING and

RDB_USE_OLD_SEGMENTED_STRING . A–55

xvi

A.102 RDMS$USE_OLD_UPDATE_RULES and
RDB_USE_OLD_UPDATE_RULES . A–56

A.103 RDMS$VALIDATE_ROUTINE and RDB_VALIDATE_ROUTINE A–58
A.104 RDO$EDIT . A–58
A.105 RDOINI . A–59
A.106 RMU$EDIT . A–59
A.107 SQL$DATABASE and SQL_DATABASE . A–59
A.108 SQL$DISABLE_CONTEXT . A–60
A.109 SQL$EDIT . A–61
A.110 SQLINI . A–61
A.111 SQL$KEEP_PREP_FILES and SQL_KEEP_PREP_FILES A–61

B Oracle Rdb Event-Based Data Tables

B.1 Oracle Rdb PERFORMANCE Class Database Tables B–1
B.2 Oracle Rdb RDBEXPERT Class Database Tables B–8

C Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze
the Query Optimizer

C.1 Displaying Optimization Strategy with the S Flag C–4
C.2 Displaying Outlines Generated by the Optimizer with the Ss, ISs, and

ISsn Flags . C–13
C.3 Displaying Constraint Names and the Query Strategy with the Sn

Flag . C–14
C.4 Displaying Optimization Statistics with the O Flag C–15
C.5 Displaying the Optimization Strategy and Cost of Optimization Using

the SO Flags . C–17
C.6 Displaying the Optimization Strategy and Execution Trace with the SE

Flags . C–21
C.7 Displaying Sort Statistics with the R Flag . C–35
C.8 Displaying Transaction Activity with the T Flag C–42
C.9 Logging the TRACE Control Statement with the Xt Flag C–45

Index

xvii

Examples

2–1 Creating a Fixed-Length Record Binary File 2–8
2–2 Creating an Oracle CDD/Repository Compatible Record Definition

Binary File . 2–8
2–3 Creating Both a Fixed-Length Record File and an Oracle

CDD/Repository Compatible Record Definition File 2–8
2–4 Using RMU Analyze to Create an Oracle CDD/Repository

Compatible Record Definition File . 2–9
2–5 Using RMU Analyze Index to Create an Oracle CDD/Repository

Compatible Record Definition File . 2–14
2–6 Using RMU Analyze Placement to Create an Oracle CDD/Repository

Compatible Record Definition File . 2–15
2–7 Using Reporting Options to Generate a Customized Report 2–99
3–1 Disabling the Asynchronous Prefetch Feature 3–23
3–2 Specifying the Number of Buffers to Be Prefetched 3–25
3–3 Disabling Asynchronous Batch-Write Operations 3–26
3–4 Specifying the Number of Clean Buffers to Be Maintained 3–27
3–5 Specifying the Number of Buffers to Be Written Asynchronously for

a Process . 3–28
3–6 Specifying the Automatic Startup Mode for the ALS Process 3–34
3–7 Specifying the Manual Startup Mode for the ALS Process 3–35
3–8 Manually Starting the ALS Process on a Node 3–35
3–9 Manually Stopping the ALS Process on a Node 3–36
3–10 Determining When the ALS Process Is Started for a Database 3–37
3–11 Enabling and Disabling the AIJ Cache for an ALS Process 3–38
3–12 Disabling AIJ Logging for WORM Area Write Operations 3–40
3–13 Displaying Locks for a Process . 3–51
3–14 Identifying Processes Waiting for Locks . 3–52
3–15 Identifying Blocking Processes . 3–53
3–16 Displaying Lock IDs for Waiting Processes . 3–53
3–17 Identifying All Resources Held by a Process Lock 3–54
3–18 Identifying Waiting and Blocked Processes . 3–55
3–19 RMU Show Locks . 3–56
3–20 Starting a Transaction in a Shared Read Reserving Option 3–68
3–21 Starting a Transaction in a Shared Write Mode 3–69
3–22 Updating and Retrieving a Row by Dbkey . 3–69
3–23 Updating and Retrieving a Row by Column Value 3–70

xviii

3–24 Starting a Transaction in a Protected Read Mode 3–71
3–25 Starting a Transaction in a Protected Write Mode 3–71
3–26 Starting a Transaction in an Exclusive Read or Write Mode 3–71
3–27 Error Message for Incompatible Share Mode and Lock Type 3–73
3–28 Disabling Carry-Over Locks . 3–75
3–29 Enabling Update Carry-Over Locking at a Table Level for a

Process . 3–77
3–30 Modifying the LOCKING IS Setting for a Storage Area 3–89
3–31 Enabling Page Locking for All the Storage Areas in a Database 3–90
3–32 Changing Read/Write Status to Read-Only . 3–91
3–33 Changing the Read/Write Status of the RDB$SYSTEM Storage Area

to Read-Only . 3–93
3–34 Updating Table and Index Cardinalities in RDB$SYSTEM 3–93
3–35 Setting SIZE IS Index Compression for a CHAR Data Type

Column . 3–98
3–36 Setting MAPPING VALUES Index Compression for a SMALLINT

Data Type Column . 3–99
3–37 Setting MINIMUM RUN LENGTH Index Compression for CHAR

Data Type Columns . 3–100
3–38 Compression of an Index Key for the NAME Column of the

TELEPHONE_CUSTOMER Index . 3–101
3–39 RMU Analyze Indexes Option=Normal Command for a Hashed

Index . 3–107
3–40 RMU Analyze Indexes Option=Normal Command for a Sorted

Index . 3–108
3–41 RMU Analyze Indexes Option=Normal Command for a Ranked

Sorted Index . 3–108
3–42 RMU Analyze Indexes Option=Normal Command for a Hashed

Index (Duplicates Allowed) . 3–109
3–43 RMU Analyze Indexes Option=Normal Command for a Compressed

Index . 3–111
3–44 Using the RMU Analyze Indexes Option=Full Command on a Sorted

Index . 3–111
3–45 RMU Analyze Indexes Option=Debug Command for a Hashed

Index . 3–112
3–46 RMU Analyze Indexes Option=Debug Command for a Sorted

Index . 3–116
3–47 RMU Analyze Indexes Option=Debug Command for a Compressed

Index . 3–118

xix

3–48 Reducing Lock Contention When Using Chronological Keys 3–127
3–49 Reducing Lock Contention When Many Duplicates Exist 3–128
3–50 Using a Single Sorted Index for Forward and Reverse Scans 3–132
3–51 Shadowing Achieves a Clustering Effect Between Two Different

Storage Areas for Storing and Retrieving Parent/Child Data
Rows . 3–138

3–52 Sequential Access of the EMPLOYEES Table 3–144
3–53 Indexed Access and Adjustable Locking . 3–144
4–1 Each Database Attach by a Process Receives the Resources Allocated

to a Single Process . 4–21
4–2 Local and Global Buffer Parameters . 4–23
4–3 Using the Buffer Information Screen to Display the Number of

Global Buffers . 4–40
4–4 Using the RMU Show Users Command to Display the Active Value

for the NUMBER IS Parameter . 4–40
4–5 Using the Performance Monitor Buffer Information Screen to

Display the Active Value for the USER LIMIT Parameter 4–43
4–6 Using the RMU Show Users Command to Display the Active Value

for the USER LIMIT Parameter . 4–43
4–7 Using the RDM$BIND_BUFFERS Logical Name to Specify Fewer

Global Buffers Than the Value Specified by the Active USER LIMIT
Parameter . 4–44

4–8 Using the RDM$BIND_BUFFERS Logical Name to Specify More
Global Buffers Than the Value Specified by the Active USER LIMIT
Parameter . 4–45

4–9 Saving Read Operations in a Database with Global Buffers
Enabled . 4–51

4–10 Using the Buffer Information Screen to Determine the Size of a
Global Section for a Database . 4–53

4–11 Row Cache Parameters . 4–70
4–12 Row Cache Definition . 4–93
4–13 Forcing All Active Database Processes to Perform Immediate

Checkpoint Operations . 4–107
4–14 Creating a Snapshot File for the RDB$SYSTEM Storage Area 4–121
4–15 Creating and Explicitly Enabling a Snapshot File for the

RDB$SYSTEM Storage Area . 4–122
4–16 Creating a Snapshot File for the RDB$SYSTEM Storage

Area—Limiting Size to 50 Pages . 4–122
4–17 Modifying Snapshot File Allocation and Extent Size 4–123

xx

4–18 Specifying Snapshot Extents for a Multivolume Database 4–123
4–19 Determining the Current Setting for Snapshot Files 4–127
4–20 RMU Analyze Areas Command with the Option=Normal

Qualifier . 4–131
4–21 RMU Analyze Areas Command with the Option=Full Qualifier 4–138
4–22 RMU Analyze Areas Command with the Option=Debug Qualifier . . . 4–144
4–23 RMU Analyze Areas Command with the Lareas and Option=Normal

Qualifiers . 4–149
4–24 Determining the Size of Thresholds for the DEPARTMENTS Storage

Area . 4–160
4–25 Using RMU Repair to Initialize Existing Snapshot Files for Specific

Storage Areas in a Database . 4–164
4–26 Using RMU Repair to Initialize All the Existing Snapshot Files for a

Database . 4–164
4–27 Using RMU Repair to Initialize, Rename, Move, and Truncate

Snapshot Files for Specific Storage Areas in a Database 4–164
4–28 Truncating a Database or Storage Area Snapshot File On Line 4–166
4–29 Displaying Transactions When Prestarted Transactions Are

Enabled . 4–168
4–30 Displaying Transactions When Prestarted Transactions Are

Disabled . 4–170
4–31 RMU Analyze Placement Command with the Option=Normal

Qualifier for a Hashed Index . 4–176
4–32 RMU Analyze Placement Command with the Option=Normal

Qualifier for a Non-Ranked Sorted Index . 4–177
4–33 RMU Analyze Placement Command with the Option=Normal

Qualifier for a Ranked Sorted Index . 4–178
4–34 RMU Analyze Placement Command with the Option=Normal

Qualifier for a Hashed Index (Duplicates Allowed) 4–179
4–35 RMU Analyze Placement Option=Full Command for a Hashed

Index . 4–181
4–36 RMU Analyze Placement Option=Full Command for a Sorted

Index . 4–183
4–37 RMU Analyze Placement Option=Full Command for a Hashed Index

(Duplicates Allowed) . 4–184
4–38 RMU Analyze Placement Option=Debug Command for a Hashed

Index . 4–187
4–39 RMU Analyze Placement Option=Debug Command for a Sorted

Index . 4–190

xxi

4–40 RMU Analyze Placement Option=Debug Command for a Hashed
Index (Duplicates Allowed) . 4–192

4–41 Setting Data Compression for Single-File Databases 4–198
4–42 Setting Data Compression for Tables Using a Storage Map

Statement . 4–199
4–43 Defining a New Storage Area and Specifying a Larger Page Size,

Decompressing Rows in a Storage Map, and Deleting the Old
Storage Area . 4–200

4–44 Using the IMPORT Statement to Specify Import Parameters, New
Storage Area, and Storage Map Characteristics 4–200

4–45 IMPORT Statement Messages . 4–202
4–46 Using the SHOW Statement to Check Compression 4–203
5–1 General Match Strategy Processing . 5–20
5–2 Zigzag Match Strategy Processing . 5–23
5–3 Using the SQL SET OPTIMIZATION LEVEL Statement 5–47
5–4 Using the SET QUERY CONFIRM Statement 5–52
5–5 Accessing Cost Estimates Through the SQLCA 5–52
5–6 Capturing Outlines Generated by the Optimizer 5–57
5–7 Representation of Views in Outlines Generated by the Optimizer . . . 5–60
5–8 Changing the Outline Name Generated by the Optimizer 5–62
5–9 Storing an Outline Generated by the Optimizer 5–63
5–10 Defining an Outline for a Stored Procedure . 5–66
5–11 Extracting Existing Outlines into a File . 5–68
5–12 Creating Multiple Outlines for a Query . 5–70
5–13 Error Message Displayed When the Optimizer Cannot Follow a

Directive in a Mandatory Outline . 5–73
5–14 Determining Whether or Not an Optional Compliance Level Outline

Has Been Fully Complied With . 5–76
5–15 Using the SHOW OUTLINES Statement to Check the Validity of a

Specific Outline . 5–84
5–16 Using the SQL DROP OUTLINE Statement to Delete an Outline . . . 5–85
6–1 Exceeding the Maximum Nodes Parameter . 6–14
6–2 Specifying the NUMBER OF CLUSTER NODES Value 6–14
6–3 Displaying the Maximum NUMBER OF CLUSTER NODES

Value . 6–15
6–4 Changing the NUMBER OF CLUSTER NODES Value 6–15
6–5 Enabling Lock Partitioning . 6–17

xxii

6–6 Defining Logical Names for the Disks Used for the Database
Files . 6–24

6–7 Creating Directories for the Database Files . 6–24
6–8 Defining the RDMS$RUJ Logical Name for the Directory for the .ruj

Files . 6–24
6–9 Defining the Sample Database . 6–25
6–10 Specifying the Locations of the .aij Files . 6–25
6–11 Using the SQL EXPORT and IMPORT Statements to Convert a

Single-Node Database to a VMScluster Database 6–28
8–1 Formula for Determining the Throughput Possible for a Transaction

in a Single-File Database . 8–3
8–2 Determining the Throughput Possible for a Given Transaction in a

Single-File Database . 8–3
8–3 IO Statistics (By File) Screen . 8–11
8–4 I/O Statistics for the System Storage Area . 8–14
8–5 I/O Statistics for the System Snapshot File . 8–15
8–6 I/O Statistics for the AREA1 Storage Area . 8–16
8–7 I/O Statistics for the AREA1 Snapshot File . 8–17
8–8 Local Buffer Versions of Performance Monitor PIO Statistics–Data

Fetches and PIO Statistics–SPAM Fetches Screens 8–22
8–9 Global Buffer Versions of Performance Monitor PIO Statistics–Data

Fetches and PIO Statistics–SPAM Fetches Screens 8–24
8–10 Using the RMU Analyze Indexes Command 8–32
8–11 Using the RMU Analyze Placement Option=Normal Command 8–33
8–12 Performance Monitor Summary Locking Statistics Screen 8–55
A–1 Using the RDB$CHARACTER_SET Logical Name A–1
A–2 Using the RDB$RDBSHR_EVENT_FLAGS Logical Name A–3
A–3 Using the SQL_NETWORK_BUFFER_SIZE Configuration

Parameter . A–3
A–4 Using the SQL_NETWORK_NUMBER_ATTACHES Configuration

Parameter . A–4
A–5 Using the RDBVMS$CREATE_DB Logical Name A–5
A–6 Using the RDB_BIND_ABW_ENABLED Configuration

Parameter . A–7
A–7 Using the RDM$BIND_APF_DEPTH Logical Name A–10
A–8 Using the RDB_BIND_APF_ENABLED Configuration Parameter . . . A–11
A–9 Using the RDM$BIND_BUFFERS Logical Name A–13

xxiii

A–10 Using the RDB_BIND_DAPF_ENABLED Configuration
Parameter . A–16

A–11 Using the RDB_BIND_LOCK_TIMEOUT_INTERVAL Configuration
Parameter . A–17

A–12 Using the RDM$BIND_READY_AREA_SERIALLY Logical Name . . . A–22
A–13 Using the RDB_BIND_RUJ_EXTEND_BLKCNT Configuration

Parameter . A–23
A–14 Using the RDM$BIND_STATS_ENABLED Logical Name A–25
A–15 Using the RDM$BIND_STATS_ENABLED Logical Name A–26
A–16 Using the RDB_BIND_VM_SEGMENT Configuration Parameter . . . A–30
A–17 Using the RDB_BUGCHECK_DIR Configuration Parameter A–32
A–18 Using the RDM$MON_USERNAME Logical Name A–36
A–19 Using the RDB_AUTO_READY Configuration Parameter A–37
A–20 Disabling Update Carry-Over Locking at a Table Level by

Deassigning the RDMS$AUTO_READY Logical Name A–37
A–21 Using the RDB_BIND_QG_CPU_TIMEOUT Configuration

Parameter . A–39
A–22 Using the RDMS$BIND_QG_REC_LIMIT Logical Name A–40
A–23 Using the RDB_BIND_QG_TIMEOUT Configuration Parameter A–41
A–24 Using the RDMS$BIND_SEGMENTED_STRING_BUFFER Logical

Name . A–42
A–25 Using the RDB_BIND_SEGMENTED_STRING_COUNT

Configuration Parameter . A–43
A–26 Using the RDMS$BIND_SEGMENTED_STRING_DBKEY_SCOPE

Logical Name . A–45
A–27 Using the SORTWORKn Logical Name . A–46
A–28 Using the SORTWORK0 Logical Name . A–46
A–29 Using SORTWORKn to Specify Multiple Devices A–47
A–30 Using the RDB_BIND_VALIDATE_CHANGE_FIELD Configuration

Parameter . A–48
A–31 Using the RDMS$BIND_WORK_FILE Logical Name A–49
A–32 Using the RDB_BIND_WORK_VM Configuration Parameter A–50
A–33 Using the RDB_DIAG_FLAGS Configuration Parameter A–51
A–34 Using the RDMS$DIAG_FLAGS Logical Name A–51
A–35 Using the RDMS$KEEP_PREP_FILES Logical Name A–52
A–36 Using the RDB_RUJ Configuration Parameter A–52
A–37 Using the RDMS$USE_OLD_CONCURRENCY Logical Name to

Cause Oracle Rdb to Use V4.1 Isolation Level Behavior A–53

xxiv

A–38 Using the RDMS$USE_OLD_CONCURRENCY and
RDMS$DEBUG_FLAGS Logical Names to Display the Conversion of
Read-Only Transactions When Snapshots Are Disabled A–54

A–39 Enabling the RDMS$USE_OLD_SEGMENTED_STRING Logical
Name . A–56

A–40 Disabling the RDMS$USE_OLD_SEGMENTED_STRING Logical
Name . A–56

A–41 Using the RDMS$USE_OLD_UPDATE_RULES Logical Name A–57
A–42 Using the RDB_VALIDATE_ROUTINE Configuration Parameter . . . A–58
A–43 Using the SQL_DATABASE Configuration Parameter to Define a

Default Database . A–59
A–44 Using the SQL$DISABLE_CONTEXT Logical Name A–60
A–45 Using the SQL_KEEP_PREP_FILES Configuration File A–61
C–1 S Display—Sequential Access . C–7
C–2 S Display—Indexed Access . C–8
C–3 S Display—Index Only Access . C–9
C–4 S Display—OR Indexed Retrieval . C–10
C–5 S Display—Dynamic OR Indexed Retrieval . C–11
C–6 S Display—Cross Block Retrieval . C–12
C–7 Sn Flag Display . C–14
C–8 O Flag Display . C–16
C–9 SO Flag Display . C–17
C–10 Defining the WAGECLASS_IDX Index . C–19
C–11 SO Flag Display Using the New WAGECLASS_IDX Index C–19
C–12 SE Flag Display—FFirst Retrieval . C–27
C–13 SE Flag Display—Sorted Order Retrieval . C–29
C–14 SE Flag Display—Index Only Leaf Retrieval C–31
C–15 SE Flag Display—Leaf Strategy with Join . C–32
C–16 Strategy Display for Sample Query . C–36
C–17 Sort Statistics for Sample Query . C–36
C–18 Effect of DISTINCT Clause on Sort Attributes C–39
C–19 Avoided Sort Operation . C–40
C–20 Query Using UNION Generating SORT . C–41
C–21 Displaying Transaction Activity with the Transaction (T) Flag C–42
C–22 Displaying Read-Only Transactions Upgraded to Read/Write

Transactions When Snapshot Files Are Disabled C–45

xxv

Figures

3–1 Adjustable Lock Levels . 3–83
3–2 Page-Level and Row-Level Locking When Two Processes Access

Different Rows on a Data Page . 3–86
3–3 Reduced Concurrency When Page Locking Is Enabled and Two

Processes Access Different Rows on a Data Page 3–87
3–4 Partitioned Application Likely to Benefit from Page Locking 3–88
3–5 Reducing the Number of Index Node Levels by Specifying

Run-Length Compression . 3–104
3–6 B-Tree Index Structure for a Ranked Sorted Index 3–121
3–7 Overflow Index Nodes . 3–123
3–8 B-Tree Index Structure for a Non-Ranked Sorted Index 3–124
3–9 Duplicate Index Nodes . 3–126
3–10 Clustered Access Contention at One Index Node 3–127
3–11 Hashed Index Structure . 3–135
3–12 Identifying Index Key Values That Are Appropriate for the HASHED

ORDERED Option . 3–140
3–13 Distribution of Data Across a Storage Area When the HASHED

ORDERED Option Is Used with Appropriate Index Key Values 3–141
4–1 Buffer Pool: Database Parameter Defaults . 4–26
4–2 Global Buffer Management . 4–33
4–3 Global Buffer Pool: Buffer 1 . 4–35
4–4 Global Buffer Pool: Buffers 1–3 . 4–35
4–5 Global Buffer Pool: Buffers 1–5 . 4–35
4–6 Global Buffer Pool: Buffers 1–6 . 4–36
4–7 Global Buffer 1 Changes . 4–36
4–8 Global Buffers 2 and 4 Change . 4–37
4–9 Checkpoint Processing . 4–104
4–10 Transactions Accessing the Database Snapshot File 4–119
4–11 Prestarted Transactions and Snapshot File Growth 4–167
4–12 Effect of Data Compression . 4–197
6–1 Traditional Configuration of Networked Systems 6–4
6–2 A VMScluster Configuration . 6–5
6–3 Disk and File Sharing . 6–6
6–4 Dual-Ported Disks . 6–7
6–5 Dual-Pathed Disks . 6–8
6–6 Sample Placement of Database Files . 6–23

xxvi

7–1 Tuning Because of Change in Workloads . 7–2
7–2 Analyze Resource Use . 7–5
7–3 Areas of Potential Improvement . 7–8
8–1 Decision Tree: Check for an I/O Resource Bottleneck 8–2
8–2 Decision Tree: Balance I/O Load . 8–5
8–3 Decision Tree: Check Oracle CDD/Repository 8–7
8–4 Decision Tree: Check AIJ . 8–8
8–5 Decision Tree: Check Data Distribution . 8–10
8–6 Percentage Read I/Os by Storage Area . 8–13
8–7 Decision Tree: Reduce I/O . 8–18
8–8 Virtual Memory Consumption Versus Number of Buffers 8–20
8–9 Working Set Size Versus Number of Buffers 8–21
8–10 Decision Tree: Check Constraints . 8–29
8–11 Decision Tree: Check Indexes . 8–30
8–12 Decision Tree: Check Node Size . 8–34
8–13 Decision Tree: Check Clustering . 8–36
8–14 Using Shadow Pages for Clustering . 8–39
8–15 Decision Tree: Check Hashed Index . 8–40
8–16 Decision Tree: Check Snapshots . 8–45
8–17 Decision Tree: Check Memory . 8–47
8–18 Decision Tree: Check CPU . 8–49
8–19 Effect of QUANTUM on Workload Response Time 8–51
8–20 Comparison of CPU Modes for QUANTUM Settings of 15 and

20 ms . 8–52
8–21 Decision Tree: Check Locks . 8–53

Tables

1–1 Performance Problem Areas . 1–3
2–1 RMU Analyze Command Qualifiers . 2–3
2–2 Field Descriptions . 2–10
2–3 Performance Monitor Horizontal Menu Selections 2–26
2–4 Select Tool Options . 2–40
2–5 Performance Monitor Screens . 2–49
2–6 Summary of Oracle Rdb Logical Names and Configuration

Parameters . 2–64
2–7 Oracle Rdb Events . 2–79

xxvii

2–8 Resource Utilization Items . 2–80
2–9 Oracle Rdb Data Items . 2–81
2–10 Items Associated with the AREA_ITEMS Group 2–88
2–11 Items Associated with the DATABASE_ITEMS Group 2–89
2–12 Items Associated with the RDB_CROSS_FAC Group 2–89
2–13 Items Associated with the DATABASE Event 2–90
2–14 Items Associated with the REQUEST_ACTUAL Event 2–90
2–15 Items Associated with the REQUEST_BLR Event 2–90
2–16 Items Associated with the TRANSACTION Event in the

PERFORMANCE and RDBEXPERT Classes 2–91
2–17 Items Associated with the TRANSACTION Event in the

PERFORMANCE_NO_CF and RDBEXPERT_NO_CF Classes 2–91
2–18 Events and Items Available in the PERFORMANCE Class for Oracle

Rdb . 2–92
2–19 Events and Items Available in the PERFORMANCE_NO_CF Class

for Oracle Rdb . 2–92
2–20 Events and Items Available in the RDBEXPERT Class for Oracle

Rdb . 2–92
2–21 Events and Items Available in the RDBEXPERT_NO_CF Class for

Oracle Rdb . 2–93
2–22 Oracle Trace Reports . 2–98
3–1 How Well Do You Know Your Data? . 3–2
3–2 Interrelated Database Performance Parameters 3–6
3–3 Comparison of the Stall Messages Screen and the Active User Stall

Messages Screen . 3–16
3–4 Starting and Stopping the ALS When the ALS Startup Mode Is

Automatic . 3–35
3–5 Starting and Stopping the ALS When the ALS Startup Mode Is

Manual . 3–37
3–6 RMU Show Locks Command Qualifiers . 3–47
3–7 RMU Show Locks Command Qualifier Combinations 3–50
3–8 Lock Compatibility Between a Current Transaction and Access

Modes Other Transactions Can Specify . 3–72
3–9 Effect of Long and Short Database Transactions 3–81
3–10 Storage Savings for the TELEPHONE_CUSTOMER Index with

Run-Length Compression Enabled . 3–103
4–1 How Far Will the Oracle Rdb Default Values Take You? 4–2
4–2 Oracle Rdb Database-Wide Parameter Values: Default, Minimum,

and Maximum . 4–2

xxviii

4–3 SQL Statements Affecting Database Parameters 4–4
4–4 Oracle RMU Commands Affecting Database Parameters 4–5
4–5 Memory Locations of Row Cache Objects . 4–80
4–6 When to Enable or Disable Fast Commit Processing 4–101
4–7 Transaction Behavior with Deferred Snapshots 4–125
4–8 Oracle Rdb Multifile Storage Area Parameter Values: Default,

Minimum, and Maximum . 4–128
4–9 SQL Statements Affecting Storage Area Parameters 4–129
4–10 Oracle RMU Commands Affecting Storage Area Parameters 4–130
4–11 SQL Statements Affecting Storage Map Parameters 4–173
5–1 Conditions That Cause Background Index Scan Termination 5–35
5–2 AND and OR Logic Compared . 5–42
5–3 Logical Name and Configuration Parameter Values That Specify the

Outlines to Be Used for a Query . 5–83
7–1 PRODUCT_DB Database Tables . 7–4
8–1 Estimating the Number of Bytes per Entry Plus Overhead Bytes for

Each Respective Index Record Type on a Data Page 8–42
A–1 RDM$BUGCHECK_IGNORE_FLAGS and

RDB_BUGCHECK_IGNORE_FLAGS . A–32
B–1 Columns for Table EPC$1_221_DATABASE . B–1
B–2 Columns for Table EPC$1_221_DATABASE_ST B–2
B–3 Columns for Table EPC$1_221_TRANSACTION B–2
B–4 Columns for Table EPC$1_221_TRANSACTION_ST B–5
B–5 Columns for Table EPC$1_221_REQUEST_ACTUAL B–5
B–6 Columns for Table EPC$1_221_REQUEST_ACTUAL_ST B–7
B–7 Columns for Table EPC$1_221_REQUEST_BLR B–8
B–8 Columns for Table EPC$1_221_REQUEST_BLR_ST B–8
C–1 Flags Used with the RDMS$DEBUG_FLAGS Logical Name and the

RDB_DEBUG_FLAGS Configuration Parameter C–2
C–2 Output Definitions for the S Flag . C–4
C–3 Output Definitions for the E Flag . C–23
C–4 Data Types Used with Sort Interface . C–42
C–5 Transaction Parameter Block (TPB) Information C–43

xxix

Send Us Your Comments

Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

You can send comments to us in the following ways:

• Electronic mail — nedc_doc@us.oracle.com

• FAX — 603-897-3334 Attn: Oracle Rdb Documentation

• Postal service

Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you like, you can use the following questionnaire to give us feedback. (Edit
the online release notes file, extract a copy of this questionnaire, and send it to
us.)

Name Title

Company Department

Mailing Address Telephone Number

Book Title Version Number

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

xxxi

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please
indicate the chapter, section, and page number (if available).

xxxii

Preface

Oracle Rdb is a general-purpose database management system based on the
relational data model.

Purpose of This Manual
This manual describes a database analysis methodology that provides a step-
by-step approach to identifying, analyzing, isolating, and solving performance
problems. It describes the factors that affect database performance, how to use
database analysis tools to examine those factors, and how to adjust database
parameters to improve performance.

This manual describes how to use various database tuning tools and utilities
to collect and report system, user, and database resource statistics. These
tools include the Oracle Rdb Performance Monitor and Oracle Trace software.
Oracle Trace software collects event-based data and provides several reports.
Oracle Trace can also provide workload input for Oracle Expert for Rdb
software.

Oracle Expert for Rdb software allows you to generate an optimal physical
design for a database by specifying workload, data volume, and system
environment information.

Intended Audience
This manual is intended for experienced database administrators who are
responsible for maintaining or improving database performance. You should be
familiar with data processing procedures, basic database management concepts
and terminology, and the OpenVMS operating system, and be very familiar
with Oracle Rdb.

xxxiii

Structure
This manual is divided into two volumes. The chapters in each volume and the
appendixes are described in the following table:

Volume I

Chapter 1 Describes performance factors, introduces the utilities and
tools used to analyze performance, and provides a performance
analysis methodology.

Chapter 2 Provides an overview of the tools used for analyzing database
performance, including the RMU Analyze command, the
Performance Monitor, Oracle Rdb logical names, Oracle Trace
for OpenVMS software, and Oracle Expert for Rdb software.

Chapter 3 Explains general database performance considerations, such as
default parameters, disk I/O, and data distribution. The chapter
also provides detailed information on how after-image journaling,
locking, and indexed retrieval affect performance.

Chapter 4 Describes how to adjust database and operating system
parameters to improve performance.

Volume II

Chapter 5 Provides an overview of the query optimizer, describes the access
strategies the optimizer uses to retrieve data, and explains how
you can influence the optimizer.

Chapter 6 Discusses how to configure an Oracle Rdb database in a
VMScluster environment.

Chapter 7 Describes database tuning and provides a tuning methodology to
help you determine what and when to tune.

Chapter 8 Provides a series of decision trees to help you diagnose database
resource bottlenecks.

Appendix A Provides a detailed description of the Oracle Rdb logical names
and configuration parameters.

Appendix B Describes the Oracle Rdb event-data tables provided by Oracle
Trace for OpenVMS software.

Appendix C Describes how to use the RDMS$DEBUG_FLAGS logical name
and the RDB_DEBUG_FLAGS configuration parameter to
examine optimizer retrieval strategies, query execution, and
query cost.

xxxiv

Related Manuals
For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

• Oracle Rdb7 Introduction to SQL

• Oracle Rdb7 Guide to SQL Programming

• Oracle Rdb7 SQL Reference Manual

• Oracle RMU Reference Manual

• Oracle Rdb7 Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Maintenance

• Oracle Rdb7 Installation and Configuration Guide

• Oracle Rdb7 Release Notes

The Oracle Rdb7 Release Notes list all the manuals in the Oracle Rdb
documentation set.

The following documentation sets provide related information:

• The Oracle Expert for Rdb documentation set

• The Oracle Trace for OpenVMS documentation set

• The Oracle CDD/Repository documentation set

• The documentation set for your operating system

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press Return at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted in order to focus full attention on the statements or commands
themselves.

Discussions in this manual that refer to VMScluster environments apply to
both VAXcluster systems that include only VAX nodes and VMScluster systems
that include at least one Alpha node, unless indicated otherwise.

In this manual, OpenVMS means the OpenVMS Alpha operating system, the
OpenVMS VAX operating system, and the VAX VMS operating system.

xxxv

This manual uses icons to identify information that is specific to an operating
system or platform. Where material pertains to more than one platform or
operating system, combination icons or generic icons are used. For example:

Digital UNIX This icon denotes the beginning of information specific to the
Digital UNIX operating system.

OpenVMS
VAX

OpenVMS
Alpha

This icon combination denotes the beginning of information
specific to both the OpenVMS VAX and OpenVMS Alpha
operating systems.

The diamond symbol denotes the end of a section of
information specific to an operating system or platform.

The following conventions are also used in this manual:

Ctrl/x This symbol in examples tells you to press the Ctrl (control) key and
hold it down while pressing the specified letter key.

Return This symbol in examples indicates the Return key.

Tab This symbol in examples indicates the Tab key.

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language prompt in
OpenVMS and the Bourne shell prompt in Digital UNIX.

xxxvi

Volume I

1
Database Performance Overview

After a database has been implemented and put into production, daily use of
that database continually tests the database design, both logical and physical.
Eventually, users may report that database response time has degraded. For
example, a standard report that originally was generated in seconds may now
take minutes. Performance degradation may occur gradually or it can happen
overnight; it may be chronic or it may be intermittent; it may affect all users
and applications or only some. This manual will help you diagnose and solve
database performance problems.

This chapter introduces the concepts of database performance and tuning. It
briefly describes the factors that affect performance and the tools you can use
to isolate a problem. Section 1.4 describes a performance analysis methodology
that provides guidelines for logically finding the source of a performance
problem.

Chapter 7 and Chapter 8 provide information that supplements the earlier
chapters. These two chapters further define the concept of tuning and
explore how tuning a system, database, and application can affect database
performance. Chapter 8 presents a series of decision trees to aid in identifying,
analyzing, isolating, and solving a performance problem, and in monitoring
the resulting solution. Oracle Corporation recommends that you read and
understand the earlier material before you read Chapter 7 and Chapter 8.

1.1 Performance and Tuning
In the broadest sense, database performance is a measure of user satisfaction.
It is up to you to establish realistic performance expectations. Users must be
aware that response time can vary due to many factors, some of which may
be beyond your control because of resource limitations. Optimum performance
for a given database and system configuration is defined as the best possible
response time for the most commonly executed database operations.

Database Performance Overview 1–1

This manual addresses factors affecting database performance that you can
analyze and adjust. By monitoring and evaluating database performance
characteristics such as locking, data distribution, and I/O, you may determine
that performance can be improved by adjusting one or several of the factors
discussed in Section 1.2.

When you adjust a factor that affects database performance, you are tuning
a database. There is a distinction between tuning and troubleshooting.
Troubleshooting, which is discussed in the Oracle Rdb7 Guide to Database
Maintenance, involves analyzing a bugcheck dump file that results from a
software error. Tuning involves adjusting parameters that affect how efficiently
data is read or written to a database to achieve optimum performance.

A database is tuned once during the initial design phase and may require
subsequent tuning after implementation to optimize performance. This
subsequent tuning may be in response to one or more of the following
occurrences:

• User complaints

• Database growth

• Changes that alter the physical characteristics of the database

• Performance monitoring

• Addition or subtraction of resources

• New applications or workload changes

• Additional users

During the initial physical design, a database is created without the benefit
of any performance data. The database creator uses the guidelines described
in the Oracle Rdb7 Guide to Database Design and Definition to arrive at the
best possible physical design. This manual presumes that you already have
a database up and running and need to refine an existing design. For more
information on tuning, refer to Chapter 7.

1.2 Performance Factors
Performance degradation is a common problem. However, the source of a
performance problem is often not obvious. Some general areas that can be
sources of database performance problems are shown in Table 1–1.

1–2 Database Performance Overview

Table 1–1 Performance Problem Areas

Problem Area What to Investigate

System resources Do you have enough memory, a sufficient number
of disks, and enough CPU power for the number of
users you support?

Memory management Are your parameter values optimally tuned for user
processes accessing your database application?

Operating system parameters Are system parameter values set properly?

Process parameters Are user account quotas set properly?

Logical database design Is it taking too long to find or update certain rows?

Physical database design Has the logical database design been implemented
efficiently?

• Parameters. Have you altered the default
Oracle Rdb parameters in accordance with
site-specific needs?

• Row placement. Are there too many
fragmented or displaced rows? Are the pages
too full? Are there too many hash bucket
overflows? Are many data rows displaced on
different pages from where their hash buckets
are located?

• Database space. Is your database getting
too full? Are there many extents for any
storage areas? Have you outgrown initial
space allocation sizes?

• Locking problems. Are too many programs
trying to update or read the same rows at the
same time?

Application design Do your SQL precompiler and SQL module
language programs use the database efficiently, and
are tables reserved intelligently? Are transactions
designed to allow maximum concurrency?

Once you determine the problem area, you can begin evaluating factors that
affect database performance within that area. The remainder of this section
briefly describes each potential problem area and indicates where you can find
additional information.

Database Performance Overview 1–3

1.2.1 System Resources and Memory Management
Insufficient CPU power, storage, or memory can result in unacceptable
response times. Refer to the following sources to determine if your performance
problems are caused by insufficient system resources:

OpenVMS
VAX

OpenVMS
Alpha

• Section 1.3.1 of this manual describes operating system utilities and other
system performance utilities that can help you identify system-related
problems. ♦

• Section 8.3 describes how to evaluate CPU resources.

OpenVMS
VAX

OpenVMS
Alpha

• The OpenVMS documentation set has information on procedures that can
identify performance problems. It also provides procedures to follow to
achieve optimum performance for your system configuration and for the
workload you need to manage. ♦

One aspect of tuning overall system performance involves a careful analysis
of the memory management of the system. Refer to Section 4.4.3, Tuning
Working Set Adjustment Parameters, and Section 8.2, Analyzing Memory
Resources, for more information.

1.2.2 OpenVMS System Parameters and Process Parameters

OpenVMS
VAX

OpenVMS
Alpha

Although you may have sufficient system resources, good database design, and
properly set Oracle Rdb parameters, database performance is still subject to
the performance of the system itself. During the installation of Oracle Rdb
you should have set OpenVMS parameter values and process account quotas
according to the guidelines in the Oracle Rdb7 Installation and Configuration
Guide.

When tuning is required, you should select a very small number of parameters
for change, based on a careful analysis of the observed behavior, or based
on the results of running a system performance monitor. Tools for analyzing
and monitoring your system are described in Section 1.3.1. The parameters
are usually either system parameters or entries in the user authorization
file (UAF) that affect particular users. You modify system parameters using
the AUTOGEN command procedure. One AUTOGEN feature is that it
automatically adjusts associated parameters to any changes you make. To
control the values in the UAF, you use the OpenVMS Authorize utility
(AUTHORIZE). See the OpenVMS documentation set for detailed information
on system parameters, the UAF file, AUTOGEN, and the Authorize utility.

Section 4.4.2 and Section 4.4.4 discuss setting system parameters and user
account quotas in more detail. ♦

1–4 Database Performance Overview

1.2.3 Database Design
The logical design of your database is the foundation upon which all other
performance factors depend. If the logical design of your database is
inadequate, adjusting other parameters, such as operating system parameters
and Oracle Rdb parameters, cannot optimize performance. A poor logical
design requires substantial effort to re-analyze, redesign, restructure, and
reload the database. As a starting point for improving database performance,
you should gain a thorough understanding of your data and be familiar with
the design concepts presented in the Oracle Rdb7 Guide to Database Design
and Definition.

Refining the physical design of a database (tuning) involves analyzing the
factors that can affect data storage and retrieval, and then adjusting the
parameters that control those factors. Analyzing and adjusting parameters are
discussed in Chapters 3 and 4, respectively. Additional information is available
in Chapter 8, Diagnosing a Database Resource Bottleneck. You should also
consider using Oracle Trace and Oracle Expert for Rdb1. Refer to Section 1.3.1
for a brief description of these two products.

1.2.4 Application Design
The final element that can adversely affect database performance is application
design. Use the following general guidelines in database programming to
optimize performance and reduce contention:

• Keep transactions short to reduce locking and to keep the snapshot file
from extending (if enabled).

• Keep transactions simple by dividing a complex query into several simpler
queries and by using views to standardize program access. These steps
will:

Reduce query optimization overhead

Reduce potential programming and maintenance problems

• Use SHARED READ with the RESERVING clause to minimize locking and
promote concurrent access.

• Avoid terminal I/O within a transaction to prevent intermittent locking
problems.

• Help the optimizer. Refer to Section 5.8 for information.

• Use dbkeys, where possible, to access data rows directly. This avoids use of
an index, which minimizes locking, and also reduces I/O.

1 Oracle Trace and Oracle Expert for Rdb are available on OpenVMS systems only.

Database Performance Overview 1–5

1.2.5 Possible Performance-Related Changes
This section lists some of the changes you can make to a system, or to a
database, that can impact performance.

OpenVMS
VAX

OpenVMS
Alpha

Possible system changes include adjusting OpenVMS parameters such as
LOCKIDTBL, REHASHTBL, GBLPAGES, GBLSECTIONS, MAXBUF,
VIRTUALPAGECNT, and DEADLOCK_WAIT for Oracle Rdb applications
to determine optimum settings.

Possible process changes include adjusting user account parameters such as
ENQLM, WSQUO, WSDEF, WSMAX, FILLM, BYTLM, ASTLM, DIOLM, and
BIOLM for Oracle Rdb applications to determine optimum settings. ♦

Possible database changes include the following options:

• Data distribution

Redistribute database files among your disk devices.

Redistribute rows among storage areas to achieve a more even distribution.
Also, horizontally partition rows across storage areas to group commonly
accessed rows.

Cluster two or more tables within the same mixed storage area so rows
from these tables are read into a buffer together. If clustering is not
possible, consider implementing shadow pages.

Control data redundancy to improve retrieval performance (require fewer
joins) at the possible expense of update performance.

• Indexes

Add hashed indexes to mixed storage areas.

Set index characteristics (node size, percent fill, and usage options) based
on predominant database use (query or update transactions).

Define indexes after rows are loaded into the database; sort rows by
primary key before loading them into the database.

• Locking

Disable adjustable lock granularity when contention for rows in a logical
area is very high and CPU time is a problem. Also consider reducing row
lock conflicts further by changing read/write storage areas that are never
updated to read-only storage areas. Use data compression for those tables
that are not updated frequently.

Optimize transaction scope as a means of reducing potential lock conflicts
with other database users.

1–6 Database Performance Overview

Enable or disable snapshots to reduce lock conflicts between update and
retrieval users (also consider using deferred snapshot files).

• I/O

Optimize buffer size, number of buffers, and buffer pools for the dominant
transaction type for the database.

Depending on the dominant transaction type, enable global buffers or fast
commit processing or both.

• Database parameters

Optimize page size for different storage areas to avoid row fragmentation.

Experiment with page allocation ranges and page block sizes to determine
which configurations provide the most even row distribution results.

Set SPAM threshold values and the data page interval between SPAM
pages for uniform and mixed storage areas.

Perform an IMPORT/EXPORT operation to eliminate extensions in mixed
storage areas.

1.3 Performance Utilities and Tools
Several utilities and tools are available to help you evaluate the performance
of your database environment. These include OpenVMS utilities, Oracle RMU
commands, and Oracle Rdb logical names and configuration parameters.
Section 1.3.1 through Section 1.3.3 briefly introduce the various tools and
utilities and direct you to more information.

1.3.1 Operating System Utilities

OpenVMS
VAX

OpenVMS
Alpha

Database performance is closely related to overall operating system
performance because of the great impact of a database management system on
an operating system.

The OpenVMS operating system provides the following utilities to help you
evaluate the performance of your database within the overall context of the
OpenVMS operating system environment:

• The DCL MONITOR command shows continuous system resource usage
and statistics.

• The DCL SHOW commands display a snapshot of system resource usage.

• The DCL DUMP command enables you to display or print the contents of
files or volumes in ASCII, decimal, hexadecimal, or octal representation.

• SYSGEN shows current OpenVMS system parameters.

Database Performance Overview 1–7

• AUTOGEN enables you to modify OpenVMS system parameters.

• AUTHORIZE enables you to show and modify user quota parameters.

Refer to the OpenVMS documentation set for further information on these
OpenVMS utilities and commands.

Oracle products that are useful for monitoring system performance include:

• Oracle Trace software

Oracle Trace is a product that collects and reports on event-based data
gathered from any combination of OpenVMS layered products and Oracle
Rdb applications. Oracle Rdb has many predefined events that occur
during run time. An event can have a start and an end (beginning of a
transaction to commit) or it can simply occur (attach to a database). Oracle
Trace allows data items to be associated with these predefined Oracle
Rdb events. These items can be standard resource utilization items or
items specific to applications using Oracle Rdb. For example, items can
be information about the event itself, such as the name of the event or in
what procedure the event is occurring.

Items can also include process statistics and performance information,
such as working set size at the time the event occurs. If an application is
instrumented with Oracle Trace calls (described in Section 2.4.1), you can
use Oracle Trace to collect event data from the application. This event data
can be useful for many different purposes, including:

Tuning the performance of applications

Planning hardware resources (capacity planning)

Tuning the performance of databases

Debugging applications

Logging errors

Importing application performance data into Oracle Expert for Rdb

Oracle Trace differs from other collectors in that it is event-based, whereas
most other collectors are timer-based. An event-based collector gathers
data at predefined locations in your program code when that code is
executed. Timer-based collectors perform data collection at specified
time intervals. Advantages of event-based collectors include:

Provide an easy way to collect and report on the actual resources used
by certain events in applications; for example, to generate a specific
report or transaction.

1–8 Database Performance Overview

Determine the actual frequency of the execution of events, rather than
an average or estimated frequency, such as how often a transaction is
executed.

Oracle Trace does not attempt to analyze or modify the performance of an
application or database. Its function is to collect data requested by users
and to provide reports based on that data. Interpreting these reports is the
responsibility of the user or of other layered products. See Section 2.4 for
information on how you can use Oracle Trace with Oracle Rdb applications.
Refer to the Oracle Trace documentation for additional information on
using Oracle Trace.

• Oracle Expert for Rdb software

Oracle Expert for Rdb is a software tool that helps you design and
implement a database. Oracle Expert for Rdb contains extensive tuning
rules that are based on physical database design principles and database
management internals, such as the Oracle Rdb query optimizer.

To develop a design, Oracle Expert for Rdb imports the logical design
of the database, table and index cardinalities, and transaction workload
information. It requires input of the workload priorities and database
environment information. A report is generated that documents and
explains why this particular design was chosen. Workload data collected by
Oracle Trace can be directly imported to Oracle Expert for Rdb.

After the information is analyzed, Oracle Expert for Rdb produces
command files that are used to create the database. Oracle Expert for
Rdb can also generate procedures for loading and unloading the database.

You can also use Oracle Trace and Oracle Expert for Rdb to tune an
existing database. Use Oracle Trace to collect data on the running system
and import it into Oracle Expert for Rdb. Then use Oracle Expert for
Rdb to unload the existing database, make design changes, and reload
the database. Refer to the Oracle Expert for Rdb User’s Guide for more
information. ♦

1.3.2 Oracle RMU Commands
Oracle RMU, the Oracle Rdb management utility, enables you to display
information about Oracle Rdb databases. Oracle RMU commands that are
particularly useful for analyzing database performance include: RMU Analyze,
RMU Show, and RMU Dump.

Database Performance Overview 1–9

RMU Analyze
A major cause of database performance problems is poor row storage. You
can use the RMU Analyze command to monitor and evaluate database space
usage. A regular analysis of database space usage can help you spot potential
problems early and let you begin to look for solutions before the problems
become acute. Chapter 2 introduces the RMU Analyze command and its
qualifiers. Specific examples of RMU Analyze and its output are located in
Chapters 3 and 4 of this manual.

RMU Show
Oracle Rdb maintains statistics for various database activities on a database-
wide basis. You can use these statistics to evaluate the efficiency of a program’s
database access in terms of I/O operations for each database area. You can also
use the statistics to evaluate your index node, to evaluate overall database
access patterns, and to evaluate locking statistics.

Chapter 2 describes how to use the RMU Show Statistics command to invoke
the Performance Monitor to display database statistics. The Performance
Monitor screens are described throughout this manual.

The RMU Show Locks command displays current information about process
locks for all active databases on a specific node. By determining the type of
lock held by a process or list of processes, you can identify which process is
blocking other processes. The RMU Show Locks command is described in
Section 3.8.1.1.

RMU Dump
In evaluating performance and data distribution problems, especially in
the area of row placement, you may find it useful to examine the on-disk
contents of your database. You may also want to review internal root file
information and ID numbers for database storage areas and logical areas. You
can also display storage area and logical area information to inspect space
area management (SPAM) pages, area inventory pages (AIPs), area bit maps
(ABMs), and data pages where your index structures and data rows are located.
Refer to the Oracle Rdb7 Guide to Database Maintenance for information on
using the RMU Dump command to display and interpret the contents of your
database files.

Refer to the Oracle RMU Reference Manual for a full explanation of these
Oracle RMU commands.

1–10 Database Performance Overview

1.3.3 Oracle Rdb Logical Names and Configuration Parameters
Oracle Rdb provides many logical names and configuration parameters you
can define that can improve performance by giving process-level control over
several parameters. For example, Oracle Rdb logical names and configuration
parameters enable you to relocate or pre-extend the .ruj file or temporarily
override the default number of user-allocated buffers at run time. Other Oracle
Rdb logical names and configuration parameters help you examine optimizer
strategy.

Table 2–6 lists all the Oracle Rdb logical names and configuration parameters,
and provides a brief functional description of each one. Appendix A describes
each logical name and configuration parameter in detail.

1.4 Performance Analysis Methodology
Before you start to evaluate the performance of your database, eliminate
other possible causes of poor database performance, such as insufficient or
faulty hardware or operating system resources. Avoid devoting a lot of time
to evaluating the database environment unless you are sure the problem
lies there and not in hardware or operating system resources and quotas.
Remember that any change in your system configuration or a dramatic change
in system workload can affect overall system performance.

Most database performance considerations depend on the specific attributes
of your application. There are no hard and fast rules about design, analysis,
tuning, or programming. There is no one set of answers to any database
performance problem. You must evaluate database performance according to
your database’s intended and actual use. Performance problems often occur
when a database design does not match the eventual use of that database.

The remainder of this section presents a series of recommendations for
analyzing database performance. You should also refer to the decision trees in
Chapter 8 for detailed, step-by-step help in evaluating specific problems.

1.4.1 Tuning Guidelines
The first step in analyzing database performance is determining if a problem
really exists. Complaints about performance may arise from unrealistic user
expectations. If you determine that a problem does exist, ask yourself the
following general questions:

• When did the problem first appear?

• Is the problematic behavior intermittent or consistent?

Does it occur more often at a certain time of day?

Database Performance Overview 1–11

Does it occur with a particular type of transaction?

Does one person or program experience the problem more often than
others?

When did the problem last occur? What else was happening on the
system?

• Were any changes made just before the problem first arose? Has new
software or hardware been installed recently?

• Have workload volumes or other environmental factors changed recently?

• Are third-party products being used with the database?

The answers to these questions can suggest when and where to begin gathering
information.

1.4.2 Establishing a Context to Interpret Tuning Results
To analyze the performance of your database, you should establish a context
within which to interpret the results of your evaluation. Set a goal and
measure your progress toward it. For example, set a goal of improving
average response time by 10 percent. Measure the effect of a performance
improvement, such as enabling page locking to remove the overhead of record
locks for partitioned applications.

If you do not know what you want to achieve in measurable terms when you
begin evaluating and improving database performance, you will not know
if the performance gains you make solve your problem. When you measure
the results of each change, you then know how much improvement resulted
from each change you made. Keep a log of the changes you make and the
percent increase in performance that results so you can see if the same areas
repeatedly cause problems.

Try to tune when a performance problem is most evident. This will make it
easier to identify the cause of the problem.

1.4.3 Using a Test Database
Use a test database to help you evaluate the performance of your database
and the programs that access it. You should try to create a realistic testing
environment, not only for performance testing, but also for testing database
modifications before you implement them in the production database.

If your database is too large to create an exact copy, create a representative
fraction, a tenth for example. Then load the test database with the correct
proportion of test data to about the same fullness percentage as your
production database. Make sure the page sizes match. Your results may

1–12 Database Performance Overview

not be exactly the same because the storage hashing algorithm may produce
some slightly different results due to the different page count, but with a
database scaled down by a factor of 10, the results should be similar.

Verify that you can create the same problem on your test database. If
necessary, run your production programs against it. Set up a complete
test directory structure that parallels your production directory structure,
if you have room. You may want to dedicate a disk or two to this effort.
An investment in an adequate testing environment can pay off quickly in
improvements to the production database, and it will reduce the risk of tuning
directly on the production database.

1.4.4 Making Changes
Two rules to follow when changing parameters that affect database
performance are:

• Make one change at a time.

• Make changes in order of difficulty.

1.4.4.1 Make Single Changes
Begin to make changes to the test database and to the programs that run
against it, implementing one change at a time. Note the effect of each change,
and evaluate the impact of the change to the database environment. If the
change makes performance worse, restore the database environment to the
original state.

As you make modifications to the test database and verify them, construct a
plan for implementing those modifications in the production database.

1.4.4.2 Make Changes in Order of Difficulty
You should make performance-related changes to your database in order of
their difficulty to implement.

• You should make the most easily implemented changes first. For example,
you can make some changes on line (with users attached to the database
and transactions in progress) that go into effect immediately, such as
after-image journal file allocation and extension.

• You can make some changes on line whose effect is deferred until a new
transaction occurs or a user detaches and reattaches to the database. An
example of this type of change is setting the read-only flag that indicates
whether a storage area is read-only or read/write.

• You can make changes off line (no users attached to the database) when
they do not require unloading and reloading the database, such as changing
the number of users allowed to attach to the database.

Database Performance Overview 1–13

• You can make changes off line that require the database to be unloaded
and reloaded, such as adding storage areas and reorganizing storage areas.

Section 4.1 describes how to adjust database parameters. Most performance
problems that relate to changing the specifications for particular database-wide
parameters and storage area parameters can be solved in one of the following
ways:

• By using an SQL ALTER DATABASE statement and making the
appropriate database-wide changes

• By using an SQL ALTER DATABASE statement and defining a new
storage area, modifying the associated storage map statements, and
automatically moving the rows for specified tables into the new storage
areas

See the Oracle Rdb7 Guide to Database Maintenance for a complete description
of the database modifications you can make on line and off line and without
exporting and importing your database. The Oracle Rdb7 Guide to Database
Maintenance also describes procedures you can develop to export and import
your database using the SQL EXPORT and IMPORT statements.

1.4.5 Sample Procedure for Performance Evaluation
This section outlines a sample procedure for evaluating the performance of an
online database application.

1. Use the SQL EXPORT and IMPORT statements to move the database
to a new disk location and to move the data repository (Oracle
CDD/Repository1) information to a new repository directory.

2. Identify and isolate sections of application program code that access the
database.

3. Create program test modules that reproduce the actual operation of the
application.

OpenVMS
VAX

OpenVMS
Alpha

4. Use OpenVMS Run-Time Library calls LIB$INIT_TIMER and LIB$SHOW_
TIMER or Oracle Trace to produce OpenVMS operating system statistics,
such as elapsed time and CPU time, for the program test modules. ♦

5. Use the Performance Monitor to monitor Oracle Rdb statistics, such as the
number of database pages read, locking activity, and I/O statistics.

6. Establish a workload procedure (run the program modules at certain
intervals, or create batch processes to simulate online users).

1 On OpenVMS systems only

1–14 Database Performance Overview

7. Make changes to the test database and compare statistical output before
and after the changes.

1.4.6 Cluster Performance Considerations
Database performance in a cluster environment may be affected by how and
where you place your database files on disks. If you are using Oracle Rdb in a
large cluster environment, for example, you might want to place your database
root file on a separate disk because I/O activity to the root file increases in a
cluster environment.

Also, you may want to distribute large or heavily used storage areas across
different disks by changing device specifications using the RMU Restore or
RMU Move_Area command. You may want to experiment with various disk
access paths to your files. For example, you may discover that database files
on HSC disks can be accessed faster than database files on MASSBUS or
UNIBUS disks because of HSC seek and rotational optimizations.

OpenVMS
VAX

OpenVMS
Alpha

Refer to Chapter 6 for more information on Oracle Rdb performance in a
VMScluster environment. ♦

Database Performance Overview 1–15

2
Database Performance Analysis Tools

This chapter describes the tools you can use to analyze the performance of an
Oracle Rdb database. These tools include:

• The RMU Analyze command

• The Performance Monitor

• Oracle Rdb logical names and configuration parameters

OpenVMS
VAX

OpenVMS
Alpha

• Oracle Trace for OpenVMS

• Oracle Expert for Rdb ♦

This chapter provides an overview of the Oracle RMU commands and the
Oracle Rdb logical names and configuration parameters; you can find specific
directions for using each tool in the appropriate section of this manual. For
example, the RMU Analyze Indexes command is described in Section 3.9.5.
Oracle Trace is covered in Section 2.4.

2.1 RMU Analyze Command
You can use the RMU Analyze command to examine the following database
characteristics:

• The space the database is using, how space is utilized in logical areas
within storage areas (at the page level), and the amount of free space on
each page

• The current database parameters that support your database definitions
such as space allocation, page size, SPAM thresholds and intervals, page
format, row compression, and general row placement information; and how
efficiently these parameters work

• The number and type of records the database currently holds, their location
on the page, and statistics on row fragmentation and row compression

Database Performance Analysis Tools 2–1

• The structure of the indexes, number of levels, number of duplicate nodes,
number of unique keys, and detailed information on each index and node
record such as the actual dbkey, the level, the size, the key length, and the
actual key value

• Index and data record placement for a specified index on a table, the
number of index records accessed to reach a data row, the maximum
number of pages traversed to reach a data row, and the number of
database buffers that are required to access a data row

• Histogram (frequency distribution) charts for each of the following
parameters:

The number of records accessed

The number of pages traversed

The number of buffers used

Detailed information on the frequency distribution of data rows includes:

The number of dbkeys needed to access the data row

The number of pages accessed to reach a data row

Whether or not the data row and index structure would be in the buffer

The key length

The actual key value

The RMU Analyze command can help you with the following tasks:

• Resetting database parameters using the SQL ALTER DATABASE
statement when fragmentation and page overflow occur

• Developing procedures for exporting and importing a database

• Defining indexes

• Adding new storage areas and partitioning rows from one or more tables
across these new storage areas to help alleviate I/O bottlenecks

• Adding new storage areas to reorganize rows from old storage areas based
on modifications made to a storage map

You can write the results of the RMU Analyze command into a binary file by
using the Binary_Output qualifier.

To use the RMU Analyze command, you must have the RMU privilege
RMU$ANALYZE or the OpenVMS privileges SYSPRV or BYPASS.

2–2 Database Performance Analysis Tools

2.1.1 RMU Analyze Command Qualifiers
The RMU Analyze command output shows how full the database is, whether
or not rows are fragmented, how rows are distributed, the type of record on the
page, and the I/O path length to reach a data row. Such information helps you
see how your database is evolving and decide how to improve its performance.

This section provides a general description of the information you can gather
using the RMU Analyze command with the four qualifiers shown in Table 2–1.
Table 2–1 also indicates where you can find more information and examples of
each qualifier.

Table 2–1 RMU Analyze Command Qualifiers

Qualifier Reference

Areas Section 4.2.1.1

Lareas Section 4.2.1.2

Indexes Section 3.9.5.1

Placement Section 4.3.1.1 through Section 4.3.1.3

You can vary the level of detail output by each qualifier by using the
Option={Normal | Full | Debug} qualifier.

• Normal

Output includes only summary information. This is the default.

• Full

Output includes histograms and summary information.

• Debug

Output includes internal information about the data, as well as histograms
and summary information.

You can improve database performance by paying particular attention to the
display elements listed under each of the following RMU Analyze command
qualifiers:

• Areas

Page fullness for the storage area

Database Performance Analysis Tools 2–3

Examine the shape of the storage area page space use by page
histogram. If many pages are less than 60 percent full, you may
be performing many random deletions, or your free page space may be
too small to hold a row of typical size. For example, if the page size is
2 blocks (1024 bytes) and a typical row is 550 bytes (after compression),
Oracle Rdb could store 1 row per page. Each page would then have
474 bytes of unused space. If you wanted to store 7 rows, it would
take 7 pages or 7168 bytes, 3318 bytes of which would be unused
(7 � 474 = 3318).

However, if the page size were 4096 bytes, Oracle Rdb could fit all 7
rows on a single page. Only 246 bytes would be unused compared to
the 3318 unused bytes with the 1024-byte page size.

SPAM count

The number of SPAM pages approximates the maximum number of I/O
operations necessary to find free space when the storage area is filled
to near capacity.

Overflow

Overflow can be caused by row fragmentation and hash bucket
overflows. Row fragmentation can be due to underestimating the page
size for the storage area. It is also caused by not allowing sufficient
space for storing the uncompressed rows on a page if the compression
characteristic is changed from compressed to uncompressed. Overflow
of hashed index records (hash buckets and duplicate node records) and
data rows occurs if the page size is set too small relative to all the
records that must fit on the page. This may result from not estimating
the distribution of duplicate records, or from a low size estimate of
a hash bucket on the page, especially when the PLACEMENT VIA
INDEX option is used to store both data rows and hash structures on
the same page.

• Lareas

Fragmentation

Any fragmented rows are indicated in the summary portion of the
output for the RMU Analyze command for the Area and Lareas
qualifiers. The information displayed indicates the number of rows
that are fragmented, the number of fragments in each row, and the
size in bytes of each fragmented row. If many rows are fragmented,
performance drops.

Page space use by page for logical areas

2–4 Database Performance Analysis Tools

Examine the shape of the logical area page space use by page
histogram. This histogram summarizes the percentage of page space
used by data in a specific logical area versus the number of pages that
contain data. The shape of the histogram can tell you how rows are
distributed among the pages, and can also tell you something about
how the database is changing.

Percent of maximum record length by record for logical areas

Examine the shape of the logical area percent of maximum record
length by record histogram generated by the Option=Full qualifier.
This histogram summarizes for a logical area each record’s percent of
maximum size (uncompressed) for its record type. The shape of the
histogram can reveal the distribution of record lengths in a logical
area.

• Indexes

Index levels

Measures the cost of retrieval using the number of I/O operations.

The number and size of index nodes

Measures the storage overhead involved in using the index.

The number and size of duplicate indexes

Measures the efficiency of the index. A unique index is faster than one
with many duplicate values that can cause overflow to adjacent pages.
Overflow can occur as pages fill up with index records and spill over to
adjacent pages because the page size may be too small.

• Placement

Maximum and average path length

Indicates the maximum and average number of index records accessed
to reach a data row.

Maximum I/O path length

Indicates the maximum number of pages traversed to reach a data row.

Minimum I/O path length

Indicates the number of buffers required to access a data row for a
given buffer size.

Dbkey path length by frequency

Database Performance Analysis Tools 2–5

Examine the shape of the dbkey path length by frequency histogram.
This histogram summarizes the number of index records accessed to
reach the data rows. For a specific index, the shape of the histogram
provides a frequency distribution of the dbkey path lengths for all data
rows in the table for which the index was defined.

Maximum I/O path length by frequency

Examine the shape of the maximum I/O path length by frequency
histogram. This histogram summarizes the total number of pages
traversed to reach a data row. For a specific index, the shape of the
histogram provides a frequency distribution of the total number of
pages traversed to reach each data row in the table for which the index
was defined.

Minimum I/O path length by frequency

Examine the shape of the minimum I/O path length by frequency
histogram. This histogram summarizes, when the buffer size is
considered, the number of buffers required to access data rows. For
a specific index, the shape of the histogram provides a frequency
distribution of the number of buffers used to access data rows in the
table for which the index was defined.

Detailed information on the distribution of data rows on data pages

Indicates the number of dbkeys needed to reach a specific data row on
the data page, the maximum and minimum I/O path length to reach
the data row, the length of each key, and the specific key for the data
row.

The RMU Analyze command, used with the Areas and Lareas qualifiers, does
not start a transaction, but does lock a physical area with a concurrent read
lock while that area is being analyzed. Analysis is performed on one database
storage area at a time, with results reported by storage area and logical
area. Oracle Rdb maintains separate logical areas for each table’s data, for
each table’s indexes, and one logical area per database for segmented string
data. Because the RMU Analyze command does not use record locking or the
snapshot file, it allows concurrent database activity.

Generally, all other transaction types (read-only, read/write shared read,
read/write protected read, read/write shared write, and read/write protected
write) that may need to read or update an area of the database will not conflict
with the RMU Analyze command when the Areas and Lareas qualifiers are
specified. Snapshot files do not need to be enabled in order to read information
from a storage area. Note that the results of the RMU Analyze command may
change over time because of ongoing database activity.

2–6 Database Performance Analysis Tools

When you use either the RMU Analyze Indexes command or the RMU Analyze
Placement command, a read-only transaction is started. Snapshot files must
be enabled in order to gather information. This permits other database activity
to occur while you are using either the RMU Analyze Indexes command or
the RMU Analyze Placement command. The only conflicts that might occur
are with exclusive and batch-update transactions that try to access the same
physical area that is undergoing index or placement analysis. This is because
neither transaction writes before-images to the snapshot file.

2.1.1.1 Excluding Oracle Rdb Information from RMU Analyze Command Output
It is possible to exclude Oracle Rdb information from RMU Analyze, RMU
Analyze Indexes, and RMU Analyze Placement command output.

You can specify the Exclude=System_Records or the Exclude=Metadata quali-
fier with the RMU Analyze command. When you specify the Exclude=System_
Records qualifier, information on the RDB$SYSTEM_RECORD logical
area is excluded from the RMU Analyze output. When you specify the
Exclude=Metadata qualifier, information on all the Oracle Rdb logical areas
(for example, the RDB$SYSTEM_RECORD and the RDBVMS$COLLATIONS_
NDX logical areas) is excluded from the RMU Analyze output.

When you specify the Exclude=Metadata qualifier with either the RMU
Analyze Indexes or RMU Analyze Placement command, information on the
Oracle Rdb indexes (for example, the RDB$NDX_REL_NAME_NDX and
RDBVMS$COLLATIONS_NDX indexes) is excluded from the RMU Analyze
Indexes and RMU Analyze Placement output.

Data is accumulated for the logical areas excluded with the Exclude qualifier,
but the data is excluded from the command output.

2.1.2 Creating a Binary Output File for Further Analysis
A very useful option of the RMU Analyze command is to output the results into
a binary file that is either a fixed-length record binary file (.unl) or an Oracle
CDD/Repository1 compatible record definition file (.rrd) for further analysis
such as:

• Loading the summary results into an Oracle Rdb database using the RMU
Load Rms_Record_Def command for use by a user-written management
application or procedure

• Providing access to the results for a user-written program

1 On OpenVMS systems only

Database Performance Analysis Tools 2–7

The binary output file can be created when you specify the Binary_Output
qualifier with any of the following commands:

• RMU Analyze (with either the Areas and Lareas qualifiers)

• RMU Analyze Indexes

• RMU Analyze Placement

You can create the fixed-length record binary file with a .unl file type by
specifying the Binary_Output= (File = file-spec) qualifier, as in Example 2–1.

Example 2–1 Creating a Fixed-Length Record Binary File

$ RMU/ANALYZE/BINARY_OUTPUT=FILE=ANALYZE_OUT1

You can use the Binary_Output= (Record_Definition = file-spec) qualifier to
create an Oracle CDD/Repository compatible record definition binary file (with
an .rrd file type), as in Example 2–2.

Example 2–2 Creating an Oracle CDD/Repository Compatible Record
Definition Binary File

$ RMU/ANALYZE/BINARY_OUTPUT=RECORD_DEFINITION=ANALYZE_OUT2

You can create both binary output files on the same command line by
enclosing them within parentheses and separating them with a comma, as
in Example 2–3.

Example 2–3 Creating Both a Fixed-Length Record File and an Oracle
CDD/Repository Compatible Record Definition File

$ RMU/ANALYZE/BINARY_OUTPUT=(FILE=ANALYZE_OUT1,RECORD_DEFINITION=ANALYZE_OUT2)

Note that the default is Nobinary_Output and that no binary output file is
created.

2–8 Database Performance Analysis Tools

OpenVMS
VAX

OpenVMS
Alpha

The RMU Analyze command in Example 2–4 outputs the results into an
RMS record definition file called DB.RRD that is compatible with the data
repository.

Example 2–4 Using RMU Analyze to Create an Oracle CDD/Repository
Compatible Record Definition File

$ RMU/ANALYZE/BINARY_OUTPUT=RECORD_DEFINITION=DB.RRD mf_personnel
$!
$! Display the DB.RRD file created by the previous command:
$ TYPE DB.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$STORAGE_AREA_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$TOTAL_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$EXPANDED_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$FRAGMENTED_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$EXPANDED_FRAGMENT_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$FRAGMENTED_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$FRAGMENT_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$PAGE_LENGTH DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$MAX_PAGE_NUMBER DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD RMU$FREE_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$OVERHEAD_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$AIP_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$ABM_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$SPAM_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$INDEX_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$BTREE_NODE_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$HASH_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATES_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$OVERFLOW_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$LOGICAL_AREA_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$RELATION_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$RECORD_ALLOCATION_SIZE DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$TOTAL_SPACE DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_AREA.

RMU$DATE.
RMU$AREA_NAME.
RMU$STORAGE_AREA_ID.
RMU$FLAGS.
RMU$TOTAL_BYTES.
RMU$EXPANDED_BYTES.
RMU$FRAGMENTED_BYTES.
RMU$EXPANDED_FRAGMENT_BYTES.
RMU$TOTAL_COUNT.
RMU$FRAGMENTED_COUNT.
RMU$FRAGMENT_COUNT.
RMU$PAGE_LENGTH.
RMU$MAX_PAGE_NUMBER.

(continued on next page)

Database Performance Analysis Tools 2–9

Example 2–4 (Cont.) Using RMU Analyze to Create an Oracle CDD/Repository
Compatible Record Definition File

RMU$FREE_BYTES.
RMU$OVERHEAD_BYTES.
RMU$AIP_COUNT.
RMU$ABM_COUNT.
RMU$SPAM_COUNT.
RMU$INDEX_COUNT.
RMU$BTREE_NODE_BYTES.
RMU$HASH_BYTES.
RMU$DUPLICATES_BYTES.
RMU$OVERFLOW_BYTES.
RMU$LOGICAL_AREA_ID.
RMU$RELATION_ID.
RMU$RECORD_ALLOCATION_SIZE.
RMU$TOTAL_SPACE.

END RMU$ANALYZE_AREA RECORD.

Table 2–2 describes each of the fields in the DB.RRD record.

Table 2–2 Field Descriptions

Field Definition

RMU$ABM_COUNT Contains the number of ABM pages in the storage area

RMU$AIP_COUNT Contains the number of AIP pages in the storage area

RMU$AREA_NAME Contains the name of the storage area that was analyzed

RMU$AVAILABLE Contains the amount of initially available space in the index
records

RMU$BTREE_NODE_
BYTES

Contains the number of bytes for sorted indexes in the
storage area

RMU$COUNT Contains the number of index nodes

RMU$DATA_COUNT Contains the number of records

RMU$DATE Contains the date that the Analyze operation was done

RMU$DUPLICATES_
BYTES

Contains the number of bytes for duplicate key values for
sorted indexes in the storage area

RMU$DUPLICATE_
AVAILABLE

Contains the amount of initially available space in the
duplicate records

(continued on next page)

2–10 Database Performance Analysis Tools

Table 2–2 (Cont.) Field Descriptions

Field Definition

RMU$DUPLICATE_
COUNT

Contains the number of duplicate records

RMU$DUPLICATE_
DATA_COUNT

Contains the number of duplicate records

RMU$DUPLICATE_
KEY_COUNT

Contains the number of duplicate keys

RMU$DUPLICATE_
USED

Contains the amount of available space used in the
duplicate records

RMU$EXPANDED_
BYTES

Contains the total size of the stored data in the logical area
after decompression

RMU$EXPANDED_
FRAGMENT_BYTES

Contains the number of bytes in the stored fragments after
decompression

RMU$FLAGS
(for DB.RRD record)

The three possible values in this field have the following
meanings:

• 3—this value indicates that data compression is enabled
for the logical area

• 1—this value indicates that data compression is not
enabled for the logical area

• 0—this value indicates that the record is a storage area
record, not a logical area record

(continued on next page)

Database Performance Analysis Tools 2–11

Table 2–2 (Cont.) Field Descriptions

Field Definition

RMU$FLAGS
(for INDEX.RRD and
PLACEMENT.RRD
records)

The eight possible values in this field have the following
meanings:

• 7—Index is hashed and unique. A full report is
generated.

• 6– Index is hashed and not unique. A full report is
generated.

• 5– Index is sorted and unique. A full report is
generated.

• 4—Index is sorted and not unique. A full report is
generated.

• 3—Index is hashed and unique. A full report is not
generated.

• 2—Index is hashed and not unique. A full report is not
generated.

• 1—Index is sorted and unique. A full report is not
generated.

• 0—Index is sorted and not unique. A full report is not
generated.

RMU$FRAGMENTED_
BYTES

Contains the number of bytes in the stored fragments

RMU$FRAGMENTED_
COUNT

Contains the number of records that are fragmented

RMU$FRAGMENT_
COUNT

Contains the number of stored fragments

RMU$FREE_BYTES Contains the number of free bytes in the storage area

RMU$HASH_BYTES Contains the number of bytes for hashed indexes in the
storage area

RMU$INDEX_COUNT Contains the number of index records in the storage area

RMU$INDEX_NAME Contains the name of the index that was analyzed

RMU$KEY_COUNT Contains the number of keys

RMU$LEVEL Contains the maximum number of index levels

(continued on next page)

2–12 Database Performance Analysis Tools

Table 2–2 (Cont.) Field Descriptions

Field Definition

RMU$LOGICAL_AREA_
ID

Contains the logical area id of the logical area that was
analyzed

RMU$MAX_KEY_PATH Contains the largest number of keys touched to access any
of the records

RMU$MAX_PAGE_
NUMBER

Contains the page number of the last initialized page in the
storage area

RMU$MAX_PAGE_
PATH

Contains the largest number of pages touched to access any
of the records

RMU$MIN_BUF_PATH Contains the smallest number of buffers touched to access
any of the records

RMU$OVERFLOW_
BYTES

Contains the number of bytes for hash bucket overflow
records in the storage area

RMU$OVERHEAD_
BYTES

Contains the number of bytes used for overhead in the
storage area

RMU$PAGE_LENGTH Contains the length in bytes of a database page in the
storage area

RMU$RECORD_
ALLOCATION_SIZE

Contains the size of a row when the table was initially
defined

RMU$RELATION_ID Contains the record type of the row in the logical area that
was analyzed

RMU$RELATION_
NAME

Contains the name of the table for which the index is
defined

RMU$SPAM_COUNT Contains the number of SPAM pages in the storage area

RMU$STORAGE_
AREA_ID

Contains the area id of the storage area that was analyzed

RMU$TOTAL_
BUFFER_PATH

Contains the total number of buffers touched to access all
the records

RMU$TOTAL_BYTES Contains the total size of the data stored in the logical area

(continued on next page)

Database Performance Analysis Tools 2–13

Table 2–2 (Cont.) Field Descriptions

Field Definition

RMU$TOTAL_
COMPRESSED_IKEY_
COUNT

Contains the total number of bytes occupied by the
compressed (level 1) index keys

RMU$TOTAL_COUNT Contains the total number of records stored

RMU$TOTAL_IKEY_
COUNT

Contains the total number of bytes that would have been
consumed by the index if compression had not been enabled

RMU$TOTAL_KEY_
PATH

Contains the total number of keys touched to access all the
records

RMU$TOTAL_PAGE_
PATH

Contains the total number of pages touched to access all the
records

RMU$TOTAL_SPACE Contains the number of bytes available for storing user data
in the logical area (used space + free space + overhead)

RMU$USED Contains the amount of available space that is used

The RMU Analyze Index command in Example 2–5 outputs the results into
an RMS record definition file called INDEX.RRD that is compatible with the
repository.

Example 2–5 Using RMU Analyze Index to Create an Oracle CDD/Repository
Compatible Record Definition File

$ RMU/ANALYZE/INDEX/BINARY_OUTPUT=RECORD_DEFINITION=INDEX.RRD mf_personnel
$!
$! Display the INDEX.RRD file created by the previous command:
$ TYPE INDEX.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$INDEX_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$RELATION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$LEVEL DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$USED DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$AVAILABLE DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_USED DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_AVAILABLE DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$KEY_COUNT DATATYPE IS F_FLOATING.

(continued on next page)

2–14 Database Performance Analysis Tools

Example 2–5 (Cont.) Using RMU Analyze Index to Create an Oracle
CDD/Repository Compatible Record Definition File

DEFINE FIELD RMU$DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_COMPRESSED_IKEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_IKEY_COUNT DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_INDEX.

RMU$DATE.
RMU$INDEX_NAME.
RMU$RELATION_NAME.
RMU$LEVEL.
RMU$FLAGS.
RMU$COUNT.
RMU$USED.
RMU$AVAILABLE.
RMU$DUPLICATE_COUNT.
RMU$DUPLICATE_USED.
RMU$DUPLICATE_AVAILABLE.
RMU$KEY_COUNT.
RMU$DATA_COUNT.
RMU$DUPLICATE_KEY_COUNT.
RMU$DUPLICATE_DATA_COUNT.
RMU$TOTAL_COMPRESSED_IKEY_COUNT.
RMU$TOTAL_IKEY_COUNT.

END RMU$ANALYZE_INDEX RECORD.

Table 2–2 describes each of the fields in the INDEX.RRD record.

The RMU Analyze Placement command in Example 2–6 outputs the results
into an RMS record definition file called PLACEMENT.RRD that is compatible
with the repository.

Example 2–6 Using RMU Analyze Placement to Create an Oracle
CDD/Repository Compatible Record Definition File

$ RMU/ANALYZE/PLACEMENT/BINARY_OUTPUT=RECORD_DEFINITION=PLACEMENT.RRD -
_$ mf_personnel
$!
$! Display the PLACEMENT.RRD file created by the previous command:
$ TYPE PLACEMENT.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$INDEX_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$RELATION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$LEVEL DATATYPE IS SIGNED WORD.

(continued on next page)

Database Performance Analysis Tools 2–15

Example 2–6 (Cont.) Using RMU Analyze Placement to Create an Oracle
CDD/Repository Compatible Record Definition File

DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_KEY_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_PAGE_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_BUFFER_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MAX_KEY_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MAX_PAGE_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MIN_BUF_PATH DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_PLACEMENT.

RMU$DATE.
RMU$INDEX_NAME.
RMU$RELATION_NAME.
RMU$LEVEL.
RMU$FLAGS.
RMU$COUNT.
RMU$DUPLICATE_COUNT.
RMU$KEY_COUNT.
RMU$DUPLICATE_KEY_COUNT.
RMU$DATA_COUNT.
RMU$DUPLICATE_DATA_COUNT.
RMU$TOTAL_KEY_PATH.
RMU$TOTAL_PAGE_PATH.
RMU$TOTAL_BUFFER_PATH.
RMU$MAX_KEY_PATH.
RMU$MAX_PAGE_PATH.
RMU$MIN_BUF_PATH.

END RMU$ANALYZE_PLACEMENT RECORD.

Table 2–2 describes each of the fields in the PLACEMENT.RRD record.

See the Oracle RMU Reference Manual for more information on the syntax
and use of the [No]Binary_Output qualifier. See the Oracle Rdb7 Guide to
Database Design and Definition for information on how to use the RMU Load
Rms_Record_Def command to load data into an Oracle Rdb database.

2.2 Performance Monitor
Oracle Rdb collects and maintains statistical information about certain
database activities as they occur over time. You can use the Performance
Monitor to view database statistics and identify various performance problem
areas. You can then use the SQL ALTER DATABASE statement to modify the
database.

2–16 Database Performance Analysis Tools

2.2.1 Using Database Statistics
Database statistics are maintained in a global section or shared memory
partition on each computer system that runs Oracle Rdb. In a cluster
environment, Oracle Rdb maintains statistics separately for each node. In such
an environment, the database statistics only reflect activity that originates
from the node in the cluster from which the Performance Monitor is invoked.

You invoke the Performance Monitor with the RMU Show Statistics command.
Database statistics are collected by the Performance Monitor until:

• The database is closed

A database is closed when the last process detaches from the database. A
Performance Monitor process keeps a database open. Database statistics
are reset to zero when the database is closed.

• The time specified with the Until qualifier

If you specify a time with the Until qualifier when you issue an RMU
Show Statistics command, statistics collection ends at the specified time
(the database does not have to close first). See the Oracle RMU Reference
Manual for the complete syntax of the RMU Show Statistics command.

• The Reset option is specified from either the horizontal menu on a screen
or with the Reset qualifier on the RMU Show Statistics command line.
The Unreset option on the horizontal menu reverses the effect of the Reset
option.

Reset stops the current collection of statistics and starts a collection of new
statistics.

If you want to keep the database open for an extended period of time to observe
processing activity, you can explicitly open the database using the RMU Open
command.

You can disable the writing of database statistics for a process by using the
logical name RDM$BIND_STATS_ENABLED or the configuration parameter
RDB_BIND_STATS_ENABLED. By default, the writing of database statistics
is enabled for each process on a node; the RDM$BIND_STATS_ENABLED or
RDB_BIND_STATS_ENABLED value is set to 1 or true for all processes. When
you use the RDM$BIND_STATS_ENABLED logical name or the RDB_BIND_
STATS_ENABLED configuration parameter to disable database statistics for
a process, the Performance Monitor does not collect any statistics for that
process; the statistics displayed on the screens will not include information on
processes for which statistics have been disabled. Disabling statistics is useful
for static, performance-critical applications that have been previously tuned
and do not need the information provided by the Performance Monitor.

Database Performance Analysis Tools 2–17

You disable the writing of database statistics for a process by setting the
RDM$BIND_STATS_ENABLED or RDB_BIND_STATS_ENABLED value to 0.
The following example shows how to disable database statistics on OpenVMS:

$ DEFINE RDM$BIND_STATS_ENABLED 0

To enable the writing of database statistics for a process in which the collection
of database statistics is disabled, define the logical name or configuration
parameter specifying the value 1, or deassign the logical name or configuration
parameter. The following example shows how to enable database statistics on
OpenVMS:

$! Set the RDM$BIND_STATS_ENABLED value to 1:
$ DEFINE RDM$BIND_STATS_ENABLED 1
$!
$! Or, deassign the logical name:
$ DEASSIGN RDM$BIND_STATS_ENABLED

You can disable the writing of statistics for all processes in one of two ways:

• By setting the RDM$BIND_STATS_ENABLED logical name or RDB_
BIND_STATS_ENABLED configuration parameter to 0 for each process.

OpenVMS
VAX

OpenVMS
Alpha

Defining RDM$BIND_STATS_ENABLED as a group or system logical can
help simplify this task. ♦

• By disabling statistics collection for the database itself. When statistics
collection is disabled for a database, no statistics are displayed for any of
the processes attached to the database. You can disable statistics collection
for a database by using the STATISTICS COLLECTION IS DISABLED
clause of the SQL CREATE DATABASE, ALTER DATABASE, or IMPORT
statement. Oracle Corporation recommends that you use SQL syntax to
disable and enable statistics collection. The following ALTER DATABASE
statement disables statistics collection for the mf_personnel database:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> STATISTICS COLLECTION IS DISABLED;

To enable statistics collection for a database, use the STATISTICS
COLLECTION IS ENABLED clause of the SQL CREATE DATABASE,
ALTER DATABASE, or IMPORT statement. The following ALTER
DATABASE statement enables statistics collection for the mf_personnel
database:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> STATISTICS COLLECTION IS ENABLED;

By default, statistics collection is enabled for a database.

2–18 Database Performance Analysis Tools

You can display statistical information about:

• Disk I/O operation

• Memory usage

• Locks, including wait times

• Index activity

• Transaction durations

• Snapshot file usage

• Buffer activity

• Row cache activity

• Process information

• Database parameter information

• After-image journaling overhead

• After-image journals on the current node

You can display statistics in the following formats:

• Graphic display

• Numeric display

• Time plots of individual fields (such as transactions per second)

• Scatter plot display

• Tabular display

For more information on the display formats, see Section 2.2.6.1 through
Section 2.2.6.5.

2.2.2 Syntax for the RMU Show Statistics Command
Use the RMU Show Statistics command to invoke the character-cell interface
of the Performance Monitor. The basic syntax for this command is:

RMU Show Statistics [database-file-name]

Refer to the Oracle RMU Reference Manual for a full explanation of the RMU
Show Statistics command qualifiers.

Database Performance Analysis Tools 2–19

2.2.3 Selecting a Display Mode in the Character-Cell Interface
The Performance Monitor operates in three modes: online, record, or replay.

• Online

In online mode, database activity is monitored as it occurs. By default,
Oracle RMU records new statistics every 3 seconds. You can specify a
preferred time interval with the Time qualifier when you invoke the
Performance Monitor. You can also change the time interval at any time
during an interactive session; select the Set_rate choice from the menu and
specify the desired interval.

You can display the statistics on your terminal by using the Interactive
qualifier, or you can record the statistics in a binary file by using the
Output qualifier, or you can do both.

Oracle Rdb normally collects statistics for a database as long as the
database is open. You can use the Until qualifier to specify a time at which
statistics collection will stop. The Until qualifier is typically used with the
Output qualifier in a batch job.

• Record

You can record statistics in a binary file by using the Output qualifier. The
binary file does not produce a legible printed listing. You must read the
binary file using replay mode; use the RMU Show Statistics command and
specify the name of the binary file as an argument to the Input qualifier.
You can also write your own program to reformat the file. More information
on the binary file can be found in Section 2.2.13.

• Replay

In replay mode, database activity previously recorded in a binary file is
read and displayed on your terminal. The statistics would have been
recorded in online mode using the Output qualifier.

To replay previously recorded statistics, use the Input qualifier and specify
the name of the file that contains the statistics. You can then use the arrow
keys and the menus to change the display format or the screen, just as in
online mode. By using replay mode, you can view a sampling of statistics
many times and examine various aspects of the sampling. This is valuable
if you find something on one screen, and you want to look at another screen
to confirm your suspicions.

You can change the rate of the display by specifying the desired rate
with the Time qualifier or by using the Set_rate menu option. Changing
the display rate in replay mode is not the same as in online mode. For
example, suppose you gathered statistics into a file in online mode using
the default interval of 3 seconds. When you replay statistics from the

2–20 Database Performance Analysis Tools

file, changing the display rate changes the rate at which those 3-second
intervals are displayed; it does not change the statistics themselves.

The Select Input Control menu allows you to control the display of database
statistics in replay mode. See Section 2.2.4 for more information.

You can use the Nointeractive qualifier to suppress the interactive display.
This is useful if you want to generate a binary statistics output file for later
reference, but do not want an online display while statistics are being collected.

Several statistics monitor database root file activity. For a multifile database,
the .rdb file is the database root file that contains only database header
information, not user data.

2.2.4 Using the Select Input Control Menu in the Character-Cell Interface
When the Performance Monitor is in replay mode, type I to select the Input
option from the current screen’s horizontal menu. When you select the Input
option, the Select Input Control menu for replay mode is displayed:

Select Input Control

A. Replay
B. Pause
C. Continue
D. Place Markpoint

The following are the available menu options and their meanings:

• A. Replay

Causes the input file to be replayed from the beginning. This can be
selected from either replay mode or paused mode. When you select the
Replay option, statistics are displayed from the beginning of the input file.

• B. Pause

Causes the current display to pause. When you select the Pause option,
the Performance Monitor is in paused mode (note that the ‘‘Mode:’’ field in
the display header changes from Replay to Paused). The display remains
in paused mode until you select the Continue option from the Select Input
Control menu. When you select the Pause option, the Select Input Control
menu for paused mode is displayed. In this menu, option B is Single-Step:

Select Input Control

A. Replay
B. Single-Step
C. Continue
D. Place Markpoint

Database Performance Analysis Tools 2–21

Two new options (Continue and Single-Step) appear in the horizontal menu
for the current screen when pause mode is being used.

All the horizontal menu items for a screen continue to operate normally
in paused mode, except Set_rate (you can still change the display rate
using the Set_rate option, but the statistics themselves are not changed).
In paused mode, for example, you can change the display format from
Numbers to Graphic format and back again. The Options and Write
options are especially useful, because you know exactly what you are
printing. You can also move between the available pages using the right
angle bracket (>) and left angle bracket (<) keys when the screen is paused.
This allows you to acquire a true snapshot of a moment in time.

To advance by one record in the input file while in paused mode, you can
select either option B (Single-Step) from the Select Input Control menu or
type S to select the Single-Step option from the horizontal menu. When
you are in paused mode, you can also select Replay mode (option A from
the Select Input Control menu) and then step through all or part of the
records in the input file using the Single-Step option.

• C. Continue

Causes the screen to resume normal display at the previously selected rate.
You can also type C to select the Continue option from the horizontal menu,
which returns the Performance Monitor to replay mode. When replay mode
resumes, the Continue and Single-Step options are removed from the
horizontal menu and the Set_rate option is replaced in the horizontal
menu. Also, the Select Input Control menu reverts to displaying only the
replay mode options.

• D. Place Markpoint

Allows you to mark the current record in the input file so you can return
to it quickly later. Oracle RMU uses the time the record was created in
the input file for the markpoint (this is the time displayed at the top of the
display header). When you select this option, a new option is added to the
Select Input Control menu:

Select Input Control

A. Replay
B. Pause
C. Continue
D. Place Markpoint
E. Goto Markpoint 11:17:59

• E. Goto Markpoint <time>

2–22 Database Performance Analysis Tools

Quickly returns you to the previously saved markpoint, which is identified
by the time shown as part of the menu option. When you select option E,
you advance or return to the markpoint.

You cannot remove a markpoint, but you can set a new markpoint by
selecting D from the Select Input Control menu again. Use markpoints
to identify the location of something that is significant to you. Currently,
only one markpoint can be established at a time. When you select the Goto
Markpoint option, statistics are displayed from the markpoint in the input
file.

2.2.5 Navigating in the Performance Monitor
To select the screens that provide many different statistics on database activity,
use the menus provided with the Performance Monitor. After you invoke the
Performance Monitor, the first screen appears. At the bottom of the first screen
is its horizontal menu. For example:

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot
--

Each screen has a horizontal menu in which the first letter of each menu
selection is highlighted. Make a selection from the menu by typing the
highlighted letter of your choice. Type M to view a menu of the available
screens:

Select Display

A. Summary IO Statistics O. IO Statistics (by file) [->
B. Summary Locking Statistics P. Locking (one lock type) [->
C. Summary Object Statistics Q. Locking (one stat field) [->
D. Summary Cache Statistics R. Lock Statistics (by file)[->
E. Summary Cache Unmark Statistics S. Database Parameter Info [->
F. Record Statistics T. Row Cache (One Cache) [->
G. Transaction Duration (Total) U. Row Cache (One Field) [->
H. Custom Statistics V. Row Cache Information [->
I. Snapshot Statistics W. Index Information [->
J. Process Information [-> X. General Information [->
K. Journaling Information [-> Y. Objects (one stat type) [->
L. Hot Standby Information [-> Z. Objects (one stat field) [->
M. IO Statistics [-> 0. Database Dashboard [->
N. Global Buffer Information[-> 1. Online Analysis & Info. [->

You can select a screen in the following ways:

• Type the letter of the desired screen.

• Use the arrow keys to move the cursor and highlight the desired screen,
and then press the Return key.

Database Performance Analysis Tools 2–23

You can use the up arrow and down arrow keys to move up and down
within the menu and the left arrow and right arrow keys to move between
the two columns of the menu.

• Use the plus (+) and minus (–) keys.

The plus key moves you forward through screens and the minus key moves
you backward through screens. When you enter the plus or minus key,
the Performance Monitor prompts you to enter the number of screens to
move forward or backward respectively. The Performance Monitor moves
by the number of screens that you specify. If you enter +0, the Performance
Monitor moves to the last screen. If you enter –0, the Performance Monitor
moves to the first screen.

• Use the Goto screen options in the tools or help facility.

See Table 2–4 for a description of these options.

If you are viewing one screen and want to move to another without using the
display menu or the tools facility, you can do so by using the left arrow key
or Prev Screen key and the right arrow key or Next Screen key. Pressing
the left arrow key or Prev Screen key moves you to the previous screen, and
pressing the right arrow key or Next Screen key moves you to the next screen.
The order of the screens is the order shown on the Select Display menu. This
means, for example, when you are viewing the Transaction Duration screen
(choice G on the Select Display menu), you can move to the Record Statistics
screen (choice F) by pressing the left arrow key once or to the Custom Statistics
screen (choice H) by pressing the right arrow key once.

Some displays are longer than one page. The display header indicates the
number of pages in a display. You view the succeeding pages of a display by
pressing the right angle bracket (>) key, as indicated by the >next_page option
in the horizontal menu. Then, to move back to previous pages, press the left
angle bracket (<) key, as indicated by the <prev_page option in the horizontal
menu. The right angle bracket (>) key stops at the last page of a display and
the left angle bracket (<) key stops at the first page.

You can also use the up arrow key and the down arrow key to migrate
through displays that contain multiple pages. The arrow keys have the added
advantage of migrating in a circular manner. When the first page in a display
is the current screen, pressing the up arrow key will move to the last page of
the display while pressing the down arrow key at the last page will move to
the first page of the display.

When an option from the Select Display menu is followed by [->, this means
that after you select the option, the Performance Monitor will display a
submenu of options.

2–24 Database Performance Analysis Tools

For example, if you select the IO Statistics (by file) display, the Select File
menu is displayed:

Select File

A. File IO Overview
B. Device IO Overview
C. Device Information
D. root file
E. AIJ file
F. RUJ file
G. ACE file
H. all data/snap files
I. data file MF_PERS_DEFAULT
J. data file EMPIDS_LOW
K. data file EMPIDS_MID
L. data file EMPIDS_OVER
M. data file DEPARTMENTS
N. data file SALARY_HISTORY
O. data file JOBS
P. data file EMP_INFO
Q. <<more>>

To select the database file for which you want to display I/O statistics, type
the letter of the desired file, or move the cursor to highlight the desired file
and then press the Return key. Note that if all of the database files cannot be
displayed on a single screen, you can view additional Select File menu choices
by choosing the <<more>> option (choice Q) on the first screen of the menu.

From the Select Display, Select File, Select Lock Type, and Select Lock Field
menus, pressing the following keys produces the following responses:

• Up arrow

Moves you up the list of menu choices.

• Down arrow

Moves you down the list of menu choices.

• Left arrow

In a two-column menu, moves you to the left column. Has no effect in a
one-column menu.

• Right arrow

In a two-column menu, moves you to the right column. Has no effect in a
one-column menu.

• Ctrl/W on OpenVMS and Ctrl/L on Digital UNIX

Refreshes the screen.

Database Performance Analysis Tools 2–25

• Ctrl/Z on OpenVMS and Ctrl/D on Digital UNIX

Cancels the menu.

In a horizontal menu, the first character of each menu selection is highlighted.
You make a selection from a horizontal menu by typing the highlighted
character of your choice. Table 2–3 shows the menu selections that may be
available (depending on the screen) and the responses when the selection is
chosen.

Table 2–3 Performance Monitor Horizontal Menu Selections

Alarm Allows you to specify a duration that a process must stall before it appears
on the Stall Messages screen.

Bell Activates or deactivates the alarm bell.

Brief Displays the brief version of a screen. Available only for screens with both
a brief and full version.

Config Allows you to configure the statistics screens.

Continue Causes the screen to resume normal display at the previously selected rate.

Exit Exits you from the Performance Monitor. Pressing Ctrl/Z on OpenVMS,
and Ctrl/D on Digital UNIX from the horizontal menu also exits you from
the Performance Monitor.

Filter Allows you to filter stall messages.

Full Displays the full version of a screen. Available only for screens with both a
brief and full version.

Graph Displays statistics for the screen in a graphical format.

Help Invokes help on using the keyboard and on the current screen and its
fields.

Input Displays the Select Input Control menu.

LockID Displays a submenu of Lock IDs.

Menu Displays the Select Display menu.

Normal Puts you back into the normal screen display, showing the screen as it
looked before you entered the Time Plot or Scatter Plot display.

Numbers Displays statistics for the screen in a numbers (chart) format.

Options Allows you to write screens for a particular time to a file called
STATISTICS.RPT in your default directory. You can write the file in
graph format, numbers format, or in both formats.

(continued on next page)

2–26 Database Performance Analysis Tools

Table 2–3 (Cont.) Performance Monitor Horizontal Menu Selections

Pause Causes the screen to pause the output. Only screens that have the Pause
menu option are paused. Other screens continue to be updated and cannot
be paused. Press the P key again to release the pause.

Refresh Refreshes the screen.

Reset Resets database statistics to zero.

Set_rate Changes the collection interval to the interval you specify.

Step Advances by one record in the input file while in paused mode.

Time_plot Provides a detailed graph of event counts for a particular field.

Unreset Reverses the effect of the Reset option.

Update Allows you to change the value of a database attribute.

Write Writes the contents of any screen, except Help, to a file called RMU.SCR in
your default directory.

X_plot Provides a vertical histogram for a particular field.

Yank Displays a menu of statistics fields you can select to display custom
statistics. The selected fields will automatically appear on the Custom
Statistics screen.

Zoom Displays detailed information about a specific item.

>Next_
page

Pressing the right angle bracket key moves you to the next page of the
current screen.

<Prev_
page

Pressing the left angle bracket key moves you to the previous page of the
current screen.

! Invokes the tools facility and displays the Select Tool submenu.

$ Invokes the DCL command facility on OpenVMS.

Displays the submenu for the current screen.

+ Advances n screens forward.

– Advances n screens backward.

Often, it is necessary to quickly locate a Performance Monitor screen that
contains activity, because it is not always apparent what database activity
is occurring. You can use the space bar to initiate a search for the next data
screen in the current submenu that has current activity. If there is no screen
in the current submenu that has activity, the Performance Monitor places
you at the next screen, exactly as if you had used the Next Screen key. Also,
computational screens (such as the Row Cache Status) and informational
screens (such as the Stall Messages, Monitor Log, or AIJ Journal Information
screens) are ignored during the search for active data. The search mode is
available during replay of a binary input file.

Database Performance Analysis Tools 2–27

2.2.6 Selecting a Display Format in the Character-Cell Interface
You can display information gathered by the Performance Monitor in the
following formats:

• Graph

• Numbers

• Time Plot

• Scatter Plot

• Table

The Graph display format shows the statistics pictorially so you can quickly
get an idea of how the database is performing. The Numbers display format
shows, in a chart, the actual numbers gathered. The Time Plot display format,
available for some screens, allows you to monitor a particular field of the
display over time. The Scatter Plot display format, available for some screens,
allows you to monitor the current rate of a particular field in vertical histogram
form. The Table display format presents statistics in tabular form.

Each screen, regardless of its format, has the same header information:
--
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 2-MAY-1996 12:40:40
Rate: 3.00 Seconds Summary IO Statistics Elapsed: 00:00:29.05
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V7.TMP]MF_PERSONNEL.RDB;1 Mode: Online
--

The first line of the header contains the node name, the utility name and
version number, and the current system date and time (which is automatically
updated at the specified Set_rate interval). The second line contains the screen
refresh rate in seconds, the name of the screen, and the elapsed time since the
last Reset command. The third line contains the current page number within
the screen, the name of the current database, and the Performance Monitor
display mode (online, record, or replay).

Section 2.2.6.1 through Section 2.2.6.5 provide more information on display
formats.

2–28 Database Performance Analysis Tools

2.2.6.1 Graphic Display Format
The Graph display format shows occurrence-per-second rates for such events
as transactions, verb successes and failures, I/O activity in the database, and
other data characteristics of a particular screen. The bars of the graph reflect
current event rates; that is, the occurrences-per-second of a given event during
the last sample interval. The following is an example of a graphic display:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 17-MAY-1996 14:10:24
Rate: 3.00 Seconds Summary IO Statistics Elapsed: 00:02:32.50
Page: 1 of 1 SQL$DISK1:[USER]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... max. cur. 10 20 30 40 50
name.............. rate rate +---------+---------+---------+---------+---------+

| | | | | |
transactions 1 0 | | | | | |
verb successes 80 80 +---------+---------+---------+---------+-------->|
verb failures 11 11 +---------+* | | | |

| | | | | |
synch data reads 17 17 +---------+------* | | | |
synch data writes 0 0 | | | | | |
asynch data reads 0 0 | | | | | |
asynch data writes 0 0 | | | | | |
RUJ file reads 0 0 | | | | | |
RUJ file writes 0 0 | | | | | |
AIJ file reads 0 0 | | | | | |
AIJ file writes 0 0 | | | | | |
ACE file reads 0 0 | | | | | |
ACE file writes 0 0 | | | | | |
root file reads 7 0 | | | | | |
root file writes 1 0 | | | | | |
--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

The layout of the graphic display is explained in the following list:

• statistic name

This column identifies the statistic. Table 2–5 lists the screens and
indicates where you can find information on each screen.

• max rate

The maximum occurrence-per-second rate of the event since the
Performance Monitor was invoked. You can reset this counter by typing R
to select the Reset menu option.

• cur rate

The occurrence-per-second rate of the event during the last sample interval.
You can set the sample interval in advance by using the Time qualifier with
the RMU Show Statistics command, or you can change it after initiating
the display by typing S to select the Set_rate option.

Database Performance Analysis Tools 2–29

Bars on the chart reflect the current rate, but are limited by the width of the
chart to values of 50. For current rate values less than 50, the bar ends with
an asterisk. For current rate values greater than 50, the bar ends with a right
angle bracket; the actual value is shown in the current rate column.

You can use the [No]Histogram qualifiers to specify the initial display mode
to be used by the Performance Monitor. If you use the Histogram qualifier,
statistics will be displayed initially in the Graph display mode. If you use the
Nohistogram qualifier (the default), statistics will be displayed initially in the
Numbers display mode.

Digital UNIX The following command on Digital UNIX causes the Performance Monitor to
display statistics for the mf_personnel database initially in the Graph display
mode:

$ rmu -show statistics -histogram mf_personnel
♦

When the Performance Monitor is displaying statistics in the Graph display
mode, you can switch to the Numbers display mode by typing N.

2.2.6.2 Numbers Display Format
The Numbers display format presents statistics in a columnar chart. The chart
provides averages and total count values as well as maximum and current
rates. The following is an example of a Numbers display format:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 17-MAY-1996 14:37:03
Rate: 3.00 Seconds Summary IO Statistics Elapsed: 05:39:13.29
Page: 1 of 1 SQL$DISK1:[USER]MF_PERSONNEL.RDB;1 Mode: Online

statistic......... rate.per.second......... total... average..
name.............. max. cur. avg... count... per.trans

transactions 0 0 0.0 2 1.0
verb successes 2 0 1.7 250 125.0
verb failures 0 0 0.2 32 16.0

synch data reads 0 0 0.4 66 33.0
synch data writes 0 0 0.0 0 0.0
asynch data reads 0 0 0.0 0 0.0
asynch data writes 0 0 0.0 0 0.0
RUJ file reads 0 0 0.0 0 0.0
RUJ file writes 0 0 0.0 0 0.0
AIJ file reads 0 0 0.0 0 0.0
AIJ file writes 0 0 0.0 0 0.0
ACE file reads 0 0 0.0 0 0.0
ACE file writes 0 0 0.0 0 0.0
root file reads 0 0 0.1 20 10.0
root file writes 0 0 0.0 5 2.5

Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

The layout of the Numbers display format is explained in the following list:

2–30 Database Performance Analysis Tools

• statistic name

This column identifies the statistic. Table 2–5 lists the screens and
indicates where you can find information on each screen.

• rate per second (max)

The maximum occurrence-per-second rate of the event since the
Performance Monitor was invoked. You can reset this counter by typing R
to select the Reset option.

• rate per second (cur)

The occurrence-per-second rate of the event during the last sample interval.
You can set the sample interval in advance by using the Time qualifier with
the RMU Show Statistics command, or you can change it after initiating a
display by typing S to select the Set_rate option.

• rate per second (avg)

The average occurrence-per-second rate of the event since the database
was opened on this node. To reset the counter, type R to select the Reset
menu option. After you reset the counter, this column shows the average
occurrence-per-second rate of the event since the counter was reset.

• total count

The total number of occurrences of the event since the database was
opened on this node. To reset the counter, type R to select the Reset menu
option. After you reset the counter, this column shows the total number of
occurrences of the event since the counter was reset.

• average per trans

The quotient of the total-count column divided by the number of completed
transactions.

You can use the [No]Histogram qualifiers to specify the initial display mode
to be used by the Performance Monitor. If you use the Histogram qualifier,
statistics will be displayed initially in the Graph display mode. If you use the
Nohistogram qualifier (the default), statistics will be displayed initially in the
Numbers display mode.

Digital UNIX The following command on Digital UNIX causes the Performance Monitor
to display statistics for the mf_personnel database initially in the Numbers
display mode:

$ rmu -show statistics -nohistogram mf_personnel
♦

When the Performance Monitor is displaying statistics in the Numbers display
mode, you can switch to the Graph display mode by typing G.

Database Performance Analysis Tools 2–31

2.2.6.3 Time Plot Display Format
The Time Plot display format provides a detailed graph of event counts for a
particular field on the screen. Each screen includes a horizontal menu. If the
menu lists Time_plot, you can type T to request a time plot. After you type T,
select a field from the screen by typing the letter associated with the desired
field (or by using the arrow keys to move the cursor to the desired field and
then pressing the Return key).

The following display is an example of a time plot that shows verb success
rates over time:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 17-MAY-1996 14:41:24
Rate: 3.00 Seconds Summary IO Statistics Elapsed: 00:07:35.33
Page: 1 of 1 SQL$DISK1:[USER]MF_PERSONNEL.RDB;1 Mode: Online
--

verb successes

Maximum rate = 147 Current rate = 144 Average rate = 78.0
Total count = 10216 Average per transaction = 8.9

+---------+---------+---------+---------+---------+---------+---------+
100+ | ^^^^^^^^**^^^^ | | | | |

89-99 | * | | | | | | |
78-88 | ** | | | | | | |
67-77 | ** | | | | | | |
56-66 |* | | | | | | |
45-55 | * | | | | | | |
34-44 | | | | | | | |
23-33 | | | | | | | |
12-22 | | | | | | | |

1-11 | | | | | | | |
+---------+---------+---------+---------+---------+---------+---------+

Sample interval is 3.00 seconds
--
Exit Help Menu Normal Pause Reset Set_rate Unreset Write !

The circumflex characters (^) in the top row indicate that the number of
events (verb successes in this case) is larger than the highest range value of
the chart. To change the range of the display, select the Reset menu option.

If you change the sample interval using the Set_rate menu option, the display
is rescaled to the new interval. For example, the following Summary I/O
Statistics display uses a sample interval of 1 second:

2–32 Database Performance Analysis Tools

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 17-MAY-1996 14:42:44
Rate: 1.00 Seconds Summary IO Statistics Elapsed: 00:03:58.19
Page: 1 of 1 SQL_DISK1:[ORION]MF_PERSONNEL.RDB;1 Mode: Online
--

verb successes

Maximum rate = 147 Current rate = 87 Average rate = 89.5
Total count = 21663 Average per transaction = 9.0

+---------+---------+---------+---------+---------+---------+---------+
154+ | | | | | | | |
137-153 | * | | | | | | |
120-136 | * * | | | | | | |
103-119 |* * **| *** ** * * | | | | |

86-102 | | * * *|* * * | | | | |
69-85 | | | * | | | | |
52-68 | ** * | * * | | | | |
35-51 | |* | | | | | |
18-34 | | | | | | | |

1-17 | | | | | | | |
+---------+---------+---------+---------+---------+---------+---------+

Sample interval is 1.00 seconds
--
Exit Help Menu Normal Pause Reset Set_rate Unreset Write !

The notepad facility provides an option that allows you to enable or disable the
Time_plot baseline. Enabling the baseline updates the graph continuously. You
can enable the Time_plot baseline by performing the following steps:

1. Enter the exclamation point (!) to invoke the tools facility.

2. Select the Notepad options from the Select Tool submenu.

3. Select Enable Time_plot option from the Select Tool Option submenu.

2.2.6.4 Scatter Plot Display Format
The Scatter Plot display format, similar to the Time Plot display format, shows
information for a selected statistics field on the current screen. However, the
information in the scatter plot is displayed in a vertical histogram. The Scatter
Plot display format allows you to determine the composition of the values that
determine the average rate statistic. If the horizontal menu lists X_plot, you
can type X to request a scatter plot. After you type X, select a field from the
screen by typing the letter associated with the desired field (or by using the
arrow keys to move the cursor to the desired field and then pressing the Return
key).

After you have selected a field, the Scatter Plot display initially shows that the
scale of the display is based on the running average rate for the selected field.
This scale can be changed using the Reset menu option.

Database Performance Analysis Tools 2–33

Each vertical line of the screen identifies a collection rate bucket based on
the selected statistic rate. The complete set of buckets is known as the
collection range and comprises the entire Scatter Plot screen. For example,
the Scatter Plot screen may have a range from 0.0 to 1.5 seconds, with each
bucket representing 0.1 (one-tenth) of a second.

Based on the selected screen refresh rate, the normalized current rate for the
selected statistic field is examined to determine into which bucket the rate
would occur. This algorithm results in a current rate scattered distribution
graph, which is extremely beneficial for performance analysis.

The following example shows a Scatter Plot display that is interesting because
the current rate distribution is significantly more than the running average
(indicated by the letter R on the bottom horizontal axis). This indicates
that some event has recently occurred that resulted in sudden increased
asynchronous data read activity. Also, notice the skewed distribution of the
data.

Node: ORANOD Oracle Rdb V7.0-00 Performance Monitor 29-MAY-1995 10:13:33
Rate: 0.50 Seconds Summary IO Statistics Elapsed: 2 19:36:03.15
Page: 1 of 1 CADD$:[J_DOE.WORK.ALS]MF_PERSONNEL.RDB;1 Mode: Online
--
Out-of-range count: 0.1--- = 0 ! 3.0+++ = 29
Current statistic range: low = 0.8 " high = 4.0

synch data writes #
Scaled distribution of statistic rate (in seconds) $ Elapsed: 00:25:00.51
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---+
							***	****					
							****** *****						

			* * *** **** ********************************** ***										
+----+----+----+----+----+-R--+----+----+----+----A----+----+--M-+----+----+---+

% & '
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0+

(Each "*" represents 11 statistics updates)
--
Config Exit Help Menu Normal Pause Reset Set_rate Write !

The example shows the following types of information about the summary
region of the display:

! Identifies the number of statistics updates that are below the minimum
recorded rate (XXX---) or above the maximum recorded rate (XXX+++).
This is information about the boundary data conditions.

2–34 Database Performance Analysis Tools

" Identifies the lowest and highest recorded rate, which are used as the basis
for rescaling the display when you select the Reset on-screen menu option.
This is also information about the boundary data conditions.

Region identifies the statistic whose rate distribution information is being
collected.

$ The fourth line of the summary region identifies the scaling factor of the
display, and the total elapsed time of the collection.

Three sliding indicators are displayed along the bottom horizontal axis:

% The letter R indicates the running average rate, which is computed over
the total elapsed time as shown in the summary region. Note that the R
running average rate may not always appear, depending on the collection
range. Also, resetting the elapsed time is useful for comparing the running
average against the collected average.

& The letter A indicates the collected average rate, which is computed on the
collection time.

' The letter M indicates the collected median rate, which is also computed on
the collection time.

The number of collection buckets is based on the display width of the terminal.
By default, each bucket comprises 5 columns of the display; the number of
columns can be configured by the user. For example, setting the terminal
width to 132 columns allows you to display more information than with an 80-
column terminal width. Decreasing the number of columns per bucket achieves
the same effect on an 80-column terminal width, but with a corresponding loss
of precision.

Notice that the collected median is significantly higher than the collected
average. This is indicative of skewed data, typically caused by periodic blips in
the run-time performance. Identifying and eliminating these blips produces a
smoother-running system.

Notice also that these occasional blips tend to get lost as noise in the running
average. However, removing these blips ultimately improves the overall
running average of the system.

Ideally, the Scatter Plot display should resemble the classical bell-shaped curve
data distribution. The following example shows a display with this behavior:

Database Performance Analysis Tools 2–35

Node: ORANOD Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1995 21:27:09
Rate: 0.50 Seconds Summary IO Statistics Elapsed: 2 06:49:39.77
Page: 1 of 1 CADD$:[J_DOE.WORK.ALS]MF_PERSONNEL.RDB;1 Mode: Online
--
Out-of-range count: 12.7--- = 3 35.2+++ = 12
Current statistic range: low = 10.6 high = 38.0

asynch data reads
Scaled distribution of statistic rate (in seconds) Elapsed: 00:45:12.80
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---+

							*** ************ * ***								
				* * *** ******************************											
* * * **** ** |
+----+----+----+R---+----+----+----+----+-M--+----+A---+----+----+----+----+---+
11.2 12.8 14.4 16.0 17.6 19.2 20.8 22.4 24.0 25.6 27.2 28.8 30.4 32.0 33.6 35.2

(Each "*" represents 4 statistics updates)
--
Config Exit Help Menu Normal Pause Reset Set_rate Write !

The Scatter Plot screen includes the following menu options:

• Normal

Puts you back into the normal screen display, showing the screen as it
looked before you entered the Scatter Plot display.

• Reset

Instead of resetting the statistics values, resets the Scatter Plot scale based
on the lowest and highest rate values actually recorded. This menu option
is very useful for focusing the display on the actually occurring statistics
update rates.

• Set_rate

Causes the Scatter Plot information to be cleared and data collection
restarted. This is required because the new rate’s data collection patterns
are unrelated to the old rate’s data collection patterns.

• Config

Config allows you to fine-tune the rate collection parameters and the
display appearance. Currently, you can perform two configuration
operations: set the number of displayed columns per bucket, and set
the rate collection range. Both of these settings allow you more control
over what data is collected and displayed.

2–36 Database Performance Analysis Tools

Decreasing the number of columns per bucket allows you to collect more rates.
Conversely, increasing the number of columns per bucket allows you to collect
fewer rates, but with more accurate rate reporting (that is, better scaling) per
bucket. The minimum number of columns is 2 and the maximum is 10.

Setting specific collection range values allows you to determine the actual
collection range, which is normally based on the rates already collected.

The Scatter Plot screen information is recorded in the binary output file created
using the Output qualifier, and can be replayed using the Input qualifier. Note
that changes in collection rates during the recording phase are not identified
during replay and may cause interesting Scatter Plot displays.

2.2.6.5 Table Display Format
Some screens are available only in the Table display format. The Stall
Messages, Active User Stall Messages, and Defined Logicals displays, for
example, are in Table display format.

The following is an example of the Defined Logicals display:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 17-MAY-1996 14:44:03
Page: 1 of 3 Defined Logicals Elapsed: 05:46:46.72
Rate: 3.00 seconds SQL$DISK1:[USER]MF_PERSONNEL.RDB;1 Mode: Online
--
Logical.Name................. Table.Name......... Logical.Definition..........
RDM$BIND_BUFFERS LNM$SYSTEM_TABLE 80
SQL$DATABASE LNM$PROCESS_TABLE SQL_PERSONNEL
RDM$MAILBOX_CHANNEL LNM$SYSTEM_TABLE MBA2563:
RDM$MONITOR LNM$SYSTEM_TABLE SYS$SYSROOT:[SYSEXE]

--
Exit Full Help Menu >next_page <prev_page Set_rate Write !

2.2.7 Using the Zoom Menu Option in the Character-Cell Interface
A zoom screen is a subwindow that displays detailed information about a
specific screen item, typically a lock, process, AIJ journal, or storage area. Note
that a zoom screen is a static snapshot of information. Unlike normal statistics
screens, the information does not change. A screen that has zoom capability
displays the zoom option in its horizontal menu.

It is often necessary to quickly review detailed information about a storage
area or active database process. Typically, this need occurs while you are
reviewing one of the by-area or per-process screens and some event occurs that
warrants further investigation.

Database Performance Analysis Tools 2–37

For example, the following Checkpoint Information screen is interesting
because one of the processes has not checkpointed:

Node: ORANOD Oracle Rdb V7.0-00 Performance Monitor 21-APR-1996 06:30:30
Rate: 0.10 Seconds Checkpoint Information Elapsed: 00:28:45.14
Page: 1 of 1 DD$:[ANDERS.WORK.ALS]MF_PERSONNEL.RDB;12 Mode: Online
--
Process.ID Ckpt.Vno:Ckpt.Vbn QuietVno
2020D41F:1s 32 106 0
2020EC26:1s 0
20208957:1 32 132 0
20207EF7:1 32 119 0
202084F9:1 32 135 0

--
Config Exit Help Menu >next_page <prev_page Pause Set_rate Write Zoom !

Selecting the Zoom menu option provides information on why process
2020EC26 has not checkpointed. After pressing the Z key, a menu of the
currently displayed process IDs is presented; select the desired process ID. The
Performance Monitor then displays detailed information about the specified
process. A zoom screen similar to the following is displayed:

Node: ORANOD Oracle Rdb V7.0-00 Performance Monitor 21-APR-1996 06:32:11
Rate: 0.10 Seconds Checkpoint Information Elapsed: 00:30:26.38
Page: 1 of 1 DD$:[ANDERS.WORK.ALS]MF_PERSONNEL.RDB;12 Mode: Online
--
Process.ID Ckpt.Vno:Ckpt.Vbn QuietVno
2020D41F:1s 34 89 0
2020EC26:1s 0
20208957:1 34 164 0
20207EF7:1 34 169 0
202084F9:1 34 163 0

+--Process Information: 2020EC26----------------------------------+
| |
| Active user with process ID 2020EC26 (database server) |
| User name is RDBVMS |
| Process name is RDM_LCS701_1 |
| Image name is DSA1:[SYS1.SYSCOMMON.][SYSEXE]RDMLCS701.EXE;206 |
| No transaction in progress |
| Monitor ID is 1 |
| Internal Stream ID is 1 |
| Internal Transaction ID is 655 |
| |
+---+

--
Exit Help Menu >Next_page <Prev_page Pause Set_rate Write Zoom !

As you can see, process 2020EC26 is a database server process and does not
have a transaction in progress.

2–38 Database Performance Analysis Tools

2.2.8 Writing a Display to a File in the Character-Cell Interface
When you select Options from the main menu of the Performance Monitor,
you can write most of the screens for a particular time to a file called
STATISTICS.RPT. You can write the file in either graph or numbers format, or
both graph and numbers format.

When you select Options from the horizontal menu, Oracle Rdb displays the
following:

+---Select Report Format---+
| |
| Write Report (Graph) |
| Write Report (Numbers) |
| Write Report (Both) |
| |
+--------------------------+

Your choices are as follows:

• Write Report (Graph)

Writes all the Graph screens to a file called STATISTICS.RPT when you
issue the command.

• Write Report (Numbers)

Writes all the Numbers screens to a file called STATISTICS.RPT when you
issue the command.

• Write Report (Both)

Writes both the Graph and Numbers screens to a file called STATISTICS.RPT
when you issue the command.

You can also write the contents of any screen, except Help, when you select
the Write option. This option creates a file, called RMU.SCR, in your default
directory.

2.2.9 Using Performance Monitor Tools in the Character-Cell Interface
The Performance Monitor provides a set of tools to create and maintain a
notepad and to invoke several predefined and any user-defined commands. The
commands can be invoked while executing the Performance Monitor.

You can invoke the tools facility by entering the exclamation point (!) character
on any screen or menu. The Select Tool submenu is displayed; for example:

Database Performance Analysis Tools 2–39

+------ Select Tool --------+
| |
| A. Goto screen "by-name" |
| B. Goto screen [-> |
| C. Notepad (EDT) |
| D. Edit a file (EDT) |
| E. Send/Receive Mail |
| F. Invoke command |
| G. Wake up process |
| H. Terminate image |
| I. Terminate process |
| J. Set process priority |
| K. Switch database |
| L. Start screen cycling |
| M. Start stall logging |
| N. Start DBKEY logging |
| O. Disable auto-refresh |
| P. Start ALS process |
| Q. <<more>> |
+---------------------------+

Selecting Option Q displays the following:

+------ Select Tool --------+
| |
| A. <<more>> |
| B. Wake up RCS process |
| C. Invoke ABS process |
| D. Suspend ABS process |
| E. Notepad options [-> |
+---------------------------+

The Select Tool submenu supports the options in Table 2–4.

Table 2–4 Select Tool Options

Option Description

Goto screen "by
name"

Allows you to enter the case-insensitive name of the screen you
wish to go to, or any portion of the screen name. Note that
certain screen names are not unique unless you have entered a
sizable portion of the screen name. If you enter a response that
is not unique, the first matching screen will be selected. Note
that the selections are not necessarily in alphabetical order. If
you enter a response that does not match any available screen,
the Performance Monitor displays an error and you will be left
on the current screen.

(continued on next page)

2–40 Database Performance Analysis Tools

Table 2–4 (Cont.) Select Tool Options

Option Description

Goto screen [-> Displays a multipage menu of all available screen names,
in alphabetical order. The selectable names of the screens
depend on the screens available to the Performance Monitor.
For example, the global buffer screen names are not selectable
unless they are actually available.

Notepad (EDT)1 The notepad is a file that you can use to maintain notes about
a session. The name of the notepad file can be specified using
the Notepad options submenu. The default notepad file name is
STATS.NOTEPAD.

You can maintain the notepad file by using one of three text
editors: EDT, LSE, or TPU. You can change the editor by
using the Options submenu (described later) or by defining the
RMU$EDIT logical name. The value for the RMU$EDIT logical
name must be EDT, LSE, or TPU. The default text editor is
EDT. If you have an EDTINI.EDT file, it is read when the text
editor is invoked.

If the notepad file does not exist, it is automatically created
containing four lines of information before the designated
text editor is invoked. The information identifies the product
version, the database name, the notepad file name, as well as
the date and time the notepad file was originally created.

You might find it useful to define the notepad file name to
be one of the other Performance Monitor file names, such
as RMU.SCR, which is the name of the file used for writing
screens. You can now create an image of a particular screen
using the Write menu option, and then document it using the
notepad facility.

Edit a file (EDT)1 Invokes a text editor. You are prompted with Filename: to
enter an optional file name. If you do not want to specify a file
name, press the Return key.

You can invoke one of three text editors: EDT, LSE, or TPU.
You can change the editor by using the Options submenu
(described later) or by defining the RMU$EDIT logical name.
The value for the RMU$EDIT logical name must be EDT, LSE,
or TPU. The default editor is EDT. If you have an EDTINI.EDT
file, it is read when the text editor is invoked.

Send/Receive Mail1 Invokes the mail utility.

1Supported on OpenVMS systems only

(continued on next page)

Database Performance Analysis Tools 2–41

Table 2–4 (Cont.) Select Tool Options

Option Description

Invoke command Invokes a user-defined command. On OpenVMS, the DCL ($)
prompt is then displayed at the bottom of the current screen
and you can enter any DCL command.

On OpenVMS, you can also invoke the DCL command facility
by entering the dollar sign ($) on any screen. The $ prompt is
then displayed on the bottom of the current screen, and you can
enter any DCL command.

On Digital UNIX, the right angle bracket (>) is displayed
at the bottom of the current screen and you can enter any
Digital UNIX command.

You should be careful when invoking any utility (such as
SQL) that operates against the database. Any command that
requires exclusive database access will hang indefinitely.

Wake up process2 Wakes up a database process that is hibernating. This option
should only be necessary following catastrophic database failure
where the database recovery process (DBR) was unable to wake
up the process. This option has no effect on a process that is
not hibernating; however, take care not to overuse this option.
This option is limited to operations performed on specific
database processes; you cannot use this option on arbitrary
processes on the system.

Terminate image2 Terminates a database image with the exception ‘‘%RDMS-
F-IMGABORTED, image aborted at privileged user request.’’
Note that the process itself is not terminated, only the image
is terminated. This is the preferred operation as this operation
does not cause the database to be frozen during process
recovery. This option is limited to operations performed on
specific database processes; you cannot use this option on
arbitrary processes on the system.

Terminate process2 Terminates a database process without warning. This operation
causes the database to be frozen while the database recovery
process (DBR) recovers the terminated process. This option is
limited to operations performed on specific database processes;
you cannot use this option on arbitrary processes on the system.

2On OpenVMS, you need the Group privilege to operate on another process in the same group,
unless the process has the same user identification code (UIC) as the invoking process. You need
the World privilege to operate on another process in the system.

(continued on next page)

2–42 Database Performance Analysis Tools

Table 2–4 (Cont.) Select Tool Options

Option Description

Set process priority1 Allows you to change the priority for the specified process on
OpenVMS. You need the ALTPRI (alter priority) privilege to
set the priority higher than the base priority of the specified
process.

Switch database Allows you to switch databases without having to exit from
the Performance Monitor. You are prompted for the file
specification for the new database you want to open. You
can use command recall to display previous terminal inputs.
You can use Ctrl/Z on OpenVMS and Ctrl/D on Digital UNIX to
cancel the request.

When you enter a new database file specification, the current
database is closed and the new database is opened. If the new
database cannot open for any reason, the previously opened
database is opened again. The ability to open a new database
is not available if you are replaying a binary input file, using
the Input qualifier, or recording a binary output file, using the
Output qualifier.

Start screen cycling Directs the Performance Monitor to continually cycle through
the set of screens associated with the currently selected screen.
Each screen is displayed for the number of seconds specified.

When the Performance Monitor is cycling through screens,
you can change screen modes or change submenus; cycling
through the screens associated with your choice will continue
at whichever menu level is currently selected.

When you select the "Start screen cycling" option, you are
prompted to enter a time interval (in seconds). The specified
value for the time interval must be greater than or equal to
the value specified for the Time qualifier. In addition, if you
manually change the refresh rate (using the Set_rate menu
option) to a value that is greater than the value you specify for
the time interval, the cycling is performed at the interval you
specify with the Set_rate menu option.

1Supported on OpenVMS systems only

(continued on next page)

Database Performance Analysis Tools 2–43

Table 2–4 (Cont.) Select Tool Options

Option Description

Start stall logging Specifies that stall messages are to be written to the stall log
file. You are prompted to enter a file name for the stall log.
Writing stall messages to a log file can be useful when you
notice a great number of stall messages being generated, but do
not have the resources to immediately investigate and resolve
the problem. The log file generated can be reviewed later so
that the problems can be traced and resolved.

The stall messages are written to the file in a format similar
to the Stall Messages screen. Stall messages are written to the
file at the same rate as the screen refresh rate. Specifying a
large refresh rate minimizes the size of the file, but results in
a large number of missed stall messages. Specifying a small
refresh rate produces a large log file, but contains more of the
stall messages generated.

You do not need to display the Stall Messages screen to record
the stall messages to the log file. The stall log is maintained
regardless of which screen, if any, is displayed.

By default, stall messages are not logged to a file.

Start DBKEY logging Logs the records accessed during a given processing period by
the various attached processes. You are prompted to enter a
file name where all the accessed dbkeys are logged.

The dbkey information is written at the current screen refresh
rate. Using a larger refresh rate minimizes the size of the file
but results in a large number of missed dbkey messages. Using
a smaller refresh rate produces a large log file, but contains a
much finer granularity of dbkey messages.

Note that you do not need to display the DBKEY Information
screen to record the dbkey messages to the dbkey log. The
dbkey log is maintained regardless of which screen, if any, is
displayed.

Disable auto-refresh Broadcast messages overwrite the horizontal menu in the
Performance Monitor. By default, the horizontal menu is
refreshed after the message is displayed. This option allows
you to disable refreshing of the screen.

Start ALS process Starts or stops the AIJ log server process if AIJ journaling is
enabled.

Wake up RCS
process

Instructs the row cache server process to initiate a sweep even
when a threshold has not been reached.

(continued on next page)

2–44 Database Performance Analysis Tools

Table 2–4 (Cont.) Select Tool Options

Option Description

Invoke ABS process Invokes the AIJ backup server (ABS) process for a specific
noncurrent AIJ journal.

Suspend ABS process Temporarily suspends or resumes the ABS process.

Notepad options [->3 Changes various tools options. The Select Tool Option submenu
is displayed.

Option A selects the EDT text editor. This is the default editor.

Option B selects the LSE text editor, if it exists. If the LSE
editor does not exist, then the EDT editor is selected.

Option C selects the TPU text editor, if it exists. If the TPU
editor does not exist, then the EDT editor is selected.

Option D changes the notepad file name. The default file name
for the notepad is STATS.NOTEPAD.

Option E enables or disables the Time_plot baseline. Enabling
the baseline updates the Time_plot display graph continuously.

The Select Tool Option submenu remains displayed until you
enter Ctrl/Z on OpenVMS or Ctrl/D on Digital UNIX.

3Enable Time_plot baseline is the only notepad option supported on Digital UNIX.

2.2.10 Getting Online Help in the Character-Cell Interface
An extensive online help facility is available to help you understand and
interpret the statistical displays. You select the Help menu for the Performance
Monitor by pressing the H key from a horizontal menu, or by pressing the PF2
key or Help key. The following is an example of the Performance Monitor help
menu:

A. Using the keyboard
B. Screen description
C. Field descriptions [->
D. Search for help on... [->
E. Goto screen "by-name"
F. Goto screen [->

The Help menu displays the available Help topics. When you select ‘‘Using
the keyboard,’’ the help text explains menu choices and other keys. When
you select ‘‘Screen description,’’ Help displays text that describes the current
screen. When you select ‘‘Field descriptions,’’ press the letter associated with
the field you want help on or use the arrow keys to position the cursor on the
field. Then, when you press the Return key, Help displays an explanation of

Database Performance Analysis Tools 2–45

the field. The ‘‘field descriptions’’ choice does not appear on the Help menu if a
display does not provide help text for fields.

In some cases, the help text for keyboard, screen, and field descriptions is more
than one page in length. You can scroll through multiple help screens, either
a line at a time or a page at a time. Use the up arrow key to move the help
text up one line at a time and the down arrow key to move the help text down
one line at a time. Use the Prev Screen or left arrow key to scroll the help text
backward one page at a time, and the Next Screen or right arrow key to scroll
the help text forward one page at a time.

When one or more lines of help text is available in either the forward or
reverse direction, the arrow keys and the Next Screen and Prev Screen keys
are activated. Instructions at the bottom of the screen indicate whether these
keys are activated. If you press the left arrow, right arrow, Prev Screen, or
Next Screen keys when they are not activated, nothing happens. Also, the help
screen displays the indicator ‘‘MORE–>’’ while one or more lines of help exist
in the forward direction and ‘‘<–MORE’’ while one or more lines of help exist in
the reverse direction.

The name of the help topic that you are reading about appears at the top of the
help screen.

The size of the help text is based on the number of lines configured for the
terminal; for instance, a DECwindows terminal with 48 lines has a larger
viewport than a VT100 terminal with 24 lines.

2.2.11 Types of Database Statistics
The statistics that you can see when you use the Performance Monitor fall into
the following categories:

• Statistics that provide general information about what is happening with
your database, such as transaction access patterns and the load on a
system.

• Statistics that are tied to parameters whose settings you can modify to
improve database performance, such as the PIO statistic where the buffer
pool overflows and a marked page must be written back to the database.

• Statistics that display dynamic information that automatically changes to
reflect database parameter modifications, such as buffer information and
row cache information.

• Statistics that allow you to do some online analysis of your database.
For example, the Transaction Analysis screen examines the ratio of verb
successes to verb failures.

2–46 Database Performance Analysis Tools

The way you interpret these statistics depends on how your database is
structured and how it is used. If you are confident that your database is well-
designed, you should use the steady-state approach to analyzing the statistics.
In the steady-state approach, you monitor the statistics regularly until you
become familiar with the normal performance of the database. Then you note
any deviations from the norm and adjust either the database design or certain
system parameters (depending on the problems you encounter) to resolve the
problem. If you are not confident that your database is well-designed and you
are experiencing performance problems, you can use the statistics to try to
pinpoint the problem areas.

Quite often, an application is written when a database is relatively small.
While the database is small, performance might be acceptable. It is often only
when the database grows that performance degrades. In this case, you can
gather statistics on the database as it grows and compare the differences in
transaction rates. The statistics will show you how the database has changed
over time. Comparing the statistics should help you highlight the cause of
a problem. By comparing statistics from different database sizes, you can
identify the level at which degradation began.

Regardless of how you track database activity, important statistics to monitor
include the following:

• On the I/O screen:

Compare the verb successes statistic to the verb failures statistic. A high
failure rate compared to the success rate indicates that many things
are failing. The problem might be too many deadlocks, but is really
application-dependent.

Compare the .ruj file reads and the .ruj file writes statistics. Too many
.ruj file reads indicate too many rollbacks. Too many .ruj file writes might
indicate contention problems or transactions that modify a lot of data.
More than one write for each transaction indicates that marked pages are
being written back to the database before the actual commit (meaning
either another recovery-unit requested the page, the buffer pool overflowed,
or there are very large transactions with lots of updates).

• On the summary lock screen:

Look at the rqsts not queued, rqsts stalled, and rqst deadlocked statistics.
High numbers for these statistics (relative to the norm for your database)
indicate contention problems. The problem might be that your database
design is not optimal. The problem could also be a high number of blocking
asynchronous system traps (ASTs) or it may be that users are contending
for frequently accessed data.

Database Performance Analysis Tools 2–47

• On the AIJ screen:

Compare the records written statistic to the blocks written statistic.

The ratio of records written to blocks written gives an indication of the size
of the AIJ records (or the size of the record modified). This statistic is only
informational.

• On the PIO screen:

Compare the data page request statistic to the SPAM page request
statistic. If the SPAM fetch rate is high relative to the data fetch rate,
it might simply be an accurate reflection of the data access patterns.
However, because it might also be an indication of contention problems,
you should try to determine the cause of a high number of SPAM fetches.

Look at the pool overflow statistic. If there are many pool overflows for
each transaction, you might need to adjust the buffer size or the number
of buffers allocated for each user. You may also want to consider enabling
global buffers. Refer to Section 4.1.2 for information on managing buffers.

Look at the unmark buffer statistic and check the pool overflow and lock
conflict statistics. If the buffer had to be unmarked due to a pool overflow
or a lock conflict, Oracle Rdb is doing extra work. This may be the result of
lock contention or a buffer pool being too small.

Compare the data file reads statistic to the data file writes statistic.
Generally, this ratio gives you information about the current transaction
mix.

• On the snapshot screen:

Look at the retrieved record, the fetched line, and the read snap page
statistics. If the fetched line number is much higher than that for retrieved
record, read-only transactions are doing a lot of work to access their
records. The problem might be that the access paths are not optimal.

The read snap page also indicates the amount of database activity. If the
read snap page number is higher than the number for retrieved record, the
records fetched may be those that have been frequently updated. A zero
indicates that read-only transactions are rarely accessing data modified by
update transactions.

Check the page too full statistic, which applies to read/write transactions.
This statistic indicates that some data pages contain frequently accessed
data that form chains of snapshot pages.

2–48 Database Performance Analysis Tools

Look at the page in use or page conflict statistics. These statistics indicate
contention within the snapshot file. The problem might be that the
snapshot file should be extended. The file might not extend itself because it
can resolve the contention by doing extra work. However, you might want
to extend the snapshot file manually to see if it helps alleviate the problem.

2.2.12 Understanding the Performance Monitor Screens
To move from one screen to another, select the Menu option to see the main
menu. Then select the desired screen.

Although only one screen can be active at any one time, all the statistics
counters (including maximum and averages) are maintained. If you specify the
Output qualifier, you can select different screens without affecting the format
of the binary statistics output file. The file contains all the database statistics,
not just the current screen.

Table 2–5 provides a brief description of each screen and indicates where you
can find more information about each one.

Table 2–5 Performance Monitor Screens

Screen Description Reference

Summary IO Statistics Shows a summary of database I/O
activity.

Section 3.2.1.1

Summary Locking
Statistics

Shows a summary of the locking
activity.

Section 3.8.1.3
Section 8.4

Summary Object
Statistics

Shows cumulative information for all
database root file objects.

Performance Monitor help

Summary Cache Statistics Shows cumulative information for all
row caches in the database.

Performance Monitor help

Summary Cache Unmark
Statistics

Shows cumulative row cache ‘‘unmark’’
statistics that describe how rows in the
row caches are written back to disk.

Performance Monitor help

Record Statistics Shows a summary of data row activity. Section 4.1.1.7

Transaction Duration Shows overall real-time transaction
processing performance.

Section 3.2.1.6

Custom Statistics Shows a customized display of any
of the base statistics information (for
example, non-by-area and non-per-
process statistics).

Section 2.2.14

(continued on next page)

Database Performance Analysis Tools 2–49

Table 2–5 (Cont.) Performance Monitor Screens

Screen Description Reference

Snapshot Statistics Shows snapshot activity for update and
read-only transactions.

Section 4.1.1.10

Stall Messages Shows a summary of database users’
stall activity.

Section 3.2.1.3

Active User Stall
Messages

Shows all processes attached to the
database on the current node and, if a
process stalled, shows the reason why
the stall occurred.

Section 3.2.1.5

Process Accounting Shows continuously updated OpenVMS
accounting information about
local processes in a VMScluster
environment.

Section 4.1.1.6

Checkpoint Information Shows process checkpoint information. Section 4.1.1.12

Active User Chart Shows the number of active users
attached to the database over a period
of time.

Performance Monitor help

CPU Utilization Shows the current CPU utilization of
each database process.

Section 3.3

DBR Activity Shows one line of information for each
database recovery (DBR) process active
on the node.

Section 6.5.2

Monitor Log Allows you to view the monitor log on
line.

Performance Monitor help

Defined Logicals Shows a list of all the logical names
currently accessible to the Performance
Monitor.

Section 2.3.1

Lock Timeout History Identifies the object that causes a
timeout event.

Section 3.8.1.5

Lock Deadlock History Identifies the object that causes a
deadlock event.

Section 3.8.1.4

DBKEY Information Shows the last retrieved DBKEY for
data, snapshot, SPAM, AIP, and ABM
pages.

Section 3.2.1.4

AIJ Statistics Shows a summary of after-image
journaling activity.

Section 4.1.1.8

(continued on next page)

2–50 Database Performance Analysis Tools

Table 2–5 (Cont.) Performance Monitor Screens

Screen Description Reference

Group Commit Statistics Provides information about AIJ group
commit processing

Performance Monitor help

AIJ Journal Information Shows information about all of a
database’s after-image journals on
the current node.

Section 4.1.1.9

AIJ Journal Growth Trend Graphically portrays the size of the
current AIJ journal over a measured
period of time.

Performance Monitor help

ALS Statistics Shows AIJ log server activity. Performance Monitor help

2PC Statistics Provides information about distributed
transaction performance.

Performance Monitor help

RUJ Statistics Provides summary information for all
active update transactions.

Performance Monitor help

Checkpoint Statistics Shows transaction and checkpoint
activity.

Section 4.1.1.11

Recovery Statistics Identifies various recovery phases and
shows information on how long each
phase took to complete.

Performance Monitor help

Hot Standby Statistics Provides information about the
performance and status of the hot
standby feature.

Performance Monitor help

Synchronization Mode
Statistics

Provides a breakdown of each type of
synchronization mode.

Performance Monitor help

PIO Statistics–Data
Fetches

Shows statistics on how data page
requests are handled.

Section 4.1.1.3
Section 8.1.3

PIO Statistics–SPAM
Fetches

Shows statistics on how SPAM page
requests are handled.

Section 4.1.1.4
Section 8.1.3

PIO Statistics–Data
Writes

Shows a summary of data file writes
and buffer unmarking activity.

Section 4.1.1.2

PIO Statistics–SPAM
Writes

Shows SPAM write I/O information. Performance Monitor help

PIO Statistics–File Access Shows information about file access. Performance Monitor help

Asynchronous IO
Statistics

Shows statistics on asynchronous reads
and writes to the database files.

Section 4.1.1.5

(continued on next page)

Database Performance Analysis Tools 2–51

Table 2–5 (Cont.) Performance Monitor Screens

Screen Description Reference

IO Stall Time Shows a summary of all I/O stall
activity.

Section 3.2.1.2

GB Utilization Shows the utilization of each page in a
global buffer.

Performance Monitor help

GB Hot Page Information Displays a list of the most heavily
shared pages in the global buffer pool.

Performance Monitor help

GB Frequency Information Displays the effectiveness of the global
buffer pool for sharing of pages.

Performance Monitor help

IO Statistics (by file) I/O statistics for each database file. Section 4.2.1.4
Section 8.1.2.3

Device Information Shows an online view of the storage
area device information.

Performance Monitor help

Locking (one lock type) Shows lock statistics for one particular
lock type.

Section 3.8.1.3

Locking (one stat field) Shows lock statistics for all lock types
of a particular statistical field.

Section 3.8.1.3

Lock Statistics (by file) Provides information about page locks
that are specific to storage areas and
snapshot files.

Performance Monitor help

Database Parameter
Information

Shows dynamic information that
automatically changes to reflect
database parameter modifications.

Performance Monitor help

Row Cache (One Cache) Provides summary information for a
specific row cache.

Performance Monitor help

Row Cache (One Field) Shows row cache statistics for all row
caches of a particular statistical field.

Performance Monitor help

Row Cache Utilization Provides utilization information for
each row in a specific row cache.

Performance Monitor help

Hot Row Information Displays a list of the most frequently
accessed rows for a specific row cache.

Performance Monitor help

Row Cache Status Provides overall status for a specific
row cache.

Performance Monitor help

Row Cache Queue Length Provides information to determine the
relative CPU performance impact of
row caching.

Performance Monitor help

(continued on next page)

2–52 Database Performance Analysis Tools

Table 2–5 (Cont.) Performance Monitor Screens

Screen Description Reference

Row Length Distribution Shows the distribution of the various
row lengths in a specific row cache.

Performance Monitor help

RCS Statistics Provides information about the run-
time operation of the row cache server
(RCS) process.

Performance Monitor help

Index Statistics
(Retrieval)

Shows sorted index retrieval activity. Section 3.9.5.2
Section 8.1.3.3

Index Statistics
(Insertion)

Shows sorted index modification
activity.

Section 3.9.5.2

Index Statistics (Removal) Shows sorted index deletion activity. Section 3.9.5.2

Hash Index Statistics Shows hashed index update and
retrieval activity.

Section 3.9.5.2

VM Usage Statistics Shows dynamic virtual memory usage
for all database users on a node.

Section 4.4.1

Name translation Shows statistics on database dashboard
updates and logical name translation.

Performance Monitor help

Objects (one stat type) Shows statistics for a specific database
object.

Section 3.4

Objects (one stat field) Shows statistics for a specific collection
category.

Section 3.4

Database Dashboard Shows the actual database parameter
and attribute settings used by the
processes attached to the database.

Section 2.2.15

Online Analysis & Info. Displays analysis information Section 2.2.16

2.2.13 Getting Statistics Output in a Formatted Binary Output File in the
Character-Cell Interface

Specify the Output qualifier on the RMU Show Statistics command to get
statistics output in a formatted binary output file with a .dat default file type.

To replay a formatted binary output file, use the RMU Show Statistics
command with the Input qualifier. This file must have been created by an
earlier RMU Show Statistics session that specified the Output qualifier. The
replay mode was discussed in Section 2.2.3.

Database Performance Analysis Tools 2–53

If you use the Input qualifier, you can change the rate of replay display
by using the Time qualifier. Thus, you can record a session with Time=60
(gather statistics once a minute), and then replay it with Time=1 (update the
display once a second). This replay rate will display 10 hours of statistics in 10
minutes. All rates per second in the display are computed based on the original
(recording) times, so the replay rate does not affect the display numbers in any
way.

OpenVMS
VAX

OpenVMS
Alpha

The following command create a formatted binary output file named
database.stats on OpenVMS:

$ RMU/SHOW STATISTICS/OUTPUT=database.stats mf_personnel.rdb
♦

Digital UNIX The following command create a formatted binary output file named
database.stats on Digital UNIX:

$ rmu -show statistics -output=database.stats mf_personnel.rdb
♦

The binary output file contains four different record types:

• Header record (4096 bytes, fixed)

• Storage-Area information record (512-byte structures uniformly packed in
a variable-size record)

Each storage area record contains several (one or more) storage area
entries, tightly packed. The binary output file header record contains
information that describes the unpacking algorithm.

• Base statistics record (4096 bytes, fixed)

Each base statistics record contains one base statistic entry. No unpacking
is necessary.

• By-Area statistics record (512-byte structures uniformly packed in a
variable-size record)

Each by-area statistics record contains several (one or more) by-area
statistics entries, tightly packed. The binary output file header record
contains information that describes the unpacking algorithm.

The binary output file contains the following format:

2–54 Database Performance Analysis Tools

+--------+---------+--------+---------+--------+---------+
| Header | StArea | Base | By-Area | Base | By-Area |
| record | records | record | records | record | records |...
+--------+---------+--------+---------+--------+---------+

(if by-area) (if by-area) (if by-area)
^
| start of statistics records

The different record types do not have tags identifying them. Each record
is placed in a specific sequence, depending on flags and values stored in the
header record.

OpenVMS
VAX

OpenVMS
Alpha

The following command on OpenVMS allows you to use the replay mode of
the Performance Monitor to view the statistics in the database.stats formatted
binary output file:

$ RMU/SHOW STATISTICS/INPUT=database.stats
♦

OpenVMS
VAX

OpenVMS
Alpha

The following command on Digital UNIX allows you to use the replay mode of
the Performance Monitor to view the statistics in the database.stats formatted
binary output file:

$ rmu -show statistics -input=database.stats
♦

OpenVMS
VAX

OpenVMS
Alpha

However, some users want to format the output differently. To make this
possible, the format of the binary file is documented in the following text file:

SYS$LIBRARY:RMU$SHOW_STATISTICS.CDO

The text file RMU$SHOW_STATISTICS.CDO lists and defines all the records
available in the Performance Monitor binary output file (if you have installed
multiple versions of Oracle Rdb on your system, the text file is named
RMU$SHOW_STATISTICSvv.CDO, where vv is the Oracle Rdb software
version). The following example shows how the binary output file can be
defined in the data repository using the SYS$LIBRARY:RMU$SHOW_
STATISTICS.CDO file. Oracle Corporation recommends that you place the
definitions contained in this file in its own repository. In the example, the
repository is called CDD$TOP.RDB$EXAMPLES.

First, create the new repository:

$ REPOSITORY OPERATOR
CDO> DEFINE DIRECTORY CDD$TOP.RDB$EXAMPLES.

Next, define the fields and records:

CDO> SET DEFAULT CDD$TOP.RDB$EXAMPLES
CDO> @SYS$LIBRARY:RMU$SHOW_STATISTICS.CDO

Database Performance Analysis Tools 2–55

New statistics are created for new versions of Oracle Rdb. The
SYS$LIBRARY:RMU$SHOW_STATISTICS.CDO file is also updated with each
new version of Oracle Rdb. Existing procedures that use Oracle RMU binary
statistics will continue to work with new versions of Oracle Rdb. However, if
you want to be able to access the new statistics available with new versions of
Oracle Rdb, you should update your binary file definitions and programs with
each new version of Oracle Rdb. ♦

2.2.14 Customizing the Performance Monitor Display in the Character-Cell
Interface

The Performance Monitor allows you to create a customized statistics screen.
Any of the base statistics information (for example, non-by-area and non-per-
process) can be customized.

The size of your Custom Statistics screen determines the number of statistics
fields you can add. The header and horizontal menu take up eight lines of
the Custom Statistics screen; you can add a statistics field on each of the
remaining lines, up to a maximum of 36 different fields. Each statistics field is
placed on a separate line of the screen.

The Custom Statistics screen is an ordinary screen; information can be
displayed graphically as a histogram or in numeric tabular format. Also, the
Time_plot and X_plot options are available for any of the selected statistics
fields.

To select the Custom Statistics screen, select the Menu option and then move
the cursor with the down arrow key to the Custom Statistics option and press
Return.

Initially, the Custom Statistics screen contains two statistics: database binds
and transactions. These statistics can be moved, removed, or replaced.

There are two different methods available to populate the Custom Statistics
screen: fields can either be yanked from an existing statistics screen and
implicitly put on the Custom Statistics screen, or you can manually create
a statistics field. Oracle Corporation recommends using the yank-and-put
method, which is easier.

To yank and put a statistics field, use the Yank menu option on the statistics
screen containing the statistics field you want to select. The Yank menu option
is not available in the Custom Statistics screen.

When you select Y, a menu of the selectable fields is shown; this menu is
similar to the Help on fields menu. Select the letter of the statistics field you
want to yank and that field will automatically appear on the Custom Statistics
screen. Note that once you select a particular statistics field, you cannot select

2–56 Database Performance Analysis Tools

it again unless you first delete it from the Custom Statistics screen. This
means that the field selection menu changes every time you select a field.

The selected field is positioned on the first available row of the Custom
Statistics screen. You cannot specify the row of the Custom Statistics screen
on which the field will be placed using the yank-and-put method. However,
once the field has been put on the Custom Statistics screen, you can change
the position of that field.

The Yank menu option is automatically canceled when you have selected all
the available statistics fields on any given screen or when no more fields are
available on the Custom Statistics screen.

Using the yank-and-put method is the recommended approach for creating the
Custom Statistics screen. You browse through the existing screens and select
the set of statistics fields you want to monitor.

If you are an advanced user, you can also manually create a statistics field. On
the Custom Statistics screen, you can use the Config menu option to explicitly
enter the index of the specific statistics field, numbered from 1 to 1020.
These indexes are documented in the text file SYS$LIBRARY:RMU$SHOW_
STATISTICS.CDO (if you have installed multiple versions of Oracle Rdb
on your system, the text file is named SYS$LIBRARY:RMU$SHOW_
STATISTICSvv.CDO, where vv is the Oracle Rdb software version). When
you select statistics files manually, the keyboard will beep if you specify the
index of an existing statistics field. However, no error message is displayed.

When you type C on the Custom Statistics screen, the configuration menu
is displayed. The configuration menu allows you to add, delete, move, and
compress statistics fields on the Custom Statistics screen. The configuration
menu varies according to the state of the Custom Statistics screen but typically
all four options are displayed.

When you select the Add menu option, you are prompted to select the screen
position where you want to place the statistics field, the index of the statistics
field, and the title of the statistics field. The title you specify is then appended
to the respective index, in brackets, to show which statistics have been
manually selected.

This option is extremely useful for tracking statistics that are not normally
displayed. For instance, the statistics field that tracks the total number of
bytes of virtual memory (VM) allocated is not displayed by any Performance
Monitor screen. However, you can select index number 16 and the number of
bytes of VM allocated is displayed on the Custom Statistics screen.

When you select the Delete menu option, you are prompted to select the
statistics field you want to delete.

Database Performance Analysis Tools 2–57

When you select the Move menu option, you are prompted to select the
statistics field to be moved and the screen position where the selected field will
be displayed.

Selecting the Compress menu option eliminates all intervening blanks lines
on the screen. This option is particularly useful after you have deleted one or
more statistics fields.

Initially, the Custom Statistics screen appears as follows:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 3-MAY-1996 09:25:01
Rate: 3.00 Seconds Custom Statistics Elapsed: 00:00:21.23
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V7]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
database binds 0 0 0.0 1 0.0
transactions 0 0 0.0 0 0.0

--
Config Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write

The initial database binds and transactions statistics are displayed.

To copy one or more fields from the VM Usage Statistics screen to the Custom
Statistics screen, proceed to the VM Usage Statistics screen:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 3-MAY-1996 09:49:15
Rate: 3.00 Seconds VM Usage Statistics Elapsed: 00:24:35.29
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V7]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

GET_VM calls 187 0 0.2 351 0.0
FREE_VM calls 0 0 0.0 14 0.0

GET_VM kilobytes 795 0 1.6 2402 0.0
FREE_VM kilobytes 32 0 0.7 978 0.0

$EXPREG calls 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

2–58 Database Performance Analysis Tools

Type Y to display the Yank-and-Put menu:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 3-MAY-1996 09:51:56
Rate: 3.00 Seconds VM Usage Statistics Elapsed: 00:00:04.65
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V7]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

A. GET_VM calls 74 0 72.9 339 0.0
B. FREE_VM calls 0 0 0.4 2 0.0

C. GET_VM kilobytes 343 0 336.3 1564 0.0
D. FREE_VM kilobytes 31 0 30.1 140 0.0

E. $EXPREG calls 0 0 0.0 0 0.0

--
Type <return> or <letter> to select stats field, <control-Z> to cancel

Type A to select the GET_VM calls statistics field. You remain in the selection
mode but the selection menu changes with each selection. After you select
option A, the new menu is displayed as follows:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 3-MAY-1996 09:51:56
Rate: 3.00 Seconds VM Usage Statistics Elapsed: 00:00:04.65
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V7]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

GET_VM calls 74 0 72.9 339 0.0
A. FREE_VM calls 0 0 0.4 2 0.0

B. GET_VM kilobytes 343 0 336.3 1564 0.0
C. FREE_VM kilobytes 31 0 30.1 140 0.0

D. $EXPREG calls 0 0 0.0 0 0.0

--
Type <return> or <letter> to select stats field, <control-Z> to cancel

Because you have already selected the GET_VM calls statistics field, you
cannot select it again, so it has been removed from the selection menu. To
select the GET_VM kilobytes field, type B. Press Ctrl/Z to exit the VM Usage
Statistics menu.

Database Performance Analysis Tools 2–59

Now, return to the Custom Statistics screen. The GET_VM calls and GET_VM
kilobytes fields that you selected with the yank-and-put method are displayed:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 3-MAY-1996 09:57:06
Rate: 3.00 Seconds Custom Statistics Elapsed: 00:05:13.90
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V7]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
database binds 0 0 0.0 1 0.0
transactions 0 0 0.0 0 0.0
GET_VM calls 74 0 1.0 341 0.0
GET_VM kilobytes 343 0 5.4 1704 0.0

--
Config Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write

If you do not want to display these statistics fields, type C to choose the Config
menu option. This displays the configuration menu:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 3-MAY-1996 10:01:22
Rate: 3.00 Seconds Custom Statistics Elapsed: 00:09:29.95
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V7]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
database binds 0 0 0.0 1 0.0
transactions 0 0.0
GET_VM calls +---Select Custom Configuration---+ 343 0.0
GET_VM kilobytes | | 1843 0.0

| A. Add a statistics field |
| B. Delete a statistics field |
| C. Move a statistics field |
| D. Compress the display |
| |
+---------------------------------+

--
Type <return> or <letter> to select customization choice, <control-Z> to cancel

To delete an existing statistics field, choose menu option B. The list of existing
statistics fields is displayed and you can select the field to be deleted.

2–60 Database Performance Analysis Tools

Once the configuration operation is complete, the Custom Statistics screen is
displayed again:
Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 3-MAY-1996 10:21:51
Rate: 3.00 Seconds Custom Statistics Elapsed: 00:29:59.74
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V7]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
database binds 0 0 0.0 1 0.0
transactions 0 0 0.0 0 0.0

GET_VM kilobytes 343 0 1.5 2682 0.0

--
Config Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write

Note the row where the deleted statistics field appeared is now blank. The
display is not automatically compressed to eliminate empty lines. Press C from
the horizontal menu to select the Config menu, then select D from the Custom
Configuration menu to compress (eliminate) the empty lines.

2.2.15 Performance Monitor Database Dashboard Facility
The Performance Monitor provides a Database Dashboard facility for both
the global database and individual database processes. You access the facility
by selecting the Database Dashboard option from the main menu of the
Performance Monitor. The following submenu is displayed:

Database Performance Analysis Tools 2–61

+----------- Select Display -----------+
| |
| A. IO Dashboard |
| B. Locking Dashboard |
| C. AIJ Dashboard |
| D. Checkpoint Dashboard |
| E. Hot Standby Dashboard |
| F. Row Cache Dashboard |
| G. RUJ Dashboard |
| H. Monitor Dashboard |
| I. ABS Dashboard |
| J. ALS Dashboard |
| K. DBR Dashboard |
| L. RCS Dashboard |
| M. Per-Process I/O Dashboard |
| N. Per-Process Journal Dashboard |
| O. Per-Process Row Cache Dashboard |
| |
+--------------------------------------+

The Row Cache Dashboards are displayed only if row caching is enabled for
your database.

The Database Dashboard facility displays the actual database parameter and
attribute settings being used by the processes attached to the database. It
provides a way for the database administrator (DBA) to examine logical name
and configuration parameter values and other database attributes settings at
run time.

OpenVMS
VAX

OpenVMS
Alpha

Optionally, users are allowed to dynamically update certain database
parameters and attributes on a single node at run time. The net effect of
these changes can be examined at run time without having to restart database
processes. These updates are nonpersistent.

The Database Dashboard facility allows you to ‘‘drive’’ the database faster or
slower, and immediately see the impact of increasing or decreasing certain
database settings.

You can use the Update menu option, by typing the letter U, to change the
value of a database attribute. Before you can update database attributes,
you need to start your Performance Monitor session with the Options=Update
qualifier, and you need OpenVMS WORLD, BYPASS, and SYSNAM privileges.

Caution

You should use the Update option carefully. Oracle Rdb does not
perform error checking on the updated values.

2–62 Database Performance Analysis Tools

Note that updates made to any attributes are not stored in the database root
file. The purpose of updating attributes is to test and measure the effects of
changes on the database, so that you can later make persistent changes to
appropriate database attributes using interactive SQL.

Database attributes are updated on the current node only. ♦

See the Performance Monitor help for descriptions of the Database Dashboard
screens and fields.

2.2.16 Performance Monitor Online Analysis Facility
The Performance Monitor provides an Online Analysis facility that identifies
items of interest to a DBA for further investigation into possible performance
problems. You access the facility by selecting the Online Analysis & Info.
option from the main menu of the Performance Monitor. The following
submenu is displayed:

+----- Select Display -----+
| |
| A. Buffer Analysis |
| B. Transaction Analysis |
| C. AIJ Analysis |
| D. RUJ Analysis |
| E. Recovery Analysis |
| F. Record Analysis |
| G. Area Analysis |
| H. Locking Analysis |
| I. Index Analysis |
| J. Row Cache Analysis |
| |
+--------------------------+

Note that the items identified in the Online Analysis screens are not
necessarily indications of performance problems. The items may be an
indication of a performance problem, but in most cases, further research is
necessary.

The Online Analysis screens use the actual database parameters and
attributes specified using interactive SQL. The screens do not use the Database
Dashboard facility because the Database Dashboard attributes are temporary
settings. Therefore, online changes made using the Database Dashboard are
not reflected in the analysis output. Yet, using the Database Dashboard facility
is the recommended method for testing potential database attribute settings.
You must use interactive SQL to make the attribute settings persistent.

Database Performance Analysis Tools 2–63

The Online Analysis facility is invoked at the designated screen refresh
interval. As the Online Analysis facility is fairly CPU-intensive, and the
analysis results seldom vary greatly over a minuscule period of time, Oracle
Corporation recommends that the screen refresh interval be set to 3 seconds or
more.

The Online Analysis screens are not recorded in the binary output file produced
using the Output qualifier. Consequently, these screens are not available when
you replay a binary file using the Input qualifier.

See the Performance Monitor help for descriptions of the Online Analysis
screens.

2.3 Oracle Rdb Logical Names and Configuration Parameters
This section describes how Oracle Rdb logical names and configuration
parameters can be used to enhance database performance. Table 2–6 lists the
logical names and configuration parameters and provides a brief description
of how they can be used in tuning your database. Appendix A describes each
logical name and configuration parameter in more detail and illustrates its
use.

Table 2–6 Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDB$CHARACTER_SET
Not applicable on Digital UNIX

Defines an alternate character set for use by
Oracle Rdb.

RDB$LIBRARY
RDB_LIBRARY

Specifies a protected library that you can
use to store external routine images, such as
external functions.

RDB$RDBSHR_EVENT_FLAGS
Not applicable on Digital UNIX

Can be used to override the four event flag
numbers that are assigned to RDB$SHARE
at startup time by the LIB$GET_EF system
service.

RDB$REMOTE_BUFFER_SIZE
SQL_NETWORK_BUFFER_SIZE

Changes the default buffer size, up to your
system quota limits, of network transfers.

RDB$REMOTE_MULTIPLEX_OFF
SQL_NETWORK_NUMBER_
ATTACHES

Controls the number of remote server
processes used for multiple remote database
acesses to the same node.

(continued on next page)

2–64 Database Performance Analysis Tools

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDB$ROUTINES
RDB_ROUTINES

Specifies the location of an external routine
image.

RDBVMS$CREATE_DB
RDB_CREATE_DB

Determines which users are allowed to
create databases using the SQL CREATE
DATABASE statement.

RDM$BIND_ABS_LOG_FILE
RDB_BIND_ABS_LOG_FILE

Defines a file name for the after-image
journal backup server (ABS) log file.

RDM$BIND_ABS_OVERWRITE_
ALLOWED
RDB_BIND_ABS_OVERWRITE_
ALLOWED

Specifies whether the after-image journal
backup server (ABS) resets overwritten AIJ
journals.

RDM$BIND_ABS_OVERWRITE_
IMMEDIATE
RDB_BIND_ABS_OVERWRITE_
IMMEDIATE

Specifies whether journals are im-
mediately reset. RDM$BIND_ABS_
OVERWRITE_ALLOWED or RDB_BIND_
ABS_OVERWRITE_ALLOWED must be
enabled.

RDM$BIND_ABS_QUIET_POINT
RDB_BIND_ABS_QUIET_POINT

Indicates whether the after-image journal
backup server (ABS) performs a quiet-point
journal backup.

RDM$BIND_ABW_ENABLED
RDB_BIND_ABW_ENABLED

Enables or disables asynchronous batch-write
operations.

RDM$BIND_AIJ_CHECK_CONTROL_
RECS
RDB_BIND_AIJ_CHECK_CONTROL_
RECS

Specifies whether Oracle Rdb checks for
control records during AIJ cache formatting.

RDM$BIND_AIJ_EMERGENCY_DIR
RDB_BIND_AIJ_EMERGENCY_DIR

Specifies the location of the emergency AIJ
journal.

RDM$BIND_AIJ_IO_MAX
RDB_BIND_AIJ_IO_MAX

Allows you to override the default value for
the maximum AIJ group commit I/O buffer
size. The default value is 127 blocks.

RDM$BIND_AIJ_IO_MIN
RDB_BIND_AIJ_IO_MIN

Allows you to override the minimum AIJ
group commit I/O buffer size. The default
value is 8 blocks.

(continued on next page)

Database Performance Analysis Tools 2–65

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDM$BIND_AIJ_STALL
RDB_BIND_AIJ_STALL

Defines the amount of time, in milliseconds,
that a transaction waits after submitting its
commit record to the .aij log file.

RDM$BIND_AIJ_SWITCH_GLOBAL_
CKPT
RDB_BIND_AIJ_SWITCH_GLOBAL_
CKPT

Specifies whether Oracle Rdb performs a
global checkpoint after an AIJ switch-over
has occurred.

RDM$BIND_ALS_CREATE_AIJ
RDB_BIND_ALS_CREATE_AIJ

Indicates whether the ALS server is to
create an emergency AIJ journal if the AIJ
switch-over operation enters the suspended
state.

RDM$BIND_APF_DEPTH
RDB_BIND_APF_DEPTH

Specifies the number (depth) of buffers for
Oracle Rdb to asynchronously prefetch for a
process.

RDM$BIND_APF_ENABLED
RDB_BIND_APF_ENABLED

Enables or disables asynchronous prefetch
operations.

RDM$BIND_BATCH_MAX
RDB_BIND_BATCH_MAX

Defines the number of live data page cache
buffers that are written to the database
as part of a batch-write or asynchronous
batch-write operation. By setting this logical
name or configuration parameter to a value
smaller than the number of cache buffers
allocated to the user, you can control the size
of the I/O bursts that occur with batch-write
operations. This results in more predictable
and uniform I/O behavior for the system.

RDM$BIND_BUFFERS
RDB_BIND_BUFFERS

Allows you to provide an alternative number
of buffers at run time. This can be useful
when you need to temporarily override the
default number of buffers for a specific task,
but in general want to use the default.

RDM$BIND_BUFOBJ_ENABLED
Not applicable on Digital UNIX

Specifies whether the OpenVMS Alpha buffer
object feature is enabled that locks Oracle
Rdb local buffers into physical memory.

RDM$BIND_CBL_ENABLED
RDB_BIND_CBL_ENABLED

Specifies whether coarse buffer locking is
enabled.

(continued on next page)

2–66 Database Performance Analysis Tools

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDM$BIND_CKPT_BLOCKS
RDB_BIND_CKPT_BLOCKS

Indicates the number of AIJ blocks after
which a checkpoint will occur.

RDM$BIND_CKPT_TIME
RDB_BIND_CKPT_TIME

Indicates the amount of time, in seconds,
after which a checkpoint will occur.

RDM$BIND_CKPT_TRANS_
INTERVAL
RDB_BIND_CKPT_TRANS_INTERVAL

Defines a process-specific checkpoint interval
value based on the number of committed
transactions. Fast commit processing must
be enabled.

RDM$BIND_CLEAN_BUF_CNT
RDB_BIND_CLEAN_BUF_CNT

Specifies the number of clean buffers to
be maintained at the end of a process’
least recently used queue of buffers for
replacement. Specifying an appropriate
value with this logical name or configuration
parameter can reduce the number of I/O
stalls experienced by a process.

RDM$BIND_COMMIT_STALL
RDB_BIND_COMMIT_STALL

Defines the amount of time, in milliseconds,
that a transaction waits after attempting to
become the group commit process.

RDM$BIND_DAPF_DEPTH_BUF_CNT
RDB_BIND_DAPF_DEPTH_BUF_CNT

Specifies the number of buffers to prefetch
from the physical area. The default is
half the number of buffers defined for the
database user.

RDM$BIND_DAPF_ENABLED
RDB_BIND_DAPF_ENABLED

Enables and disables detected asynchronous
prefetch operations.

RDM$BIND_DAPF_START_BUF_CNT
RDB_BIND_DAPF_START_BUF_CNT

Specifies the number of buffers to be accessed
sequentially from the physical area before
detected asynchronous prefetch (DAPF) read
operations start.

RDM$BIND_HRL_ENABLED
RDM_BIND_HRL_ENABLED

Specifies whether hold retrieval locks are
enabled.

RDM$BIND_LOCK_TIMEOUT_
INTERVAL
RDB_BIND_LOCK_TIMEOUT_
INTERVAL

Allows you to set the amount of time a
transaction waits for locks to be released.

(continued on next page)

Database Performance Analysis Tools 2–67

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDM$BIND_MAX_DBR_COUNT
RDB_BIND_MAX_DBR_COUNT

Defines the maximum number of database
recovery (DBR) processes to be simultane-
ously invoked by the database monitor.

RDM$BIND_OPTIMIZE_AIJ_RECLEN
RDB_BIND_OPTIMIZE_AIJ_RECLEN

Allows you to tune the performance of the
RMU Optimize command by specifying an
average length for the AIJ record.

RDM$BIND_RCACHE_INSERT_
ENABLED
RDB_BIND_RCACHE_INSERT_
ENABLED

Indicates whether rows can be inserted into
the row cache.

RDM$BIND_RCACHE_RCRL_COUNT
RDB_BIND_RCACHE_RCRL_COUNT

Indicates the number of reserved row cache
slots.

RDM$BIND_RCS_BATCH_COUNT
RDB_BIND_RCS_BATCH_COUNT

Defines the number of rows that the row
cache server (RCS) sweeps in a single batch.

RDM$BIND_RCS_CHECKPOINT
RDB_BIND_RCS_CHECKPOINT

Indicates whether the row cache server
(RCS) performs a checkpoint.

RDM$BIND_RCS_CKPT_BUFFER_
CNT
RDB_BIND_RCS_CKPT_BUFFER_
CNT

Indicates the number of buffers to be
examined as a single batch by the row cache
server (RCS) process during a checkpoint
operation.

RDM$BIND_RCS_LOG_FILE
RDB_BIND_RCS_LOG_FILE

Defines a file name for the row cache server
(RCS) log file.

RDM$BIND_RCS_MAX_COLD
RDB_BIND_RCS_MAX_COLD

Indicates the number of marked records
above which the row cache server (RCS)
sweep starts.

RDM$BIND_RCS_MIN_COLD
RDB_BIND_RCS_MIN_COLD

Indicates the number of unmarked records
below which the row cache server (RCS)
sweep completes.

RDM$BIND_RCS_SWEEP_INTERVAL
RDB_BIND_RCS_SWEEP_INTERVAL

Indicates the amount of time, in minutes,
between the RCS sweeps.

RDM$BIND_READY_AREA_
SERIALLY
RDB_BIND_READY_AREA_SERIALLY

Causes Oracle Rdb to grant lock requests
for logical and physical areas in the order
that the lock requests were made, which can
prevent lock starvation.

(continued on next page)

2–68 Database Performance Analysis Tools

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDM$BIND_RUJ_ALLOC_BLKCNT
RDB_BIND_RUJ_ALLOC_BLKCNT

Allows you to override the default value of
the .ruj file. The .ruj file is created with 127
blocks by default.

RDM$BIND_RUJ_EXTEND_BLKCNT
RDB_BIND_RUJ_EXTEND_BLKCNT

Allows you to pre-extend the .ruj files for
each process using a database. The block
count value can be defined between 0 and
9999 (not inclusive) with a default of 100.

RDM$BIND_SNAP_QUIET_POINT
RDB_BIND_SNAP_QUIET_POINT

Allows you to control whether snapshot
transactions hold the quiet-lock and stall
database or AIJ backups from operating.

RDM$BIND_STATS_AIJ_ARBS_PER_
IO
RDB_BIND_STATS_AIJ_ARBS_PER_
IO

Allows you to override the default value of
AIJ request blocks per AIJ I/O. The default
is 2 blocks.

RDM$BIND_STATS_AIJ_BKGRD_
ARB_RATIO
RDB_BIND_STATS_AIJ_BKGRD_
ARB_RATIO

Allows you to override the default value for
the background AIJ request block threshold.
The default value is 50.

RDM$BIND_STATS_AIJ_BLKS_PER_
IO
RDB_BIND_STATS_AIJ_BLKS_PER_
IO

Allows you to override the default value of
blocks per AIJ I/O. The default value is 2.

RDM$BIND_STATS_AIJ_SEC_TO_
EXTEND
RDB_BIND_STATS_AIJ_SEC_TO_
EXTEND

Allows you to override the default value of
seconds to AIJ extend. The default value is
60.

RDM$BIND_STATS_BTR_FETCH_
DUP_RATIO
RDB_BIND_STATS_BTR_FETCH_
DUP_RATIO

Allows you to override the default value of
the B-tree duplicate fetch threshold. The
default threshold is 15.

RDM$BIND_STATS_BTR_LEF_
FETCH_RATIO
RDB_BIND_STATS_BTR_LEF_
FETCH_RATIO

Allows you to override the default value of
the B-tree leaf node fetch threshold. The
default threshold is 25.

(continued on next page)

Database Performance Analysis Tools 2–69

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDM$BIND_STATS_DBR_RATIO
RDB_BIND_STATS_DBR_RATIO

Allows you to override the default value of
the DBR invocation threshold. The default
threshold is 15.

RDM$BIND_STATS_ENABLED
RDB_BIND_STATS_ENABLED

Allows you to enable or disable the writing of
database statistics for a process. By default,
writing is enabled.

RDM$BIND_STATS_FULL_BACKUP_
INTRVL
RDB_BIND_STATS_FULL_BACKUP_
INTRVL

Allows you to override the full database
backup threshold. The default threshold is 6.

RDM$BIND_STATS_GB_IO_SAVED_
RATIO
RDB_BIND_STATS_GB_IO_SAVED_
RATIO

Allows you to override the GB IO-saved
default threshold. The default threshold is
85.

RDM$BIND_STATS_GB_POOL_HIT_
RATIO
RDB_BIND_STATS_GB_POOL_HIT_
RATIO

Allows you to override the GB pool hit
default threshold. The default threshold
is 85.

RDM$BIND_STATS_LB_PAGE_HIT_
RATIO
RDB_BIND_STATS_LB_PAGE_HIT_
RATIO

Allows you to override the LB/AS page hit
default threshold. The default is 75.

RDM$BIND_STATS_MAX_HASH_
QUE_LEN
RDB_BIND_STATS_MAX_HASH_
QUE_LEN

Allows you to override the hash table
queue length default threshold. The default
threshold is 2 rows.

RDM$BIND_STATS_MAX_LOCK_
STALL
RDB_BIND_STATS_MAX_LOCK_
STALL

Allows you to override the lock stall default
threshold. The default threshold is 2 seconds.

RDM$BIND_STATS_MAX_TX_
DURATION
RDB_BIND_STATS_MAX_TX_
DURATION

Allows you to override the transaction
duration default threshold. The default
value is 15.

(continued on next page)

2–70 Database Performance Analysis Tools

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDM$BIND_STATS_PAGES_
CHECKED_RATIO
RDB_BIND_STATS_PAGES_
CHECKED_RATIO

Allows you to override the pages checked
default threshold. The default threshold is
10 pages.

RDM$BIND_STATS_RECS_FETCHED_
RATIO
RDB_BIND_STATS_RECS_FETCHED_
RATIO

Allows you to override the records fetched
default threshold. The default threshold is
20 records.

RDM$BIND_STATS_RECS_STORED_
RATIO
RDB_BIND_STATS_RECS_STORED_
RATIO

Allows you to override the records stored
default threshold. The default threshold is
20 records.

RDM$BIND_STATS_RUJ_SYNC_IO_
RATIO
RDB_BIND_STATS_RUJ_SYNC_IO_
RATIO

Allows you to override the synchronous RUJ
I/O default threshold. The default threshold
is 10.

RDM$BIND_STATS_VERB_SUCCESS_
RATIO
RDB_BIND_STATS_VERB_SUCCESS_
RATIO

Allows you to override the verb success
default threshold. The default threshold is
25.

RDM$BIND_SYSTEM_BUFFERS_
ENABLED
Not applicable on Digital UNIX or
OpenVMS VAX

Indicates whether system space global
sections are used.

RDM$BIND_TSN_INTERVAL
RDB_BIND_TSN_INTERVAL

Indicates the number of transactions to be
allocated as a single batch when the commit
to journal optimization feature is enabled.

RDM$BIND_VM_SEGMENT
RDB_BIND_VM_SEGMENT

Allocates the number of bytes necessary to
avoid memory fragmentation.

RDM$BUGCHECK_DIR
RDB_BUGCHECK_DIR

Allows you to redirect bugcheck files from the
default directory to another location. This
can be useful if the current default login
directory does not have enough space for
bugcheck dump files.

RDM$BUGCHECK_IGNORE_FLAGS
RDB_BUGCHECK_IGNORE_FLAGS

Allows you to reduce the size of the bugcheck
dump files.

(continued on next page)

Database Performance Analysis Tools 2–71

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDM$MAILBOX_CHANNEL
Not applicable on Digital UNIX

Contains the node-specific address of the
database monitor mailbox. This address is
used by processes to communicate with the
appropriate database monitor.

RDM$MONITOR
RDB_MONITOR

Defines the device and directory where the
Oracle Rdb monitor log file is to reside.
The logical value should not include a file
name specification. The directory location
defined by the value of the logical name or
configuration parameter is tested and used
only by the RMONSTART.COM command
file.

RDM$MON_USERNAME
Not applicable on Digital UNIX

Designates the name of the user whose
quotas the monitor process, upon startup,
is to inherit. This logical name helps you
avoid exceeded quota errors that can occur at
startup time if global buffers are enabled.

RDMS$AUTO_READY
RDB_AUTO_READY

Allows a process requesting a logical area
lock in CR mode to obtain the lock in CU
mode if the process already holds a carry-
over lock in CU mode for the logical area.

RDMS$BIND_OUTLINE_FLAGS
RDB_BIND_OUTLINE_FLAGS

Causes Oracle Rdb to ignore query outlines.

RDMS$BIND_OUTLINE_MODE
RDB_BIND_OUTLINE_MODE

When multiple outlines exist for a query, this
logical name is used to select the outline to
use.

RDMS$BIND_PRESTART_TXN
RDB_BIND_PRESTART_TXN

Allows you to establish the default setting
for prestarted transactions outside of an
application.

RDMS$BIND_QG_CPU_TIMEOUT
RDB_BIND_QG_CPU_TIMEOUT

Restricts the amount of CPU time used to
optimize a query for execution. If a user
enters a query and the elapsed CPU time
specified by this value is exceeded, the user
receives an error message and the query is
aborted.

(continued on next page)

2–72 Database Performance Analysis Tools

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDMS$BIND_QG_REC_LIMIT
RDB_BIND_QG_REC_LIMIT

Establishes a process or system limit on the
number of rows a query returns. If a user
enters a query and the returned rows exceed
the limit set by this value, the user receives
an error message and the query is aborted.

RDMS$BIND_QG_TIMEOUT
RDB_BIND_QG_TIMEOUT

Establishes a system limit on the amount of
time the optimizer spends compiling a query.
If a user enters a query and the elapsed time
specified by this value is exceeded, the user
receives an error message and the query is
aborted.

RDMS$BIND_SEGMENTED_STRING_
BUFFER
RDB_BIND_SEGMENTED_STRING_
BUFFER

Allows you to reduce the overhead of I/O
operations when you manipulate segmented
strings.

RDMS$BIND_SEGMENTED_STRING_
COUNT
RDB_BIND_SEGMENTED_STRING_
COUNT

Specifies the allocation size, expressed as the
number of entries, in the segmented string
ID list; the ID list is used to materialize
and manipulate segmented strings for a
table row. Defining this logical name or
configuration parameter can help to avoid a
problem in which an import operation fails
and the process loops.

RDMS$BIND_SEGMENTED_STRING_
DBKEY_SCOPE
RDB_BIND_SEGMENTED_STRING_
DBKEY_SCOPE

Used to indicate whether the dbkey of a
modified segmented string may be reused by
the process.

RDMS$BIND_SORT_WORKFILES
RDB_BIND_SORT_WORKFILES

Specifies how many work files SORT is to use
if work files are required.

RDMS$BIND_VALIDATE_CHANGE_
FIELD
RDB_BIND_VALIDATE_CHANGE_
FIELD

Causes the SQL ALTER DOMAIN statement
to validate data records and convert them to
the new metadata definitions.

RDMS$BIND_WORK_FILE
RDB_BIND_WORK_FILE

Allows you to reduce the overhead of disk
I/O for matching operations when used in
conjunction with RDMS$BIND_WORK_VM
or RDB_BIND_WORK_VM.

(continued on next page)

Database Performance Analysis Tools 2–73

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDMS$BIND_WORK_VM
RDB_BIND_WORK_VM

Allows you to reduce the overhead of disk I/O
for matching operations that use temporary
tables by letting you specify the amount of
virtual memory (VM) that will be allocated to
your process for use in matching operations.

RDMS$DEBUG_FLAGS
RDB_DEBUG_FLAGS

Allows you to examine database access
strategies and the estimated cost of those
strategies when your program is run.

RDMS$DEBUG_FLAGS_OUTPUT
RDB_DEBUG_FLAGS_OUTPUT

Allows you to name an output file in which
to collect the output from RDMS$DEBUG_
FLAGS or RDB_DEBUG_FLAGS when you
run your program.

RDMS$DIAG_FLAGS
RDB_DIAG_FLAGS

Can be used to provide assistance in locating
erroneous queries.

RDMS$KEEP_PREP_FILES
Not applicable on Digital UNIX

Causes the RDBPRE preprocessor to retain
the intermediate macro (.mar) and language
files. By default, these files are deleted when
the preprocessor completes the processing of
your source file.

RDMS$RUJ
RDB_RUJ

Can be used to locate the .ruj file on a
different disk and directory from the location
of the .rdb file to reduce contention on the
disk and directory used for the database.

RDMS$USE_OLD_CONCURRENCY
RDB_USE_OLD_CONCURRENCY

Allows applications to use the isolation level
behavior that was in effect for Oracle Rdb
V4.1.

RDMS$USE_OLD_COST_MODEL
RDB_USE_OLD_COST_MODEL

Causes the optimizer to not use workload or
storage statistics.

RDMS$USE_OLD_COUNT_RELATION
RDB_USE_OLD_COUNT_RELATION

Allows you to disable CREATE INDEX
optimization for empty tables.

RDMS$USE_OLD_SEGMENTED_
STRING
RDB_USE_OLD_SEGMENTED_
STRING

Retains the old format (chained) segmented
strings as the default. Mixing of old and new
format segmented strings is supported.

(continued on next page)

2–74 Database Performance Analysis Tools

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

RDMS$USE_OLD_UPDATE_RULES
RDB_USE_OLD_UPDATE_RULES

Enforces old update rules for applications
that use RDO. Oracle Rdb versions prior to
Version 4.1 do not allow you to modify or
erase records in a relation if the relation is
joined with other relations. Use this logical
name to preserve the RDO update behavior
of Oracle Rdb versions prior to Version 4.1
until you can modify your applications.

RDMS$VALIDATE_ROUTINE
RDB_VALIDATE_ROUTINE

Marks an invalid routine as valid.
When a process assigns a value of 1 to
RDMS$VALIDATE_ROUTINE or RDB_
VALIDATE_ROUTINE, Oracle Rdb marks
each invalid routine as valid when the
process calls the procedure within a
read/write transaction.

RDO$EDIT
Not applicable on Digital UNIX

Indicates the system editor to be used to edit
interactive RDO queries.

RDOINI
Not applicable on Digital UNIX

Specifies the name of the file that contains
the RDO initialization information. If the
logical name exists, and the indicated file
exists, RDO executes the commands in this
file first, before displaying the RDO prompt
and accepting input commands.

RMU$EDIT
Not applicable on Digital UNIX

Indicates the system editor to be used to
edit the Notepad in the Performance Monitor
tools facility. The valid values are EDT, LSE,
and TPU. The default editor is EDT.

SQL$DATABASE
SQL_DATABASE

Specifies the database that SQL declares if
you do not explicitly declare a database.

SQL$DISABLE_CONTEXT
Not applicable on Digital UNIX

Disables the two-phase commit protocol.
This is useful for turning off distributed
transactions when you want to run batch-
update transactions.

SQL$EDIT
Not applicable on Digital UNIX

Indicates the system editor to be used to edit
interactive SQL queries.

(continued on next page)

Database Performance Analysis Tools 2–75

Table 2–6 (Cont.) Summary of Oracle Rdb Logical Names and Configuration
Parameters

Logical Name
Configuration Parameter Function

SQLINI
Not applicable on Digital UNIX

Specifies the name of the file that contains
the SQL initialization information. If the
logical name exists, and the indicated file
exists, SQL executes the commands in this
file first, before displaying the SQL prompt
and accepting input commands.

SQL$KEEP_PREP_FILES
SQL_KEEP_PREP_FILES

Causes the SQL precompiler or SQL module
language compiler to retain the intermediate
macro (.mar) and language files. By default,
these files are deleted when the precompiler
completes the processing of your source file.

2.3.1 Performance Monitor Defined Logicals Screen in the Character-Cell
Interface

OpenVMS
VAX

OpenVMS
Alpha

The Defined Logicals screen shows all the logical names currently accessible
to the Performance Monitor, the name of the table in which they were defined,
and the associated logical definition.

You access the Defined Logicals screen by selecting the Process Information
option from the main menu, then selecting the Defined Logicals option from
the submenu.

The displayed logical names are listed in suffix alphabetical order for quick
review. That is, the logical names are sorted after removing the facility name
(such as RDMS$, RDM$, SQL$). This method of sorting is very useful, because
in most cases the facility name prefix is not known.

The Defined Logicals screen has two modes: brief or full. The brief display
mode is the default. You select brief mode by typing B (displayed as Brief on
the horizontal menu). When the Defined Logicals screen is in brief mode, only
those logical names actually defined and accessible appear. The displayed table
name is the actual table where the logical name resides, and the definition
is the logical name’s defined value. The screen is dynamically updated as
new logical names are defined on the system. The following shows a Defined
Logicals screen in brief mode:

2–76 Database Performance Analysis Tools

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 17-MAY-1996 14:46:12
Rate: 3.00 Seconds Defined Logicals Elapsed: 05:47:55.00
Page: 1 of 3 SQL_DISK1:[USER]MF_PERSONNEL.RDB;1 Mode: Online
--
Logical.Name................. Table.Name......... Logical.Definition..........
SQL$DATABASE LNM$PROCESS_TABLE SQL_PERSONNEL
RDM$MAILBOX_CHANNEL LNM$SYSTEM_TABLE MBA64:
RDM$MONITOR LNM$SYSTEM_TABLE SYS$SYSROOT:[SYSEXE]

Exit Full Help Menu >next_page <prev_page Set_rate Write !

You select full mode by typing F (displayed as Full on the horizontal menu).
When the Defined Logicals screen is in full mode, all known logical names
are displayed, whether the logical name is defined or not. If the displayed
logical name is defined, the table name and logical value are displayed as if
the display were in brief mode. If the logical name is not defined, the table
name contains the name of the table where the logical name should reside;
no definition is displayed. The full mode is useful for checking the spelling of
logical names and ensuring the logical name is defined in the proper table. The
following shows a Defined Logicals screen in full mode:

Database Performance Analysis Tools 2–77

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 17-MAY-1996 14:48:03
Rate: 3.00 Seconds Defined Logicals Elapsed: 05:50:17.67
Page: 1 of 5 SQL_DISK1:[USER]MF_PERSONNEL.RDB;1 Mode: Online
--
Logical.Name................. Table.Name......... Logical.Definition..........
RDMS$AUTO_READY LNM$FILE_DEV
RDM$BIND_ABS_QUIET_POINT LNM$FILE_DEV
RDM$BIND_ABW_ENABLED LNM$FILE_DEV
RDM$BIND_AIJ_IO_MAX LNM$FILE_DEV
RDM$BIND_AIJ_STALL LNM$FILE_DEV
RDM$BIND_APF_DEPTH LNM$FILE_DEV
RDM$BIND_APF_ENABLED LNM$FILE_DEV
RDM$BIND_BATCH_MAX LNM$FILE_DEV
RDM$BIND_BUFFERS LNM$FILE_DEV
RDM$BIND_CKPT_TRANS_INTERVAL LNM$FILE_DEV
RDM$BIND_CLEAN_BUF_CNT LNM$FILE_DEV
RDM$BIND_COMMIT_STALL LNM$FILE_DEV
RDM$BIND_DAPF_DEPTH_BUF_CNT LNM$FILE_DEV
RDM$BIND_DAPF_ENABLED LNM$FILE_DEV
RDM$BIND_DAPF_START_BUF_CNT LNM$FILE_DEV
RDMS$BIND_EXEC_STACK_SIZE LNM$FILE_DEV
RDMS$BIND_EXT_FILE_NAME_ONLY LNM$FILE_DEV
--
Brief Exit Help Menu >next_page <prev_page Set_rate Write !

The Defined Logicals screen shows the list of all logical names currently
accessible to the Performance Monitor; the screen is unable to show logical
names defined in another process’ tables.

The Defined Logicals screen shows the values of logical names; it does not
allow you to modify their definitions.

The output from the Defined Logicals screen is not written to the output file;
therefore, the output cannot be replayed using an input file.

Due to screen width limitations, only the first 28 characters of the logical name
are displayed.

If you are using a multiversion product, the logical names displayed do not
contain the numerical suffix. For example, if the multiversion variant of Oracle
Rdb Version 6.1 is used, the 61 suffix does not appear for any of the logical
names in the Defined Logicals screen. ♦

2.4 Oracle Trace for OpenVMS
OpenVMS
VAX

OpenVMS
Alpha

Oracle Trace is a product that collects, reports, and displays event-based data
gathered from Oracle Rdb. If Oracle Trace is installed on your system, you can
use it to collect detailed information about Oracle Rdb and applications that
have been instrumented for Oracle Trace.

2–78 Database Performance Analysis Tools

Oracle Rdb has been instrumented to log Oracle Trace data. Instrumenting
is the process of adding Oracle Trace system service routine calls to application
code. These Oracle Trace system service routines are placed so that they collect
data for Oracle Rdb events as they execute.

Section 2.4.1 explains how Oracle Rdb is instrumented for Oracle Trace.
Section 2.4.2 provides an overview of how to create a selection, how to
schedule a collection, how to generate a report, and how to display event data
interactively. This Oracle Trace information should be used with the Oracle
Trace documentation.

2.4.1 Oracle Rdb Instrumentation
Oracle Trace collects data for two kinds of events: point events such as
REQUEST_BLR events, and duration events such as TRANSACTION events.

Specific kinds of information (referred to by Oracle Trace as items) are
associated with each event. Oracle Trace can potentially collect many kinds of
items for each event.

Table 2–7 describes the Oracle Rdb events instrumented for Oracle Trace.

Table 2–7 Oracle Rdb Events

Event Description Type of Event

DATABASE Records each attach to a database. Point

REQUEST_ACTUAL Records the execution of a single instance of
a user’s request.

Duration

REQUEST_BLR Records the binary language representation
(BLR) for each request each time the request
is executed.

Point

TRANSACTION Records the start and end of a transaction in
the database.

Duration

Each item described in this chapter is from either the set of standard Oracle
Trace resource utilization items or from the set of items specific for Oracle
Rdb. Table 2–8 lists the standard resource utilization items that Oracle Trace
collects by default. The items listed in Table 2–8 are also referred to as the
RESOURCE_ITEMS group. To help you collect only the information you are
interested in, Oracle Trace organizes data items into groups, such as the
following:

• RESOURCE_ITEMS

See Table 2–8 for more information on the RESOURCE_ITEMS group.

Database Performance Analysis Tools 2–79

• AREA_ITEMS

See Table 2–10 for more information on the AREA_ITEMS group.

• DATABASE_ITEMS

See Table 2–11 for more information on the DATABASE_ITEMS group.

• RDB_CROSS_FAC

See Table 2–12 for more information on the RDB_CROSS_FAC group.

Table 2–8 Resource Utilization Items

Item Description Data Type Usage

BIO Number of buffered I/O operations Longword Counter

CPU Total amount of CPU time Longword Counter

CURRENT_PRIO Current priority of the process Word Level

DIO Number of direct I/O operations Longword Counter

PAGEFAULT_IO Number of hard page faults (that is, page
faults to or from the disk)

Longword Counter

PAGEFAULTS Total number of hard and soft page faults Longword Counter

VIRTUAL_SIZE Number of virtual pages currently mapped
for the process

Longword Level

WS_GLOBAL Number of pages in the working set that
are globally shared among processes on the
system

Longword Level

WS_PRIVATE Number of pages in the working set that are
private to the process

Longword Level

WS_SIZE Current working set size of the process Longword Level

Table 2–9 describes the items that are specific to Oracle Rdb.

2–80 Database Performance Analysis Tools

Table 2–9 Oracle Rdb Data Items

Item Description
Data
Type Usage

AIJ_WRITES Number of write-QIOs issued to the
database after-image journal (.aij) file. If
after-image journaling is not enabled for
the database, this statistic will be zero.
This operation writes after-image records
to the .aij file to facilitate roll-forward
recovery (RMU Recover).

Longword Counter

BLR Binary language representation of the
query being executed.

ASCII Text
Nonprintable

BUFFER_READS Number of logical page requests for data
(or snapshot) pages. These requests are
calls to the PIO subsystem of Oracle Rdb.
The page requests do not necessarily
result in a physical read or write,
because the requested page is often
still cached in the database page buffer
pool.

Longword Counter

CLIENT_PC Value of the program counter (PC) of
the application program when a call was
made to Oracle Trace.

Longword Level

COMP_STATUS OpenVMS completion status. Longword Level

CROSS_FAC_2 The server index value, which uniquely
describes which ACMS procedure server
generated the transaction.

Longword Index

CROSS_FAC_3 Value that uniquely describes the form
or report that generated the transaction.
Used by any 4GL that does not call the
internal Oracle Rdb interface.

Longword Index

CROSS_FAC_7 The procedure index value, which
uniquely describes which ACMS
procedure generated the transaction.

Longword Index

CROSS_FAC_14 Can be used by any application to
uniquely describe its event that
generated the transaction.

Longword Index

DB_NAME Name of the database. ASCII Text

(continued on next page)

Database Performance Analysis Tools 2–81

Table 2–9 (Cont.) Oracle Rdb Data Items

Item Description
Data
Type Usage

DBS_READS Number of read-QIOs issued to the
database storage area and snapshot files.
This operation reads database pages
from the database.

Longword Counter

DBS_WRITES Number of write-QIOs issued to the
database storage area and snapshot files.
This operation writes modified database
pages back to the database.

Longword Counter

D_FETCH_RET The number of synchronous data page
requests where read privileges are
requested for the data page.

Longword Counter

D_FETCH_UPD The number of synchronous data page
requests where update as well as read
privileges are requested for the data
page.

Longword Counter

D_LB_ALLOK The number of times the requested data
page was found in the user’s local buffer
pool and the user already had the needed
locks on the page.

Longword Counter

D_LB_GBNEEDLOCK The number of times the requested data
page was found in the user’s allocate
set and the user held sufficient locks
to satisfy the request. But because of
global buffers, additional locking was
needed to verify the version was correct.
The version was correct, so the extra
locking overhead was solely because
global buffers were used.

Longword Counter

D_LB_NEEDLOCK The number of times the requested data
page was found in the user’s local buffer
pool, but additional locking was required
to lock the page in the needed mode.

Longword Counter

(continued on next page)

2–82 Database Performance Analysis Tools

Table 2–9 (Cont.) Oracle Rdb Data Items

Item Description
Data
Type Usage

D_LB_OLDVER The number of times the requested data
page was found in the user’s local buffer
pool, but it was an obsolete version of the
page (because the page was changed by
another user since it was read into the
user’s local buffer), which required the
page to be read again from disk.

Longword Counter

D_GB_NEEDLOCK The number of times the correct version
of the requested data page was found
in the user’s allocate set but additional
locking was required to lock the page in
the needed mode.

Longword Counter

D_GB_OLDVER The number of times the requested data
page was found in the user’s allocate set,
but it was an obsolete version of the page
(that is, the page has been changed by
another user since it was read into the
requestor’s allocate set), which required
the page to be read again from disk.

Longword Counter

D_NOTFOUND_IO The number of times the requested data
page was not found in the buffer pool
and had to be read in from disk.

Longword Counter

D_NOTFOUND_SYN The number of times the requested data
page was not found in the buffer pool
but could be synthesized into the pool
without being read from disk.

Longword Counter

FREE_VM_BYTES Number of virtual memory bytes
returned by Oracle Rdb to the process-
local virtual memory pool. The difference
between total GET_VM_BYTES and
FREE_VM_BYTES indicates the amount
of virtual memory still in use.

Longword Counter

GET_VM_BYTES Number of virtual memory bytes
requested by Oracle Rdb from the
process-local virtual memory pool. The
difference between total GET_VM_
BYTES and FREE_VM_BYTES indicates
the amount of virtual memory still in
use.

Longword Counter

(continued on next page)

Database Performance Analysis Tools 2–83

Table 2–9 (Cont.) Oracle Rdb Data Items

Item Description
Data
Type Usage

GLOBAL_TID Transaction identifier used in distributed
transactions.

ASCII Private
Nonprintable

IMAGE_NAME Name of the node and image making
dispatch calls.

ASCII Text

IO_EXT_BLKCNT Number of storage area block extends. Longword Counter

IO_EXTEND_CNT Number of storage area extends. Longword Counter

IO_EXTEND_STALL Number of storage area extend stalls. Longword Counter

IO_READ_BLKCNT Number of storage area block reads. Longword Counter

IO_READ_CNT Number of storage area reads. Longword Counter

IO_READ_STALL Number of storage area read stalls. Longword Counter

IO_WRITE_BLKCNT Number of storage area block writes. Longword Counter

IO_WRITE_CNT Number of storage area writes. Longword Counter

IO_WRITE_STALL Number of storage area write stalls. Longword Counter

LOCK_MODE OpenVMS lock mode. Longword Level

LOCK_RELS Number of $DEQ lock requests to
release an existing lock. These requests
always succeed. The number of
outstanding locks can be determined
by subtracting REQ_NOT_QUEUED,
REQ_DEADLOCKS, and LOCK_RELS
from LOCK_REQS.

Longword Counter

LOCK_REQS Number of $ENQ lock requests for new
locks. A request is included in this count
regardless of whether or not it succeeds.

Longword Counter

LOCK_STALL_TIME Total time (in hundredths of a second)
spent by all users waiting for locks
within the scope of a transaction. This
statistic gives a relative measure of work
lost due to lock conflicts.

Longword Counter

(continued on next page)

2–84 Database Performance Analysis Tools

Table 2–9 (Cont.) Oracle Rdb Data Items

Item Description
Data
Type Usage

PROM_DEADLOCKS Number of stalled $ENQ lock requests
to promote an existing lock to a higher
lock mode that ultimately resulted in a
deadlock. Most deadlocks are resolved
and retried by Oracle Rdb transparently
to the application program. Therefore,
this number does not necessarily reflect
the number of deadlocks reported to the
application program.

Longword Counter

REQ_DEADLOCKS Number of stalled $ENQ lock requests
that ultimately resulted in a deadlock.
Most deadlocks are resolved and retried
by Oracle Rdb transparently to the
application program. Therefore, this
number does not necessarily reflect the
number of deadlocks reported to the
application program.

Longword Counter

REQ_ID Unique identification of a request to a
database.

Longword Level

REQ_NOT_
QUEUED

Number of $ENQ lock requests for new
locks that were rejected immediately
because of a lock conflict. Oracle Rdb
often requests a lock without waiting,
and when a conflict is detected, resorts
to a secondary locking protocol to avoid
unnecessary deadlocks. This number is
one measure of lock contention.

Longword Counter

REQ_STALLS Number of $ENQ lock requests for new
locks that were stalled because of a lock
conflict. A request is included in this
count regardless of whether or not it
succeeds. This number is one measure of
lock contention.

Longword Counter

REQUEST_COUNT Number of times a request executes
within a transaction.

Longword Level

(continued on next page)

Database Performance Analysis Tools 2–85

Table 2–9 (Cont.) Oracle Rdb Data Items

Item Description
Data
Type Usage

ROOT_READS Number of read-QIOs issued to the
database root (.rdb) file. Oracle Rdb
reads the root file when a new user
attaches to the database and when a root
file control block needs to be refreshed
because of database activity on another
VMScluster node.

Longword Counter

ROOT_WRITES Number of write-QIOs issued to the
database root (.rdb) file. Oracle Rdb
writes the root file when a user issues
a COMMIT or ROLLBACK statement.
Other events may also cause the root file
to be updated.

Longword Counter

RUJ_READS Number of read-QIOs issued to the
database recovery unit journal (.ruj)
files. This operation reads before-image
records from the .ruj files to roll back a
verb or a transaction.

Longword Counter

RUJ_WRITES Number of write-QIOs issued to the
database recovery unit journal (.ruj)
files. This operation writes before-image
records to the .ruj files in case a verb or
transaction must be rolled back. Before-
images must be written to the .ruj files
before the corresponding database page
can be written back to the database.

Longword Counter

STREAM_ID Identification of a unique attach to a
database. It identifies a database user
from the database’s point of view.

Longword Level

S_FETCH_RET The number of synchronous SPAM
page requests where read privileges
are requested for the SPAM page.

Longword Counter

S_FETCH_UPD The number of synchronous SPAM page
requests where update as well as read
privileges are requested for the SPAM
page.

Longword Counter

(continued on next page)

2–86 Database Performance Analysis Tools

Table 2–9 (Cont.) Oracle Rdb Data Items

Item Description
Data
Type Usage

S_LB_ALLOK The number of times the requested
SPAM page was found in the user’s local
buffer pool and the user already had the
needed locks on the page.

Longword Counter

S_LB_GBNEEDLOCK The number of times the requested
SPAM page was found in the user’s
allocate set and the user held sufficient
locks to satisfy the request. But because
of global buffers, additional locking was
needed to verify the version was correct.
The version was correct, so the extra
locking overhead was solely because
global buffers were used.

Longword Counter

S_LB_NEEDLOCK The number of times the requested
SPAM page was found in the user’s local
buffer pool, but additional locking was
required to lock the page in the needed
mode.

Longword Counter

S_LB_OLDVER The number of times the requested
SPAM page was found in the user’s
local buffer pool, but it was an obsolete
version of the page (because the page
was changed by another user since it was
read into the user’s local buffer), which
required the page to be read again from
disk.

Longword Counter

S_GB_NEEDLOCK The number of times the correct version
of the requested SPAM page was found
in the user’s allocate set but additional
locking was required to lock the page in
the needed mode.

Longword Counter

S_GB_OLDVER The number of times the requested
SPAM page was found in the user’s
allocate set, but it was an obsolete
version of the page (that is, the page had
been changed by another user since it
was read into the requestor’s allocate
set), which required the page to be read
again from disk.

Longword Counter

(continued on next page)

Database Performance Analysis Tools 2–87

Table 2–9 (Cont.) Oracle Rdb Data Items

Item Description
Data
Type Usage

S_NOTFOUND_IO The number of times the requested
SPAM page was not found in the buffer
pool and had to be read in from disk.

Longword Counter

S_NOTFOUND_SYN The number of times the requested
page was not found in the buffer pool
but could be synthesized into the pool
without being read from disk.

Longword Counter

TRANS_ID Unique identification number associated
with a transaction.

ASCII Private
Nonprintable

The AREA_ITEMS group is specific to Oracle Rdb. Table 2–10 shows the items
associated with the AREA_ITEMS group. There is one set of nine area items
for each storage area in a database. Thus, if your database has 10 storage
areas, it will have 90 area items.

Table 2–10 Items Associated with the AREA_ITEMS Group

IO_EXT_BLKCNT IO_EXTEND_CNT IO_EXTEND_STALL

IO_READ_BLKCNT IO_READ_CNT IO_READ_STALL

IO_WRITE_BLKCNT IO_WRITE_CNT IO_WRITE_STALL

The DATABASE_ITEMS group is specific to Oracle Rdb. Table 2–11 shows the
items associated with the DATABASE_ITEMS group.

2–88 Database Performance Analysis Tools

Table 2–11 Items Associated with the DATABASE_ITEMS Group

AIJ_WRITES BUFFER_READS DBS_READS

DBS_WRITES D_FETCH_RET D_FETCH_UPD

D_LB_ALLOK D_LB_GBNEEDLOCK D_LB_NEEDLOCK

D_LB_OLDVER D_GB_NEEDLOCK D_GB_OLDVER

D_NOTFOUND_IO D_NOTFOUND_SYN S_FETCH_RET

S_FETCH_UPD S_LB_ALLOK S_LB_GBNEEDLOCK

S_LB_NEEDLOCK S_LB_OLDVER S_GB_NEEDLOCK

S_GB_OLDVER S_NOTFOUND_IO S_NOTFOUND_SYN

FREE_VM_BYTES GET_VM_BYTES LOCK_RELS

LOCK_REQS LOCK_STALL_TIME PROM_DEADLOCKS

REQ_DEADLOCKS REQ_NOT_QUEUED REQ_STALLS

ROOT_READS ROOT_WRITES RUJ_READS

RUJ_WRITES

Oracle Trace lets you relate events among facilities. Programmers often relate
events among two or more facilities to gain an understanding of the full context
in which the events occurred. Programmers relate events among applications
in two ways. The most common way is to explicitly pass data items between
applications through an application programming interface (API). However,
sometimes facilities cannot change the existing API, or cannot pass data items
through it, as with SQL. To accommodate these applications, Oracle Trace
provides the cross-facility feature. Programmers can relate events among
facilities using the cross-facility feature and the cross-facility items specific to
Oracle Rdb that appear in Table 2–12.

Table 2–12 Items Associated with the RDB_CROSS_FAC Group

CROSS_FAC_2 CROSS_FAC_3 CROSS_FAC_7

CROSS_FAC_14

Table 2–13 through Table 2–17 list the item for each event in the collection
classes. Table 2–18 through Table 2–21 show the available events for each
collection class.

Database Performance Analysis Tools 2–89

Table 2–13 lists the items associated with the DATABASE event.

Table 2–13 Items Associated with the DATABASE Event

CLIENT_PC DB_NAME IMAGE_FILE_NAME

STREAM_ID

Table 2–14 lists the items associated with the REQUEST_ACTUAL event.

Table 2–14 Items Associated with the REQUEST_ACTUAL Event

CLIENT_PC COMP_STATUS DATABASE_ITEMS1

REQUEST_OPER REQ_ID RESOURCE_ITEMS2

STREAM_ID TRANS_ID

1See Table 2–11 for a list of items in the DATABASE_ITEMS group.
2See Table 2–8 for a list of items in the RESOURCE_ITEMS group.

Table 2–15 lists the items associated with the REQUEST_BLR event.

Table 2–15 Items Associated with the REQUEST_BLR Event

BLR CLIENT_PC REQ_ID

STREAM_ID TRANS_ID

Oracle Trace groups items and events into classes so that you can limit your
collections to the information that you need. This chapter describes the
following classes:

• PERFORMANCE

Table 2–18 provides more information on the PERFORMANCE class.

• PERFORMANCE_NO_CF

Table 2–19 provides more information on the PERFORMANCE_NO_CF
class.

• RDBEXPERT

Table 2–20 provides more information on the RDBEXPERT class.

• RDBEXPERT_NO_CF

Table 2–21 provides more information on the RDBEXPERT_NO_CF class.

2–90 Database Performance Analysis Tools

Table 2–16 lists the items associated with the TRANSACTION event in the
PERFORMANCE and RDBEXPERT classes.

Table 2–16 Items Associated with the TRANSACTION Event in the
PERFORMANCE and RDBEXPERT Classes

AREA_ITEMS1 CLIENT_PC DATABASE_ITEMS2

GLOBAL_TID LOCK_MODE RDB_CROSS_FAC3

RESOURCE_ITEMS4 STREAM_ID TRANS_ID

1See Table 2–10 for a list of items in the AREA_ITEMS group.
2See Table 2–11 for a list of items in the DATABASE_ITEMS group.
3See Table 2–12 for a list of items in the RDB_CROSS_FAC group.
4See Table 2–8 for a list of items in the RESOURCE_ITEMS group.

Table 2–17 lists the items associated with the TRANSACTION event in the
PERFORMANCE_NO_CF and RDBEXPERT_NO_CF classes.

Table 2–17 Items Associated with the TRANSACTION Event in the
PERFORMANCE_NO_CF and RDBEXPERT_NO_CF Classes

CLIENT_PC DATABASE_ITEMS1 GLOBAL_TID

LOCK_MODE RESOURCE_ITEMS2 STREAM_ID

TRANS_ID

1See Table 2–11 for a list of items in the DATABASE_ITEMS group.
2See Table 2–8 for a list of items in the RESOURCE_ITEMS group.

Table 2–18 lists the events and items that make up the PERFORMANCE
collection class. These events and items have been selected for their
importance in understanding the performance characteristics of Oracle Rdb
applications. The PERFORMANCE class is the default collection class for
Oracle Rdb.

Database Performance Analysis Tools 2–91

Table 2–18 Events and Items Available in the PERFORMANCE Class for
Oracle Rdb

Event Event Type Items

DATABASE Point See Table 2–13.

REQUEST_ACTUAL Duration See Table 2–14.

TRANSACTION Duration See Table 2–16.

Table 2–19 lists the events and items that make up the PERFORMANCE_
NO_CF collection class. The PERFORMANCE_NO_CF collection class is used
when you are not interested in cross-referencing client data and Oracle Rdb
data.

Table 2–19 Events and Items Available in the PERFORMANCE_NO_CF Class
for Oracle Rdb

Event Event Type Items

DATABASE Point See Table 2–13.

REQUEST_ACTUAL Duration See Table 2–14.

TRANSACTION Duration See Table 2–17.

Table 2–20 lists the events and items that make up the RDBEXPERT collection
class. These events and items have been selected for their importance in
understanding the workload characteristics of Oracle Rdb applications.

Table 2–20 Events and Items Available in the RDBEXPERT Class for Oracle
Rdb

Event Event Type Items

DATABASE Point See Table 2–13.

REQUEST_ACTUAL Duration See Table 2–14.

TRANSACTION Duration See Table 2–16.

REQUEST_BLR Point See Table 2–15.

Table 2–21 lists the events and items that make up the RDBEXPERT_NO_CF
collection class. The RDBEXPERT_NO_CF collection class is used when you
are not interested in cross-referencing client data and Oracle Rdb data.

2–92 Database Performance Analysis Tools

Table 2–21 Events and Items Available in the RDBEXPERT_NO_CF Class for
Oracle Rdb

Event Event Type Items

DATABASE Point See Table 2–13.

REQUEST_ACTUAL Duration See Table 2–14.

TRANSACTION Duration See Table 2–17.

REQUEST_BLR Point See Table 2–15.

By default, Oracle Trace can collect data from the full set of events and items
defined for a facility. Another collection class available for Oracle Rdb is the
ALL collection class. For the current release of Oracle Rdb, the ALL class
contains the same events and items as the RDBEXPERT class. However, while
events or items added in future releases will, by definition, be added to the
ALL class, they may not be included in the RDBEXPERT class.

2.4.2 Overview of Using Oracle Trace
You can use Oracle Trace to do the following:

• Create a selection

• Start a collection

• Stop a collection

• Display event data

• Format and obtain reports on event data

Section 2.4.2.1 through Section 2.5.3 of this manual and the Oracle Trace
documentation provide more information on using Oracle Trace for these tasks.

2.4.2.1 Creating a Selection
This section provides an overview of creating a selection. A complete
description of creating a selection can be found in the Oracle Trace
documentation.

The Oracle Rdb instrumentation is very general and can provide data for a
variety of uses, such as performance tuning, input to Oracle Expert for Rdb,
and resource usage evaluation. You can tailor Oracle Trace collections for your
specific needs by using a facility selection to limit your collection to Oracle Rdb
and to the specific Oracle Rdb events and items that interest you. If you do not
use a facility selection, Oracle Trace will collect data for all the applications on
your system that are instrumented for Oracle Trace and all their associated
data items.

Database Performance Analysis Tools 2–93

Use the CREATE SELECTION command to create a facility selection that
consists of:

• Selection name

• List of facilities for which to collect data

• Class of data to collect for each facility

The following example defines the facility selection MY_SELECTION to collect
the default data for Oracle Rdb:

$ COLLECT CREATE SELECTION MY_SELECTION /FACILITY=RDBVMS

If more than one version of Oracle Rdb is available, by default Oracle Trace
uses the version of Oracle Rdb with the latest creation date.

2.4.2.2 Scheduling Data Collection
You must schedule data collection on your system by using the schedule
collection command before Oracle Trace can begin to collect information about
Oracle Rdb. The scheduling collection specifications include:

• Output file or files for the collected data

• Start and end times (or alternately, the duration)

• Facility selection to use

• Scope of the collection (the entire cluster or just the local node)

The following example schedules the collection MY_COLLECTION to begin at
11:00 A.M. and end at noon on the current day. The collection uses the facility
selection SELECT_ALL and runs on the local node. Oracle Trace stores the
collected data in the file MY_DATA.DAT in your default device and directory.

$ COLLECT SCHEDULE COLLECTION MY_COLLECTION MY_DATA.DAT -
_$ /SELECTION=SELECT_ALL -
_$ /BEGINNING=11:00 /ENDING=12:00 -
_$ /NOCLUSTER /COLLECTION_FILES=(PROTECTION=(W:RW))

%EPC-S-SCHED, Data collection MY_COLLECTION is scheduled

Alternately, you can use the Duration qualifier in place of the Ending qualifier.
You must specify the duration as a relative OpenVMS time. For example:

$ COLLECT SCHEDULE COLLECTION MY_COLLECTION MY_DATA.DAT -
_$ /SELECTION=MY_SELECTION -
_$ /BEGINNING=11:00 /DURATION="1:" -
_$ /NOCLUSTER /COLLECTION_FILES=(PROTECTION=(W:W))

%EPC-S-SCHED, Data collection MY_COLLECTION is scheduled

2–94 Database Performance Analysis Tools

You can schedule either local or clusterwide data collection if you use
the [NO]CLUSTER qualifier. By default, the SCHEDULE COLLECTION
command schedules data collection to occur on every node in the cluster. To
schedule data collection on a subset of the cluster, log in to each node that you
want data collection to occur on and schedule local data collection on that node
by specifying /NOCLUSTER. Note that on a standalone system the CLUSTER
qualifier is ignored.

You can further limit the collection of data by using the REGISTRATION_ID
qualifier of the Oracle Trace SCHEDULE COLLECTION command. See the
Oracle Trace documentation for more information.

2.4.2.3 Stopping a Collection
If you do not specify a beginning and ending time, you can stop a collection
with a command of the following format:

$ COLLECT CANCEL COLLECTION MY_COLLECTION /NOCONFIRM

You can also use this command to cancel a pending collection. ♦

2.5 Collecting Workload Information for Oracle Expert for Rdb
OpenVMS
VAX

OpenVMS
Alpha

You can use Oracle Trace to gather workload data from Oracle Rdb database
applications. This data can be imported into Oracle Expert for Rdb for use in
generating an optimized physical design for your database.

To collect the workload information, specify the RDBEXPERT or ALL classes
in your facility selection. It makes no difference in the Oracle Expert for Rdb
design process which collection class you use. The following example creates a
facility selection named RDBVMS_WORK to collect workload data from Oracle
Rdb:

$ COLLECT CREATE SELECTION RDBVMS_WORK/OPTIONS -
Option> FACILITY RDBVMS /CLASS=RDBEXPERT /VERSION="V7.0-0"
Option> Ctrl/z

Schedule a collection using the RDBVMS_WORK selection. You probably do
not want to gather data from every Oracle Rdb application on the system,
so use the REGISTRATION_ID qualifier to specify the image or images from
which you want to collect information. The following example schedules a
collection to gather data from the personnel application:

$ COLLECT SCHEDULE COLLECTION GET_WORKLOAD WORK.DAT -
_$ /SELECTION=RDBVMS_WORK -
_$ /BEGIN=09:00 /END=12:00 -
_$ /REGISTRATION_ID=(100DUA1:[TOOLS]PERSONNEL.EXE)

Database Performance Analysis Tools 2–95

After data collection has ended, format the data collection file or files into an
Oracle Rdb database. Oracle Expert for Rdb imports this database to use as a
workload design element. Note that Oracle Expert for Rdb cannot import the
workload information if you format your data collection files into an RMS file.
The following example formats the data in WORK.DAT into an Oracle Rdb
database named WORKLOAD_DATA.RDB:

$ COLLECT FORMAT WORK.DAT WORKLOAD_DATA

Use Oracle Expert for Rdb to import the workload data from the formatted
database. Specify the name of the database file created by the Oracle Trace
FORMAT command as the source of the workload to be imported.

See the Oracle Expert for Rdb documentation for more information.

2.5.1 Displaying Event-Data Interactively
You can use the Oracle Trace Monitor to display event-based data interactively
from an open or previously closed data collection file. The Monitor has a
Motif-based window interface that you can use to move from image-level to
event-level information.

Use a command of the following format to start the Monitor:

$ COLLECT MONITOR SAMPLE_DATA.DAT

If you want to display information from a previously closed data collection
file, you must use the REPLAY qualifier of the MONITOR command. Start
the Monitor and display data from a previously collected data collection file by
using a command similar to the following:

$ COLLECT MONITOR/REPLAY SAMPLE_DATA.DAT

You can stop the Monitor by selecting the EXIT option of the FILE menu at the
top of the Process window.

Note

Oracle Corporation recommends that you use the FLUSH_INTERVAL
qualifier on the SCHEDULE COLLECTION command when you plan
to use the Monitor to view event-based data. The FLUSH_INTERVAL
qualifier specifies in seconds how often Oracle Trace writes all process
buffers to the data collection file. The FLUSH_INTERVAL qualifier
ensures the accuracy of Monitor time and data displays. Oracle
Corporation recommends a flush interval of 1 or 2 seconds, as shown in
the following example:

2–96 Database Performance Analysis Tools

$ COLLECT SCHEDULE COLLECTION SAMPLE_COLLECTION SAMPLE_DATA.DAT-
_$ /SELECTION=SAMPLE_SELECTION -
_$ /DURATION=:30 -
_$ /FLUSH_INTERVAL=(00:00:02) -
_$ /NOCLUSTER /COLLECTION_FILES=(PROTECTION=(W:RW))

2.5.2 Creating a Report Based on Collected Data
You can use Oracle Trace to produce reports based on the data collected from
one or more Oracle Trace collections. To produce Oracle Trace reports:

1. Format and merge the data files.

2. Generate the report.

2.5.2.1 Formatting and Merging Data Files
Before Oracle Trace can generate a report on the collected data, you must use
the FORMAT command to format the data in the data files into an Oracle
Rdb database.1 To format the data in the file MY_DATA.DAT and store the
formatted data in an Oracle Rdb database named FORMATTED_DATA.RDB,
enter:

$ COLLECT FORMAT MY_DATA.DAT FORMATTED_DATA

You can also use the FORMAT command to combine the data files from two or
more collections into one formatted database. However, these collections must
have been scheduled using the same facility selection.

You can combine data files in two ways: format several data files at once into
the same Oracle Rdb database, or add a data file to an existing formatted
database. To combine the data collected from several collections into a new
formatted database named WEEK.RDB, enter:

$ COLLECT FORMAT MONDAY.DAT,TUESDAY.DAT,WEDNESDAY.DAT WEEK

To add the contents of the data file THURSDAY.DAT to the existing formatted
database WEEK.RDB, enter:

$ COLLECT FORMAT /MERGE THURSDAY.DAT WEEK

See the description of the FORMAT command in the Oracle Trace documen-
tation for a list of optimization parameters that improve the performance of
formatting operations.

1 An OpenVMS RMS formatted file is also available for users who plan to create their
own reports based on the data. See the Oracle Trace documentation for information.

Database Performance Analysis Tools 2–97

2.5.2.2 Generating a Report
Oracle Trace can generate tabular reports based on the data in an Oracle Rdb
formatted database. Table 2–22 lists the three different types of reports that
you can produce.

Table 2–22 Oracle Trace Reports

Type Description

Summary report Provides statistical evaluations of resource consumption
by event. This information is useful for performance
evaluation and capacity planning.

Detail report Provides values of items collected for each event. This
report is useful for debugging an application that you
are instrumenting.

Frequency report Provides a count of event occurrences for each interval
within a collection. This report is useful for tracing the
execution of an instrumented application.

In the simplest case, the REPORT command creates a Summary report on all
of the data in the formatted database and displays the report on your current
SYS$OUTPUT device (usually, your terminal). For example:

$ COLLECT REPORT FORMATTED_DATA.RDB

Note

Oracle Trace collects all occurrences of each event in your chosen
collection class. You cannot limit a collection to individual events. You
can, however, limit a report to specific events and items using the
EVENTS and ITEMS qualifiers. Oracle Corporation recommends that
you use these qualifiers when you generate Detail reports, which can
be very large unless you specify the events and items that interest you.

Use the STATISTICS qualifier to specify the statistics Oracle Trace uses in the
Summary report. This feature allows you to create customized reports. Valid
statistics are:

• ALL

• COUNT (default)

• MAXIMUM

2–98 Database Performance Analysis Tools

• MEAN

• MINIMUM

• STANDARD_DEVIATION

• TOTAL

• 95_PERCENTILE

The following example generates a Summary report based on the data collected
for Oracle Rdb using the MAXIMUM, MINIMUM, and MEAN options of the
STATISTICS qualifier:

$ COLLECT REPORT FORMATTED_DATA.RDB /FACILITY=RDBVMS -
_$ /TYPE=SUMMARY /STATISTICS=(MAXIMUM,MINIMUM,MEAN) -
_$ /OUTPUT=MY_SUMMARY.TXT

By default, Oracle Trace reports on the data collected for all the events
contained in the formatted database. You can use the EVENTS qualifier to
restrict the report to specific events. The following example generates a report
based on the data collected for a subset of the events in Oracle Rdb:

$ COLLECT REPORT FORMATTED_DATA.RDB /OUTPUT=MY_REPORT.TXT -
_$ /FACILITY=RDBVMS -
_$ /EVENTS=(DATABASE,TRANSACTION)

2.5.3 Creating a Customized Report
You can create customized reports that provide information on specific events
and items. The OPTIONS qualifier to the REPORT command allows you to
specify characteristics for individual events and items. Example 2–7 shows
the command to generate a report that uses a different report format for each
event.

Example 2–7 Using Reporting Options to Generate a Customized Report

COLLECT REPORT MY_DATABASE -
/SINCE = 1-JAN-1989 -
/WIDTH = 80 -
/TYPE = SUMMARY -
/LENGTH = 66 -
/OUTPUT = RDB.REPORT -
/STATISTICS = ALL -
/TITLE = "Rdb Reports" -
/OPTIONS

(continued on next page)

Database Performance Analysis Tools 2–99

Example 2–7 (Cont.) Using Reporting Options to Generate a Customized
Report

EVENT REQUEST_ACTUAL -
/FACILITY = RDBVMS -
/ITEMS = (CLIENT_PC, CPU) -
/GROUP_BY = (CLIENT_PC) -
/STATISTICS = (MINIMUM, MEAN) -
/SUBTITLE = "Rdb Request Actual Summary Report"

RESTRICTION STREAM_ID 1
EVENT TRANSACTION -

/FACILITY = RDBVMS -
/ITEMS = (CLIENT_PC, PAGEFAULTS, PAGEFAULT_IO) -
/TYPE = DETAIL -
/SUBTITLE = "Rdb Transaction Detail Report"

EVENT REQUEST_ACTUAL -
/FACILITY = RDBVMS -
/GROUP_BY = (CLIENT_PC) -
/TYPE = FREQUENCY -
/INTERVAL = SECONDS -
/SUBTITLE = "Rdb Request Actual Frequency Report"

RESTRICTION NODE RDB4ME, RDB4U
RESTRICTION COLLECTION RDB_COLL
RESTRICTION EPID 2A8002DF,2A8002C1
RESTRICTION IMAGE PAYROLL, INVENTORY

Data from the MY_DATABASE formatted database is used for this report.
The initial REPORT command modifies several of the default qualifier values,
such as the length of each page and the date before which all data should be
ignored. The OPTIONS qualifier allows you to specify event and item qualifiers
to either override the main qualifiers or provide additional restrictions to the
report.

Based on the first part of the REPORT command, all subreports, unless
otherwise specified, will contain data from the data collection file with a
timestamp date greater than or equal to January 1, 1989. The report is 80
columns wide, and each page is 66 lines long. The subreports are Summary
reports with all possible statistics displayed. The report is written to a file in
your current directory called RDB.REPORT.

The first subreport in Example 2–7 is based on the REQUEST_ACTUAL
event. The facility, a required qualifier, is RDBVMS. Of all the possible items,
only the CLIENT_PC and CPU are displayed. The report is grouped by the
CLIENT_PC item. This means that a subset of statistics is displayed for each
different CLIENT_PC value. The CLIENT_PC is the location in the image of
the actual Oracle Rdb query. Only minimum and mean statistical values are

2–100 Database Performance Analysis Tools

displayed for each item. A subtitle is added to the first page of the subreport.
The RESTRICTION option specifies that only events with a STREAM_ID item
value of 1 should be included.

The second subreport in Example 2–7 is based on the TRANSACTION event.
Again, the facility, RDBVMS, is a required qualifier. The report type is
overridden to provide a Detail report for this event. Only three items,
CLIENT_PC, PAGEFAULTS, and PAGEFAULT_IO, are displayed for the
event.

The third subreport in Example 2–7 is a Frequency report based on the
REQUEST_ACTUAL event. As in the first subreport, the data is grouped
by the CLIENT_PC item. The interval is broken down into seconds, so a
count is displayed for each second during which at least one event occurrence
was recorded. Several restrictions are specified for this report. Only data
collected by the RDB_COLL collection from nodes RDB4ME and RDB4U, from
processes 2A8002DF and 2A8002C1 that were running either the PAYROLL or
INVENTORY programs, is displayed.

2.5.4 Improving Report Performance
If there are many occurrences of data, and you have interactive SQL on your
system, you can improve report generation performance if you add an index to
the REQUEST_ACTUAL table. Because the report is restricted on STREAM_
ID, and grouped by CLIENT_PC, the index should be on the restricted items in
the order they are entered and then on the grouped items in the order they are
entered. The SQL syntax to do this is:

SQL> CREATE INDEX MY_INDEX ON
SQL> EPC$1_241_REQUEST_ACTUAL (STREAM_ID, CLIENT_PC);
SQL> COMMIT;

When you add an index it causes a delay in merging another data collection
file into this formatted database. The index will not help if you want to use
GROUP_BY with a different set of items. You can drop the index before you
merge the databases by entering the following statements:

SQL> DROP INDEX MY_INDEX;
SQL> COMMIT;

Refer to the Oracle Trace documentation for a layout of the formatted database.

If you have interactive SQL on your system, you can look in the EPC$IMAGE
table to see which images collected the data in the database. To do this enter
the following SQL query:

SQL> SELECT IMAGE NAME FROM EPC$IMAGE.

Database Performance Analysis Tools 2–101

See Appendix B in this manual and the Oracle Trace documentation for a
description of the formatted database. ♦

2–102 Database Performance Analysis Tools

3
Analyzing Performance Factors

After you put your database into production, you may find that users are
experiencing changes in the time it takes to complete a task. This may mean
your database is well-designed and is being used by many people; it may also
mean that the performance of your database is becoming a problem. This
chapter discusses the following performance factors:

• Design considerations

• Reducing disk I/O operations

• After-image journaling

• CPU utilization

• Database integrity considerations

• Constraint optimizations

• Locking

• Index retrieval

• Inserting records efficiently

Performance problems with a database are the result of many factors,
including the structure of your database and the programs that use it.
Database performance problems are often not apparent at first. Performance
often degrades with time and increased use. Performance problems can
also be the result of a poorly designed database, inefficient programming, or
improperly set Oracle Rdb or operating system parameters.

Analyzing Performance Factors 3–1

3.1 Database Design Considerations
To improve database performance, you should thoroughly understand your
data. Table 3–1 presents questions about data, facts derived from that data,
and parameters that affect the physical design of a database. The more
you know about your data, the more precisely you can estimate values for
these parameters and others described in this chapter. Formulating an
optimized set of estimates for these parameters enables Oracle Rdb to give
your application the best performance tuning gains possible, given the nature
of your application and your goals and objectives. In this way, trade-offs are
matched against what is important for your application to run successfully.

The first few questions in Table 3–1 relate to logical design. Your loaded data
model should be complete through third normal form showing the Entity-
Relationship (E-R) mappings, pathways for all important transactions, and
transaction volumes. See the Oracle Rdb7 Guide to Database Design and
Definition for more information on logical design. The remaining questions in
Table 3–1 relate to a subset of physical design parameters.

Table 3–1 How Well Do You Know Your Data?

Data Questions Data Facts

Database
Parameters
Affected

Is your E-R map complete? Entities and
relationships

Index definitions, storage
area definitions

Is your data organized to third
normal form?

Normalized data, row
size

Record definitions

Have you completed trans-
action analysis for all major
transactions?

Database usage—
read/update

Query optimization, space
allocation, locking

Have you completed volume
analysis?

Cardinality, growth Space allocation, extent
options

How many tables are there? Database complexity Query optimization

Will any tables be grouped
together?

Grouped tables Mixed page format, page
size, clustering, number of
buffers, buffer size

What is the row size of each
table?

Record size Space allocation, page size,
fragmentation

(continued on next page)

3–2 Analyzing Performance Factors

Table 3–1 (Cont.) How Well Do You Know Your Data?

Data Questions Data Facts

Database
Parameters
Affected

What is the rate of growth of
each table?

Growth Space allocation, page size,
extent options,
fragmentation

How are your keys defined for
each table?

Primary, foreign Index key size, index node
size, fill factor, B-tree level,
page size, I/O, locking

What is the size of each sorted
index key?

Index key size Index node size, fill factor,
B-tree level, page size, I/O,
locking

What is the number and size of
index records for sorted indexes?

Cardinality, record
size

Index key size, index node
size, fill factor, B-tree level,
page size, I/O, locking

What is the number and size
of index records for hashed
indexes?

Hash bucket Index key size, index node
size, page size, I/O

Which sorted indexes allow
duplicates?

Parent-child
relationships,
duplicates allowed

Page size, B-tree levels,
I/O, locking

Which hashed indexes allow
duplicates?

Parent-child
relationships,
duplicates allowed

Page size, duplicate node
records, I/O, buffer size,
number of buffers, buffer
size, SPAM thresholds and
intervals

How many duplicate sorted
index records are there?

Many duplicate
records

Potential for deep B-tree,
page size, I/O, locking

How many duplicate hashed
index records are there?

Many duplicate
records

Potential for more
duplicate node records,
page size, page overflow,
I/O

Which indexes are unique? Many unique indexes Potential for shallow B-tree
for sorted indexes, no
duplicate node records,
minimize I/O

What is the volume ratio of
readers to writers on a per
transaction basis?

50/50 Locking, snapshots,
enabled immediate/deferred

(continued on next page)

Analyzing Performance Factors 3–3

Table 3–1 (Cont.) How Well Do You Know Your Data?

Data Questions Data Facts

Database
Parameters
Affected

How many users will access the
database?

Multiuser Number of users, number
of buffers, general
performance

OpenVMS
VAX

OpenVMS
Alpha How many VMScluster nodes

are there?
Multiuser General performance,

backup and recovery
♦

Which tables have little growth? Some Compress rows

Which transactions are update
(read/write) transactions?

Some Noncompressed rows;
locking, index node fill
factor, fragmentation,
PLACEMENT VIA INDEX
clause

Which transactions are query
transactions?

Some Snapshots, full index nodes

Who needs access to what tables
in what queries?

Limited access Protection

Which queries are exact match
queries?

Some Mixed storage areas, large
versus small tables, hashed
indexes, sorted indexes,
PLACEMENT VIA INDEX
clause

Which queries are range lookup
queries?

Some Uniform storage areas,
B-tree indexes

Which queries are both exact
match and range lookup?

Some Mixed and uniform storage
areas, hashed and sorted
indexes

Which transactions are short? Some Fast recovery

Which transactions are long? Some Slow recovery

Can transactions be optimized
for recovery?

Some Recovery time, downtime

Which transactions have high
volume?

Some Targets for optimization

You can ask many questions about your database. Their importance depends
in part on what you are trying to optimize; whether you are prototyping a
physical design for the first time or improving upon an existing design; your
hardware configuration; the nature of your application; the types of queries

3–4 Analyzing Performance Factors

on your database—that is, reads compared to updates and their approximate
ratio—and many other considerations.

Some database parameters are used to calculate other database parameters;
for example:

• Estimates of row size for each table determine in part the initial page size;
the longest row on a mixed page format determines in part the page size.

• The total number of table rows (or cardinality) and the planned growth of
the database over a time period determine the initial space allocation.

• Both page size and space allocation are used to determine SPAM intervals.

• In storage areas with uniform page format, SPAM intervals are preset
based on page size; in storage areas with mixed page format, SPAM
intervals vary within a minimum and maximum number of pages based
on page size and space allocation. See the Oracle Rdb7 Guide to Database
Maintenance for the formulas used to calculate SPAM intervals for both
uniform and mixed page format storage areas.

• Smaller SPAM intervals can reduce SPAM page locking problems at the
expense of the increased number of disk I/O operations required to locate
free space for update-intensive environments, and vice versa.

• SPAM threshold values are based on size and frequency of the rows being
stored relative to page size.

• Fragmentation can result from underestimating page sizes and growth of
database tables.

Table 3–2 shows the interrelated nature of a few of these factors and database
parameters. Incorrectly estimated parameter values, compounded by these
types of interrelationships and coupled with incomplete knowledge of your
data, can lead to performance problems as you bring your application on line
for the first time or as your application matures.

Problems arising from miscalculated parameter values will eventually force you
to respecify values that better fit your database needs using an SQL ALTER
DATABASE statement or the SQL EXPORT and IMPORT statements.

Analyzing Performance Factors 3–5

Table 3–2 Interrelated Database Performance Parameters

Basic
Parameter

Related
Parameter

Affected by
Miscalculation

Possible
Problems

Record size Page size, page
format, SPAM
thresholds

Fragmentation, full
page, or wasted space

Too small page: get
fragments; full pages:
get best space usage and
retrieval efficiency, but
not storage efficiency;
too large page: waste
space.

Record displacement Record displacement can
result from poor record
sizing.

Number of
records

Space allocation Extents; correct size;
wasted disk space

Small space: too many
extents; moderate space:
no or few extents; large
space: waste disk space.

Page size Buffer size Buffer pool Too small: more I/O;
too large: waste
buffer space and can
cause page faulting
in memory-poor
environments; type of
retrievals are affected—
clustered records versus
scattered records.

Page format Uniform storage
area

Constant SPAM
interval based
on page size,
SPAM thresholds
are dynamically
calculated for each
individual table or
can be set for logical
area, sorted indexes,
page size, B-tree
levels, index node
locking with update

SPAM interval of 1089
pages for 2-block page,
SPAM thresholds are
dynamic by default, but
can be set for individual
logical areas (0 to 100%).

(continued on next page)

3–6 Analyzing Performance Factors

Table 3–2 (Cont.) Interrelated Database Performance Parameters

Basic
Parameter

Related
Parameter

Affected by
Miscalculation

Possible
Problems

Page format Mixed storage
area

Variable SPAM
interval based on
page size, variable
SPAM thresholds,
hashed indexes and
sorted indexes, with
hashed indexes
(no) index node
locking with update
transactions that can
occur with sorted
indexes, page size

SPAM interval between
216 and 4008 pages for
2-block page; SPAM
thresholds are 0 to
100%.

Global buffers
enabled

NUMBER IS,
USER LIMIT, and
NUMBER OF
BUFFERS

Buffer pool If the buffer pool is too
large, the operating
system must perform
more virtual paging. If
the buffer pool is too
small, Oracle Rdb has to
perform more database
I/O.

Row caching
enabled

Row cache size Wasted disk space Row cache entries that
are too large result
in wasted disk space.
Row cache entries that
are too small prevent
records from being
stored in the cache.

Partition
boundaries

Storage map
statements—
STORE USING
clause with the
WITH LIMIT OF
clause

Partitioned record
storage

Incorrect WITH LIMIT
OF values or incorrect
syntax for the column
data type may result in
all records being stored
in the first partition; use
an ALTER STORAGE
MAP statement with the
REORGANIZE option to
readjust record storage.

This partial list of interrelated database parameters can guide you in your
planning. It emphasizes the importance of properly estimating these database
parameters when you implement your physical design or tune your application
for optimal performance.

Analyzing Performance Factors 3–7

3.2 Disk I/O
This section describes how to gather information on disk input and output (I/O)
factors that affect database performance and provides suggestions for reducing
I/O to improve performance. Chapter 8 also provides information on examining
I/O resources, balancing I/O loads, and reducing disk I/O.

3.2.1 Gathering Disk I/O Information
Sections 3.2.1.1 through 3.2.1.6 describe some of the Performance Monitor
screens you can use to analyze disk I/O operations. For additional information,
including I/O decision trees, see Section 8.1. For general information on how to
invoke the Performance Monitor, refer to Section 2.2.

3.2.1.1 Performance Monitor Summary IO Statistics Screen
The Performance Monitor Summary IO Statistics screen summarizes database
I/O activity and indicates transaction and verb execution rates. The following
is an example of a Summary IO Statistics screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:04:54
Rate: 3.00 Seconds Summary IO Statistics Elapsed: 00:46:59.38
Page: 1 of 1 SQL_DISK1:[USER]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second......... total... average..
name.............. max. cur. avg... count... per.trans

transactions 0 0 0.0 2 1.0
verb successes 2 0 1.7 250 125.0
verb failures 0 0 0.2 32 16.0

synch data reads 0 0 0.4 66 33.0
synch data writes 0 0 0.0 0 0.0
asynch data reads 0 0 0.4 66 33.0
asynch data writes 0 0 0.0 0 0.0
RUJ file reads 0 0 0.0 0 0.0
RUJ file writes 0 0 0.0 0 0.0
AIJ file reads 0 0 0.0 0 0.0
AIJ file writes 0 0 0.0 0 0.0
ACE file reads 0 0 0.0 0 0.0
ACE file writes 0 0 0.0 0 0.0
root file reads 0 0 0.1 20 10.0
root file writes 0 0 0.0 5 2.5

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in the Summary IO Statistics
screen, see the Performance Monitor help.

3–8 Analyzing Performance Factors

3.2.1.2 Performance Monitor IO Stall Time Screen
The Performance Monitor IO Stall Time screen shows a summary of I/O stall
activity. All times are displayed in hundredths of a second. You access the
IO Stall Time screen from the IO Statistics submenu. The following example
shows the IO Stall Time screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:08:26
Rate: 3.00 Seconds IO Stall Time (seconds x100) Elapsed: 00:50:31.47
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.KUTDIS]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....

root read time 0 0 0.2 82 0.0
root write time 180 0 0.2 71 0.0

data read time 4 0 3.0 1214 0.6
data write time 100 0 0.6 239 0.1
data extend time 0 0 0.0 0 0.0

RUJ read time 0 0 0.0 0 0.0
RUJ write time 300 0 0.3 110 0.1
RUJ extend time 0 0 0.4 141 0.1

AIJ read time 0 0 0.1 52 0.0
AIJ write time 1100 0 8.8 3504 1.7
AIJ hiber time 1100 0 8.9 3569 1.7
AIJ extend time 0 0 0.0 0 0.0
Database bind time 0 0 0.0 21 0.0
--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in the screen, see the
Performance Monitor help.

3.2.1.3 Performance Monitor Stall Messages Screen
The Performance Monitor Stall Messages screen shows a summary of database
users’ stall activity. A user stalls whenever Oracle Rdb issues a system service
on behalf of the user’s process. For example, a stall occurs while a user waits
for a lock or for completion of a physical disk read or write.

By default, the Stall Messages screen shows all stalls, including those
of millisecond duration. When a high-performance, high-volume online
transaction processing (OLTP) application issues a large number of I/Os
on a high-speed disk device, a database administrator (DBA) may find it
impossible to differentiate between the many short millisecond stalls of
the OLTP application and the longer, more important stalls that may be
encountered by other applications using the database.

Analyzing Performance Factors 3–9

By typing A to select the Alarm option from the Stall Messages horizontal
menu, you can specify a duration, in seconds, that a process must stall before
it appears on the Stall Messages screen. For example, if you specify an alarm
interval of 5 seconds, then only stalls of 5 seconds or longer duration will
appear on the Stall Messages screen. If you specify a value of 0 as the alarm
interval, the default, all stalls will appear on the Stall Messages screen.

By entering B once to select the Bell option from the horizontal menu, you can
activate the alarm bell option and the option will be highlighted. Entering B
again will deactivate the alarm bell and the option will not be highlighted.

The alarm bell, even if activated, will be rung only if the alarm option has also
been activated.

When both the alarm and the alarm bell are activated, the alarm bell will be
sounded once per screen refresh (specified by the Set_rate option) if there are
any displayed stalls. The alarm is deactivated by setting the alarm interval to
zero (0) seconds.

Stall messages are not saved in the binary statistics file created by the Output
qualifier. Therefore, this screen is not available when you execute the RMU
Show Statistics command in replay mode (with the Input qualifier).

You access the Stall Messages screen from the Process Information submenu.

The following example shows a Stall Messages screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:34:19
Rate: 3.00 Seconds Stall Messages Elapsed: 00:02:50.40
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Since...... Stall.reason............................. Lock.ID.
2100312E:1 13:16:00.03 - writing pages back to database
21002CAC:1 13:16:00.19 - reading pages 1:1197 to 1:1199
21002B30:1 13:16:00.17 - writing ROOT file
210030B2:1 13:16:00.18 - reading pages 1:2118 to 1:2120
210029B3:1 13:16:00.16 - writing pages back to database
21002AB4:1 13:16:00.11 - reading pages 1:4446 to 1:4448
21002638:1 13:16:00.02 - reading pages 1:4503 to 1:4505

--
Alarm Bell Config Exit Filter Help LockID Menu >next_page <prev_page Set_rate Wr

This screen lists database user processes and describes the most recent stalls
executed by users on the node from which the Performance Monitor was
invoked. Because the stall messages are sampled only at the screen update
interval, most stalls are missed. If the same stall message for a process
persists, it could indicate a problem. The display also shows when a process
is writing a bugcheck dump; a bugcheck dump file name longer than 53
characters is truncated.

3–10 Analyzing Performance Factors

The Stall Messages screen shows only processes that are currently stalling.
Once a process finishes stalling, it disappears from the screen. Processes that
are still stalling ripple up to the top of the screen. This means that the longest
stalling processes appear at the top of the screen. Newer stalls are added to
the bottom of the screen. Therefore, all users on the same node share the same
stall display lines, and only the actively stalling processes show up on the
stall screen. This allows you to monitor a relatively large number of stalling
processes.

A database with no stalls has a blank stall display.

You can force frequent screen updates by using a negative number for the Time
qualifier in the RMU Show Statistics command. For example, the qualifier
Time=–10 refreshes the screen every 10/100 (1/10) of a second. Note that you
use a lot of system resources, particularly on the smaller CPU machines, when
you specify this time interval.

If more stalls are in progress than can fit on your screen, some current stalls
might not be displayed. Oracle RMU attempts to place as many current stall
messages on the screen as possible.

You can redirect stall messages to a file by using the Stall_Log qualifier to the
RMU Show Statistics command and specifying a file name. You can also start
and stop the logging of stall messages to a file from within the Peformance
Monitor. Invoke the tools facility by entering the exclamation point (!), and
select the Start/Stop stall logging option.

Note that message ‘‘Waiting for !AD (!AC)’’ displays whenever a process
requests a lock ‘‘with wait’’ and another process is holding the lock in an
incompatible mode. This message may indicate a database hot spot and should
be investigated using the RMU Show Locks command. The format string ‘‘!AD’’
identifies the lock type (that is, storage area, page, MEMBIT, etc.) and the
string ‘‘!AC’’ identifies the requested lock mode (PR, CR, EX, etc.).

The following list contains information on ‘‘Waiting for’’ messages:

• Waiting for record or page

The ‘‘Waiting for record’’ and ‘‘Waiting for page’’ messages display a process
ID, the time, and the dbkey for a record or a page.

The dbkeys in ‘‘Waiting for record’’ messages are logical dbkeys. For
example:

2040037A:2 16:13:36.78 waiting for record 1:0:-4 (CR)
202003A4:5 16:25:18.51 waiting for record 91:155:-1 (CW)

Analyzing Performance Factors 3–11

In the first line of the example, 2040037A:2 is the process ID, and
16:13:36.78 is the time. The ‘‘XX:YY:ZZ’’ format represents the dbkey,
and you can usually interpret it as ‘‘logical area number:page number:line
number.’’ However, only positive numbers represent the line number.
When a negative number appears, it refers to the record ALG (adjustable
lock granularity) locking level. By default, there are three page locking
levels and the negative numbers are interpreted as follows:

–4 indicates the complete logical area
–3 normally indicates 1000 database pages range
–2 normally indicates 100 database pages range
–1 normally indicates 10 database pages range

For example, in the second line of the example, the dbkey occurs in logical
area 91 in a range of 10 database pages, one of which is page 155.

When a dbkey provides a logical area number and you want to get the
physical area name for that logical area, follow these steps:

1. Issue the RMU Dump command with the Lareas qualifier. For
example:

$ RMU/DUMP/LAREAS=RDB$AIP database-name
$ rmu -dump -larea=RDB\$AIP db-name

2. Search the resulting dump for the logical area with that number.

3. Note the corresponding physical area number.

4. Issue the RMU Dump Header command. For example:

$ RMU/DUMP/HEADER database-name
$ rmu -dump -header db-name

Look up the physical area number in the output of the RMU Dump
Header command to find the name of the physical area.

You can also look up columns RDB$STORAGE_ID or RDB$INDEX_ID in
system tables RDB$RELATIONS, RDB$INDICES, and
RDBVMS$STORAGE_MAP_AREAS to identify the Oracle Rdb entity (table
or index) that the dbkey represents.

The page number field in the dbkey is the number of the page in the
corresponding physical area; the line number is the number of the record
on that page.

The dbkeys in ‘‘Waiting for page’’ messages are physical dbkeys, for
example:

202004AA:1 16:14:20.15 waiting for page 1:727 (PW)

This dbkey format is interpreted as ‘‘physical area number:page number.’’

3–12 Analyzing Performance Factors

When a dbkey provides a physical area number and you want to get the
physical area name for the area, issue the RMU Dump Header command.
Then look up the physical area number in the command output to find the
name of the physical area.

You can also get a conversion table by issuing the RMU Analyze command.
For example:

$ RMU/ANALYZE/LAREAS/OPTION=DEBUG/END=1/OUTPUT=LAREA.LIS database-name
$ rmu -analyze -lareas -option=debug -end=1 -output=larea.lis db-name

This command produces a printable file containing the names and numbers
of all the logical areas and physical areas for a database.

CR, CW, and PW in the previous examples are requested lock modes
of Concurrent Read, Concurrent Write, and Protected Write. For more
information on lock modes, see Table 3–8.

• Waiting for dbkey scope

This message displays when a database user who attached using the
DBKEY SCOPE IS TRANSACTION clause has a read/write transaction
in progress (giving the user the database key scope lock in CW mode),
and a second user who specifies the DBKEY SCOPE IS ATTACH clause
(which would give the user the database key scope lock in PR mode) tries
to attach. In this situation, the second user’s process stalls until the first
user’s transaction completes.

You can specify the database key scope at run time using the DBKEY
SCOPE IS clause of the SQL ATTACH statement. If the DBKEY SCOPE
IS clause is used with the SQL CREATE DATABASE or SQL IMPORT
statements, the setting is in effect only for the duration of the session of
the user who issued the statement; the setting does not become a database
root file parameter.

• Waiting for MEMBIT lock

For each Oracle Rdb database, a membership data structure is maintained.
The membership data structure keeps track of the nodes that are accessing
the database at any given time. The membership data structure for a
database is updated when the first user process from a node attaches to
the database and when the last user process from a node detaches from the
database.

The ‘‘Waiting for MEMBIT lock’’ message means that a process is stalled
because the database’s membership data structure is in the process of being
updated.

• Waiting for snapshot cursor

Analyzing Performance Factors 3–13

This message displays when a process tries to start a read-only transaction
when snapshots are deferred, there is no current read-only transaction, and
a read/write transaction is active.

Waiting for snapshot cursor is a normal state if snapshots are deferred.
The waiting will end when all read/write transactions started before the
first read-only transaction have finished.

For information about each of the fields shown in the screen, see the
Performance Monitor help.

3.2.1.4 Performance Monitor DBKEY Information Screen
The Performance Monitor DBKEY Information screen helps you identify
collisions on hot pages.

You access the DBKEY Information screen from the Process Information
submenu. The following example shows a DBKEY Information screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 4-JUN-1996 16:24:52
Rate: 3.00 Seconds DBKEY Information Elapsed: 00:03:24.45
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Data.Page.. Snap.Page.. Spam.Page.. AIP.Page.. ABM.Page..
7E80F841:2 1:648 14:27 5:1 1:483
7E8058F8:1 5:317 14:22 5:218 1:483
7E8052F6:1 1:648 14:20 5:218 1:483
7E80D440:1 5:65 14:18 5:1 1:483

--
Exit Help Menu >next_page <prev_page Set_rate Write Zoom !

This example shows that data page 1:648 and SPAM pages 5:1 and 5:218 are
commonly accessed.

The DBKEY Information screen displays, for each process attached to the
database on the node, the last retrieved DBKEY for each of the following page
categories: data page, snapshot page, SPAM (space area management) page,
AIP (area inventory page) page and ABM (area bitmap) page.

If the attached process provides line number information as part of the data
page retrieval information, the line number is displayed. Otherwise, only the
area and page number are displayed. Only the area and page number are
displayed for the snapshot, SPAM, AIP, and ABM pages.

3–14 Analyzing Performance Factors

3.2.1.5 Performance Monitor Active User Stall Messages Screen
The Performance Monitor Active User Stall Messages screen helps you find
current stalls that represent potential deadlocks, which become database hot
spots. The screen also helps you determine what stalls were last encountered
by any user.

Active user stall messages are not saved in the binary statistics file created by
the Output qualifier. Therefore, this screen is not available when you execute
the RMU Show Statistics command in replay mode (with the Input qualifier).

You access the Active User Stall Messages screen from the Process Information
submenu.

The following example shows an Active User Stall Messages screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:35:32
Rate: 3.00 Seconds Active User Stall Messages Elapsed: 00:04:02.79
Page: 1 of 1 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Since...... Stall.reason............................. Lock.ID.
2100312E:1 13:16:00.03 - writing pages back to database
21002CAC:1 13:16:00.19 - reading pages 1:1197 to 1:1199
21002B30:1 13:16:00.17 - writing ROOT file
210030B2:1 13:16:00.18 - reading pages 1:2118 to 1:2120
210029B3:1 13:16:00.16 - writing pages back to database
21002AB4:1 13:16:00.11 - reading pages 1:4446 to 1:4448
21002638:1 13:16:00.02 - reading pages 1:4503 to 1:4505
210032B6:1 13:16:00.05 - Bugcheck: DISK1:[RDB]RDSBUGCHK.DMP;1

--
Config Exit Help LockID Menu >next_page <prev_page Set_rate Write Zoom !

The Stall Messages screen and the Active User Stall Messages screen have
the same format. However, the Active User Stall Messages screen provides
information on currently stalled processes and on processes that were stalled
but are no longer stalled. In contrast, the Stall Messages screen provides
information only on currently stalled processes. Like the Stall Messages
screen, the Active User Stall Messages screen shows when a process writes
a bugcheck dump; a bugcheck dump file name longer than 53 characters is
truncated.

You can force frequent screen updates by using a negative number for the Time
qualifier in the RMU Show Statistics command. For example, the qualifier
Time=–10 refreshes the screen every 10/100 (1/10) of a second. Note that you
use a lot of system resources, particularly on the smaller CPU machines, when
you specify this time interval.

If more stalls are in progress than can fit on your screen, some current stalls
might not be displayed. Oracle RMU attempts to place as many active stall
messages on the screen as possible.

Analyzing Performance Factors 3–15

You can redirect stall messages to a file by using the Stall_Log qualifier to the
RMU Show Statistics command and specifying a file name. You can also start
and stop the logging of stall messages to a file from within the Peformance
Monitor. Invoke the tools facility by entering the exclamation point (!), and
select the Start/Stop stall logging option.

For information about each field in the screen, see the Performance Monitor
help.

The Active User Stall Messages screen has several advantages over the Stall
Messages screen. The advantages are:

• The location of a process remains static; because it is fixed on a given page,
it is always easy to locate.

• The process’ last stall message (and lock ID, if applicable) are displayed,
even if the process is not currently stalled; this is useful for identifying
possible hot spots.

However, the Active User Stall Messages screen has the following disadvan-
tages:

• It is difficult (but possible) to isolate the source of a potential deadlock or a
long-duration stall; the Stall Messages screen is more useful for this.

• It is difficult (but possible) to isolate the set of currently stalled processes
from the complete set of processes doing normal database accesses.

Table 3–3 shows a side-by-side comparison of the two stall messages screens.

Table 3–3 Comparison of the Stall Messages Screen and the Active User
Stall Messages Screen

Category Stall Messages Active User Stall Messages

Processes displayed? Only currently stalled
processes on the current
node are displayed.

All processes attached to the
database on the current node
are displayed.

Process location? Dynamic—position
reflects duration of
stall relative to other
processes.

Static—process remains fixed in
same location until it detaches
from the database.

Display sequence? Processes are displayed
in descending stall-
duration sequence.

Processes are displayed in a
fixed but arbitrary sequence.

(continued on next page)

3–16 Analyzing Performance Factors

Table 3–3 (Cont.) Comparison of the Stall Messages Screen and the Active
User Stall Messages Screen

Category Stall Messages Active User Stall Messages

Indication of current
stall?

Process stall text is
displayed.

Process stall text starting time
is displayed.

Indication of completed
stall?

Process stall text is not
displayed.

Process stall text starting
time is erased (message text
remains).

Duration of display? Stall message is
displayed only if stall
is current.

Last stall message remains
displayed until the process stalls
again.

3.2.1.6 Performance Monitor Transaction Duration Screen
The Performance Monitor Transaction Duration screen shows the real-time
transaction processing performance of the database. You can view the
Transaction Duration screen either graphically or numerically. The default
display presents a graph.

The graph version of the Transaction Duration screen provides summary
information about the approximate number of transactions that completed
within 0 to 1 seconds, the approximate number of transactions that completed
within 1 to 2 seconds, and so on through the approximate number of
transactions that completed in 15 or more seconds. The following example
shows the graph version of the Transaction Duration screen:

Analyzing Performance Factors 3–17

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:42:52
Rate: 3.00 Seconds Transaction Duration Elapsed: 00:11:23.25
Page: 1 of 1 DISK$:[JOE_USER.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Transaction rate (per second): current = 0 average = 3.1
Transaction duration (seconds): average = 0.3 95th pctile = 0.6
Transaction count: total = 16389 15+++ = 2

Scaled distribution of transaction lengths (in seconds)
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---+
** | | | | | | | | | | | | | | | |
** | | | | | | | | | | | | | | | |
** | | | | | | | | | | | | | | | |
** | | | | | | | | | | | | | | | |
** | | | | | | | | | | | | | | | |
** | | | | | | | | | | | | | | | |
*** | | | | | | | | | | | | | | | |
*** | | | | | | | | | | | | | | | |
*** | | | | | | | | | | | | | | | |
*****|* * | | | | | | | * | | | | | * |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---+
0....1....2....3....4....5....6....7....8....9....10...11...12...13...14...15+++

(Each "*" represents 702 transactions)
--
Config Exit Help Menu Numbers Options Reset Set_rate Unreset Write !

When you use the graph version of the Transaction Duration screen, each
asterisk (*) indicates some number of transactions between 1 and n, where
n is the number of transactions specified at the bottom of the screen. In this
example, for instance, the single asterisk in the region between 9 and 10
seconds indicates that the number of transactions taking between 9 and 10
seconds to complete could be any value between 1 and 702.

The duration of each transaction is measured from the first SQL SET
TRANSACTION statement to the completion of the COMMIT or ROLLBACK
statement. In addition to displaying average transaction duration, this screen
shows a graph of the transaction durations.

As each transaction completes, it is added to the cumulative histogram display.
The 95 percentile response time is continuously updated to show the time in
which 95 percent or more of the transactions complete. The display gives an
indication of subjective system response time.

The numeric version of the Transaction Duration screen provides the exact
number of transactions in each of the 16 time categories. If you know the exact
number of long-running transactions, you can more precisely determine how
significant these transactions are in the overall performance of an application.

From the graph version of the Transaction Duration screen, type N to select
the Numbers option from the horizontal menu, which changes the Transaction
Duration screen from the graph version to the numeric version. The following

3–18 Analyzing Performance Factors

example is the numeric version of the Transaction Duration screen shown in
the previous example:

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:43:50
Rate: 1.00 Second Transaction Duration Elapsed: 01:27:26.56
Page: 1 of 1 DISK$:[JOE_USER.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Total transaction count: 16389
Duration Tx.Count: % #Complete: % #Incomplete: %

0-< 1: 16379 99% 16379 99% 10 1% <- average = 0.3
1-< 2: 7 0% 16386 99% 3 1%
2-< 3: 0 0% 16386 99% 3 1%
3-< 4: 0 0% 16386 99% 3 1%
4-< 5: 0 0% 16386 99% 3 1%
5-< 6: 0 0% 16386 99% 3 1%
6-< 7: 0 0% 16386 99% 3 1%
7-< 8: 0 0% 16386 99% 3 1%
8-< 9: 0 0% 16386 99% 3 1%
9-<10: 1 0% 16387 99% 2 1%

10-<11: 0 0% 16387 99% 2 1%
11-<12: 0 0% 16387 99% 2 1%
12-<13: 0 0% 16387 99% 2 1%
13-<14: 0 0% 16387 99% 2 1%
14-<15: 0 0% 16387 99% 2 1%

15+++: 2 0% 16389 100% 0 0%
--
Config Exit Graph Help Menu Options Reset Set_rate Unreset Write !

In addition to displaying the exact number of transactions in each time
category, the numeric version shows the number of transactions that completed
and the number of transactions that did not complete within each time
category.

For information about each field in the screen, see the Performance Monitor
help.

If you collect statistics in an output file using the Output qualifier for the RMU
Show Statistics command, you can replay the Transaction Duration screen by
using the Input qualifier.

From the numeric version of the Transaction Duration screen, type G to select
the Graph option from the horizontal menu, which changes the screen from the
numeric version to the graph version.

3.2.1.7 Reducing Disk I/O
Oracle Rdb provides the following features that can help reduce disk I/O:

• Global buffers

When you enable global buffering, Oracle Rdb sets up a pool of buffers
that can be shared by all database users on a node. This prevents two
users from reading the same page into memory, thus saving disk I/Os. See
Section 4.1.2 for information on how to use global buffers.

Analyzing Performance Factors 3–19

• Row caches

When you enable row caching, Oracle Rdb allocates memory to store rows
that are frequently accessed. The rows remain in the row cache even when
the associated page has been flushed back to disk. The code path is shorter
when a row is retrieved from a row cache as compared to a page buffer pool
or disk. See Section 4.1.3 for information on how to use row caches.

• Fast commit processing

When you enable fast commit processing, Oracle Rdb delays writing
committed updates to disk until a user-specified threshold, called a
checkpoint, is reached. All transactions since the last checkpoint are
written to disk at the same time, which is more efficient than writing
updates to disk after each committed transaction. Also, you save RUJ
I/Os because the RUJ buffer does not get flushed to the .ruj file after each
transaction. See Section 4.1.5 for information on how to use fast commit
processing.

When executing queries that yield a large record stream, the optimizer may
have to create an intermediate table to store the results of a subquery. Oracle
Rdb stores these results in sorted order for further execution in join operations.
You can use the logical name RDMS$DEBUG_FLAGS or the RDB_DEBUG_
FLAGS configuration parameter to determine if the optimizer is using an
intermediate table (see Section C.1 for more information).

You may be able to complete more transactions in a given time if you define
either or both of two logical names or configuration parameters recognized
and used by Oracle Rdb. The logical names are RDMS$BIND_WORK_FILE
and RDMS$BIND_WORK_VM. The configuration parameters are RDB_BIND_
WORK_FILE and RDB_BIND_WORK_VM.

OpenVMS
VAX

OpenVMS
Alpha

The logical names RDMS$BIND_WORK_FILE and RDMS$BIND_WORK_VM
may be defined at a system, group, or process level on an OpenVMS system.

Because the Oracle Rdb work file on an OpenVMS system is an RMS file, you
can also set the RMS multibuffer and multiblock counts by using the DCL
SET RMS_DEFAULT command to specify appropriate values for the BUFFER_
COUNT and BLOCK_COUNT qualifiers and improve the performance of
Oracle Rdb temporary tables on OpenVMS systems. ♦

The RDMS$BIND_WORK_VM logical name and RDB_BIND_WORK_VM
configuration parameter can reduce the overhead of disk I/O operations for
matching operations. This logical name or configuration parameter lets you
specify the amount of virtual memory (VM) in bytes that will be allocated to
your process for use in matching operations. Once the allocation is exhausted,
additional data values are written to a temporary file on disk (SYS$LOGIN on

3–20 Analyzing Performance Factors

OpenVMS, if RDMS$BIND_WORK_FILE is undefined). The default is 10,000
bytes. The maximum allowed value is restricted only by the amount of memory
available on your system.

OpenVMS
VAX

OpenVMS
Alpha

The following example defines the RDMS$BIND_WORK_VM logical name to
be 20,000 bytes.

$ DEFINE RDMS$BIND_WORK_VM 20000

The number 20,000 is a byte count and is deducted from your process quota
value, PGFLQUOTA, in SYSUAF.DAT. As the byte count increases, user
processes increase paging because the I/O operations have been transferred to
the paging disk. Experiment with the values that give the highest throughput
for your application. See Section 8.2 and Section 4.4.3 for more information
on memory management and establishing reasonable working set parameter
values for each process. See the OpenVMS documentation set for guidelines on
setting initial working set values for tuning automatic, working set adjustment
parameters for these two general strategies:

• Tuning for rapid response times whenever the workload demands greater
working set sizes in an ever-changing, timesharing environment

• Tuning for less dynamic response times that will stabilize and track
moderate needs for working set growth in a production environment ♦

The logical name RDMS$BIND_WORK_FILE or the RDB_BIND_WORK_FILE
configuration parameter lets you specify the disk device and directory for
temporary work files.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS systems, the default is to create temporary files in your home
directory. Oracle Rdb uses these files in matching operations. The following
example defines a temporary work file through the RDMS$BIND_WORK_FILE
logical name to be on WORK$DISK:[RDB.WORK]:

$! Assign the work area to another disk with read/write access:
$ DEFINE RDMS$BIND_WORK_FILE WORK$DISK:[RDB.WORK]
♦

Another way to reduce disk I/O operations is to control placement of .ruj files
by using the logical name RDMS$RUJ or the configuration parameter RDB_
RUJ.

Analyzing Performance Factors 3–21

3.2.2 Data Distribution
You might be able to improve access to data that is clustered around a
few tables by distributing the data of interest across more tables, thus
implementing further normalization.

Designing the conceptual or logical database should account for both referential
(read-only) and application (read/write) tables. The application tables, where
clustering can occur, may require certain refinements or alterations so they can
support users’ information requirements. If your design results in 2 or 3 out of
perhaps a total of 10 tables where 90 percent of the database activity occurs,
you may achieve a performance gain by one or more of the following actions:

• Some compromise in normalization

• More frequent archival of inactive rows

• A change in your indexing strategy

• Judicious use of constraints

• A stricter protection policy

• Definitions of more views

For more information on data distribution, see Section 8.1.2.3. For information
on constraints and defining views, see the Oracle Rdb7 Guide to Database
Design and Definition.

3.2.3 Data Content—Active Versus Inactive Rows
Once your database is loaded and begins to support one or several applications,
the number of rows in the database may grow beyond reasonable limits or
expectations. As database administrator, you should ensure that only data that
supports current applications resides in the database. Keeping data that is
not current (historical data), in the same database as active rows can degrade
performance significantly when kept in active storage areas. This problem has
several possible solutions, with the first one being one of the best alternatives:

• Make storage areas that contain stable data read-only to minimize locking
conflicts.

Storage areas that contain historical data or data that is not subject to
change over long periods of time can be made read-only to reduce locking
conflicts. To accomplish this, either move the stable data to new storage
areas and set these to read-only, or make the entire storage area read-only.

• Unload historical data to another table on another device or to tape,
depending on access frequency.

3–22 Analyzing Performance Factors

You can define an identical database structure on another device to contain
historical data for a specified period. When access to that data is no longer
needed, it can be deleted or loaded to a tape as required.

• Place the data into summary rows for storage in another table, or in
another medium, such as microfiche or CD–ROM.

You can produce periodic summaries of inactive rows and store this data
in summary tables elsewhere on your system. In this way, you keep the
information, but reduce the data storage requirements.

By using a combination of these methods, you can maintain your primary data
resource at its optimum efficiency.

3.2.4 Asynchronous Prefetch of Database Pages
The Oracle Rdb asynchronous prefetch feature reduces the amount of time
that a process waits for pages to be read from disk by fetching pages before a
process actually requests the pages. When the asynchronous prefetch feature
is enabled, Oracle Rdb examines each process and attempts to predict the
process’ future access patterns. When Oracle Rdb can predict a sequential scan
from a process’ successive page requests, it fetches the pages that it anticipates
will be included in the sequential scan. This prefetching of pages (fetching
a page before it has been requested) is asynchronous. That is, Oracle Rdb
does not wait for the prefetched pages to be read into memory from disk; it
continues with its current processing activities.

Asynchronous prefetch is enabled by default. Example 3–1 shows how to
disable the asynchronous prefetch feature using SQL syntax.

Example 3–1 Disabling the Asynchronous Prefetch Feature

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ASYNC PREFETCH IS DISABLED;

To enable the asynchronous prefetch feature after it has been disabled, use
the ASYNC PREFETCH IS ENABLED clause of the ALTER DATABASE
statement.

You can also use the RDM$BIND_APF_ENABLED logical name or the RDB_
BIND_APF_ENABLED configuration parameter to disable and enable the
asynchronous prefetch feature for a process.

Analyzing Performance Factors 3–23

OpenVMS
VAX

OpenVMS
Alpha

The following example shows how to disable and enable the asynchronous
prefetch feature on OpenVMS:

$! Disable the asynchronous prefetch feature:
$!
$ DEFINE RDM$BIND_APF_ENABLED 0
$!
$! The RDM$BIND_APF_ENABLED logical name is translated when a
$! process attaches to the database. This logical name can be
$! a system or process logical.
$!
$! To enable the asynchronous prefetch feature after it has been
$! disabled for a process, set the RDM$BIND_APF_ENABLED logical name
$! to 1:
$!
$ DEFINE RDM$BIND_APF_ENABLED 1
$!
$! Or, deassign the logical name:
$ DEASSIGN RDM$BIND_APF_ENABLED
♦

Oracle Corporation recommends that you use SQL syntax instead of the logical
name or configuration parameter. See the Oracle Rdb7 SQL Reference Manual
for information about the ASYNC PREFETCH clause of the SQL CREATE
DATABASE, ALTER DATABASE, or IMPORT statements.

The page on which Oracle Rdb determines a sequential scan is being requested
by a process is called a triggering page. When Oracle Rdb discovers a
triggering page, it begins prefetching pages. Oracle Rdb uses different methods
of prefetching, depending on whether the triggering page is in a mixed format
storage area or a uniform format storage area, as explained later in this
section.

The number of buffers that Oracle Rdb can prefetch for a process is called the
depth of buffers. Oracle Rdb determines the default depth of buffers for a
process by using this formula:

DEFAULT DEPTH IS SMALLER V ALUE OF
buffers in allocate set

4
OR 8

If, for example, a process had 100 buffers in its allocate set, the default would
be either 25 buffers (100 buffers divided by 4 equals 25 buffers) or 8 buffers.
Because 8 buffers is less than 25 buffers, Oracle Rdb will use 8 buffers of the
process’ allocate set for prefetching.

3–24 Analyzing Performance Factors

You can change the default depth by using the DEPTH IS parameter of the
ASYNC PREFETCH IS ENABLED clause. Example 3–2 shows how to specify
that 10 buffers of a process’ allocate set be used for prefetching.

Example 3–2 Specifying the Number of Buffers to Be Prefetched

SQL> ALTER DATABASE FILE mf_personnel
cont> ASYNC PREFETCH IS ENABLED
cont> (DEPTH IS 10);
SQL>

When Oracle Rdb finds a triggering page in a mixed format storage area, it
can determine the next page (the first page to prefetch) by adding 1 to the
triggering page number. In a mixed format storage area, Oracle Rdb optimizes
disk access by prefetching the depth of buffers for the process in a single
read operation. Oracle Rdb examines the depth of buffers for the process and
continues prefetching if it finds another triggering page.

When Oracle Rdb finds a triggering page in a uniform format storage area,
it can determine the next page in the logical area (the first page to prefetch)
from the SPAM page for the triggering page. In a uniform storage area, Oracle
Rdb also prefetches the depth of buffers for the process one at a time, using
a separate read operation for each buffer in the depth of buffers (in contrast
to prefetching in mixed format storage areas, where all the buffers in the
depth of buffers are read in a single read operation). The depth of buffers for
the process is examined, and if Oracle Rdb finds another triggering page, it
continues to prefetch buffers. The prefetching in a uniform storage area takes
place at the SPAM page and data page levels; Oracle Rdb uses area bit map
(ABM) pages to determine which SPAM pages map to which database page
clumps for a specific logical area.

When Oracle Rdb begins prefetching for either a mixed format or a uniform
format storage area, it examines each prefetched page one buffer at a
time. Note that the asynchronous prefetch request is ignored if a page to
be prefetched is found in memory.

The advantage of the asynchronous prefetch feature is that Oracle Rdb can
reduce the number of times it needs to stall while waiting for a page to be read
from disk. When asynchronous prefetching of pages is not enabled, Oracle Rdb
has to stall for each read operation from disk. Oracle Rdb does not have to
stall when it fetches a page asynchronously; therefore, each time it correctly
predicts a page that a process will need before the process requests it, Oracle
Rdb saves the stall time that would normally have been associated with the
reading of that page. This can substantially improve performance for a wide
range of applications.

Analyzing Performance Factors 3–25

The asynchronous prefetch feature is most likely to improve the performance of
processes with allocate sets of 20 or more buffers.

You can use the Performance Monitor Asynchronous IO Statistics screen to
get information on the asynchronous prefetch operations occurring in your
database. See Section 4.1.1.5 for more information on the Asynchronous IO
Statistics screen.

3.2.5 Asynchronous Batch-Write Operations
Oracle Rdb reads and writes pages while executing transactions. By default,
it supports asynchronous batch-write operations, which reduce the number of
stalls experienced by database processes while waiting for writes to disk to
complete.

The goal of asynchronous batch-write operations is to increase database
performance by making it possible for a certain number of buffers in each
process’ allocate set to have write operations in progress at any time without
causing the process to stall. For each individual process, performance is
best when asynchronous write operations are issued before all the buffers
in the process’ allocate set have been modified (see Section 4.1.2.2 for more
information on determining the number of buffers Oracle Rdb allocates to a
user process).

The following benefits are provided by the asynchronous batch-write feature:

• Reduces server stalls

• Fewer servers are required to obtain the same application throughput
because each server is more efficient

• Better response time for update applications

• Faster performance by Oracle Rdb utilities that perform write operations,
such as RMU Recover, RMU Load, and database recovery (DBR) processes

This feature is most likely to improve the performance of processes with
allocate sets of 20 or more buffers.

Asynchronous batch-write operations are enabled by default. Example 3–3
shows how to disable asynchronous batch-write operations using SQL syntax.

Example 3–3 Disabling Asynchronous Batch-Write Operations

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ASYNC BATCH WRITES ARE DISABLED;

3–26 Analyzing Performance Factors

You can also use the RDM$BIND_ABW_ENABLED logical name or the
RDB_BIND_ABW_ENABLED configuration parameter to disable and enable
asynchronous batch-write operations for a process.

OpenVMS
VAX

OpenVMS
Alpha

The following example shows how to use the RDM$BIND_ABW_ENABLED
logical name on OpenVMS:

$! Disable asynchronous batch-write operations:
$!
$ DEFINE RDM$BIND_ABW_ENABLED 0
$!
$! The RDM$BIND_ABW_ENABLED logical name is translated when a
$! process attaches to the database. This logical name can be
$! a system or process logical.
$!
$! To enable asynchronous batch writes after they have been disabled
$! for a process, set the RDM$BIND_ABW_ENABLED logical name to 1:
$!
$ DEFINE RDM$BIND_ABW_ENABLED 1
$!
$! Or, deassign the logical name:
$ DEASSIGN RDM$BIND_ABW_ENABLED
♦

Oracle Corporation recommends that you use SQL syntax instead of the
RDM$BIND_ABW_ENABLED logical name or the RDB_BIND_ABW_
ENABLED configuration parameter. See the Oracle Rdb7 SQL Reference
Manual for information about the ASYNC BATCH WRITES clause of the SQL
CREATE DATABASE, ALTER DATABASE, or IMPORT statements.

You use the CLEAN BUFFER COUNT and the MAXIMUM BUFFER COUNT
parameters to control asynchronous batch-write operations for a process. You
use the CLEAN BUFFER COUNT parameter to specify the number of clean
buffers to be maintained at the end of a process’ least recently used queue of
buffers for replacement. In Example 3–4, the CLEAN BUFFER COUNT is
defined as 4 to specify that four clean buffers be maintained at the end of the
process’ least recently used queue of buffers for replacement.

Example 3–4 Specifying the Number of Clean Buffers to Be Maintained

SQL> ALTER DATABASE FILE mf_personnel
cont> ASYNC BATCH WRITES ARE ENABLED
cont> (CLEAN BUFFER COUNT IS 4 BUFFERS);

You use the MAXIMUM BUFFER COUNT parameter to specify the number of
buffers a process will write asynchronously. In Example 3–5, the MAXIMUM
BUFFER COUNT is defined as 6 to specify that six modified buffers be written

Analyzing Performance Factors 3–27

asynchronously whenever the number of clean buffers for the process is less
than the value specified by the CLEAN BUFFER COUNT value.

Example 3–5 Specifying the Number of Buffers to Be Written Asynchronously
for a Process

SQL> ALTER DATABASE FILE mf_personnel
cont> ASYNC BATCH WRITES ARE ENABLED
cont> (MAXIMUM BUFFER COUNT IS 6 BUFFERS);

For a process with the CLEAN BUFFER COUNT and MAXIMUM BUFFER
COUNT values specified in Example 3–4 and Example 3–5, Oracle Rdb will
write a group of six modified buffers to disk asynchronously whenever the
process has fewer than four clean buffers in the least recently used queue of
buffers for replacement. The process does not wait for the write operation
of the six modified buffers to complete; it continues processing while the
asynchronous batch-write operation occurs.

You probably will need to try different CLEAN BUFFER COUNT and
MAXIMUM BUFFER COUNT values for a process to determine which values
provide the best performance. In general, performance is better when the value
for the CLEAN BUFFER COUNT is not set too high; a high value can increase
CPU usage. However, you also want to anticipate asynchronous batch-write
operations and have Oracle Rdb start them while enough clean buffers remain
to allow processing to continue without a stall, so do not set the value too low.
The default value for the CLEAN BUFFER COUNT is 5.

The MAXIMUM BUFFER COUNT value for a process should not be set too
high. If it is, the process’ batch-write operations may be so large that I/Os from
other processes are queued up behind the process’ batch-write operations (this
is especially likely if all the batch-write operations are to a single disk).

If the MAXIMUM BUFFER COUNT value for a process is too low, then the
process will not benefit from disk parallelism. For example, if the MAXIMUM
BUFFER COUNT value for a process is 2 and five disks are written to
by the application, then the process is only writing asynchronously to a
maximum of two disks with any batch-write operation. A larger MAXIMUM
BUFFER COUNT value could increase the number of disks written to with
each asynchronous batch-write operation. Also, if the MAXIMUM BUFFER
COUNT value for a process is too low, a process reduces the benefit of disk
optimizations. For example, when an application updates a large number of
values, Oracle Rdb sorts these values by their page number before it writes the
updated values to disk. This sorting of values by page allows the disk head to
write all the updates for the same page in one operation instead of writing one
updated value for a page at one time, then returning to the page later to write

3–28 Analyzing Performance Factors

another updated value to it. When the MAXIMUM BUFFER COUNT value is
too low, the number of values that is sorted is small; therefore, several write
operations are required to write all the updates to a single page.

The correct MAXIMUM BUFFER COUNT is one that permits Oracle Rdb to
always be steadily writing some buffers for the process. The default value
for the MAXIMUM BUFFER COUNT is all marked buffers, so usually you
would use the MAXIMUM BUFFER COUNT syntax to specify that Oracle Rdb
asynchronously write fewer marked buffers for a process.

Although a process using asynchronous batch-write operations experiences
fewer stalls, it will stall when Oracle Rdb needs to replace a buffer and an
asynchronous batch-write operation is in progress. This situation can be
remedied by increasing the CLEAN BUFFER COUNT value. A stall can also
occur if a process receives a blocking AST from another process for a page
when an asynchronous batch-write operation is in progress. A process will
also stall when it needs to demote locks for a buffer as part of page deadlock
handling, or when Oracle Rdb performs a checkpoint operation.

You can use the Performance Monitor Asynchronous IO Statistics display to
get information on the asynchronous batch-write operations occurring in your
database. See Section 4.1.1.5 for more information on the Asynchronous IO
Statistics display.

3.3 CPU Utilization
The Performance Monitor provides a CPU Utilization screen that shows the
current CPU utilization of each database process on the node as a percentage
of the total processor utilization.

You select the CPU Utilization screen from the Process Information submenu.
For example:

Analyzing Performance Factors 3–29

+------------ Select Display -----------+
| |
| A. Stall Messages |
| B. Active User Stall Messages |
| C. Process Accounting |
| D. Checkpoint Information (Unsorted) |
| E. Active User Chart |
| F. CPU Utilization (Unsorted) |
| G. DBR Activity |
| H. Monitor Log |
| I. Defined Logicals |
| J. Lock Timeout History |
| K. Lock Deadlock History |
| L. DBKEY Information |
| |
+---------------------------------------+

Typing F selects the CPU Utilization screen. For example:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:47:12
Rate: 1.00 Second CPU Utilization (unsorted) Elapsed: 00:49:12.10
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Process.name... CPU.Util% 10 20 30 40 50 60 70 80 90 100

+---+---+---+---+---+---+---+---+---+---+
2720B4D6:1 RICK2 9% +--*| | | | | | | | | +
2720D279:1sRDM_ALS611_1 1% | | | | | | | | | | |
2720C687:1sRDM_ABS611_1 0% | | | | | | | | | | +

| | | | | | | | | | |
---------------------------------------+---+---+---+---+---+---+---+---+---+---+
Config Exit Help Menu >next_page <prev_page Set_rate Write Zoom !

The CPU Utilization screen provides one line of information for each database
process active on the node. If a process is attached to the database multiple
times, only one line of information will be displayed.

Each line of the screen shows specific CPU utilization information associated
with a database process. The process ID and name of each process is displayed,
followed by the CPU utilization percentage of that process. The histogram
portion of the screen show the process’ utilization percentage in graph format.

Note that the displayed process CPU utilization, in addition to the database-
related processing, includes the CPU utilization of all nondatabase-related
activities that the process also performs. To track the exact CPU utilization of
the database-specific activity, Oracle Corporation recommends you use Oracle
Trace software1.

Under the 100% column of the histogram, a plus sign (+) indicates that the
process incurred 100% CPU utilization at some time during the display session.
Leaving the screen and returning to it later resets this indicator.

1 On OpenVMS systems only

3–30 Analyzing Performance Factors

By default, the processes on the screen appear in an arbitrary (unsorted) order.
By selecting the Config option, you can manually configure the CPU Utilization
screen. For example, typing C displays the CPU Utilization configuration
menu:

+- Select CPU Utilization Configuration -+
| |
| A. Unsorted |
| B. Sort by CPU Utilization |
| |
+--+

Option A displays the processes on the CPU Utilization screen in unsorted
order.

Option B displays the processes on the CPU Utilization screen sorted in order
of descending CPU utilization. This configuration can be difficult to view when
the display rate is less than 2 seconds, because the process CPU utilizations
vary at any given time. Oracle Corporation recommends the sorted display be
used with a display rate of 2 seconds or more, as this provides a more linear
view of the top CPU utilization processes.

The CPU Utilization screen is not saved by using the Output qualifier;
therefore, it cannot be replayed using the Input qualifier.

3.4 Gathering Database Root File Information
The database root file is comprised of a series of components known as objects.
Each object identifies a particular class of information about the database,
such as AIJ or storage area information. Do not confuse root file objects with
object-oriented objects; they are unrelated.

When the database is opened by the monitor, the objects are read from the
database root file and stored in the database global section on OpenVMS and
in the shared memory partition on Digital UNIX. During database physical
modification, as well as during run time, objects are occasionally refreshed
from the root file into the global section or shared memory partition, modified,
and then written back to disk. For instance, to allocate a transaction sequence
number (TSN) when a transaction is started, the SEQBLK object is fetched,
modified, and written back to disk.

You can use the following Performance Monitor screens to analyze I/O
operations being performed on the database root file:

• Summary Object Statistics

The Summary Object Statistics screen provides cumulative information for
all database root file objects.

Analyzing Performance Factors 3–31

• Objects (one stat type)

The Objects (one stat type) screen allows you to display statistics for a
specific object. When you select the Objects (one stat type) option from the
menu, a submenu containing the root file objects is displayed. You can then
select an object from the submenu, and statistics for the selected object,
broken out by category, will be displayed.

• Objects (one stat field)

The Objects (one stat field) screen allows you to display statistics for a
specific collection category. When you select the Objects (one stat field)
option from the menu, a submenu containing the categories is displayed.
You can then select a category from the submenu, and the statistics for
that category will be displayed, broken out by object type.

For information about each field in these screens, see the Performance Monitor
help.

3.5 After-Image Journaling
No database activity in a production environment should occur without
enabling the after-image journaling facility. If system failure occurs, you can
restore your database application from the most recent full backup file, then
roll forward the .aij file to capture all completed transactions that were made
since the last full backup operation. In this way, you ensure that the database
can be brought back to its most current state prior to the system failure, which
includes rolling forward all completed transactions since the database was
last backed up. The journaling strategy you choose depends on several factors
listed here. Any of these factors, or all of them together, can significantly
influence how well the database responds to users’ requirements:

• The number of users normally accessing the database

Whether a few users or many users routinely access the database, if a
system failure occurs while a user is entering data, that information is
lost. If all transactions are designed to be as short as possible, the worst
case may be that only the last uncommitted active transaction is lost.
User-process recovery can occur only after system recovery. The user
need only enter data again from the last source document or point-of-sale
transaction. Larger transaction scopes can result in unsatisfactory delay in
recovery because the user must recover the process by entering the last set
of uncommitted updates. Furthermore, procedures must exist that permit
the user to determine the exact state of the database. This activity, too,
takes valuable time.

• Transaction volume

3–32 Analyzing Performance Factors

When the database experiences a state of maximum update support for
extended periods each day, it is possible that several thousand update
transactions are recorded in the .aij file for that period alone. Use the
RMU Backup Online command to create a backup of the database itself at
regular intervals. You do not need to close the database to active users to
do this kind of backup operation; however, this operation waits for a quiet
point and then proceeds. You can also use the Noquiet_Point qualifier if
you want the backup operation to begin when the RMU Backup command
is issued, regardless of any read/write transactions in progress in the
database.

Depending on transaction volume, the .aij file can grow very large, require
a large amount of disk storage, and hinder database performance. In this
case, use the RMU Backup After_Journal command occasionally. The RMU
Backup After_Journal command directs Oracle Rdb to copy information
from the .aij file to a file on a tape drive, or to an alternate disk drive. For
more information on the RMU Backup After_Journal command, see the
Oracle RMU Reference Manual and the Oracle Rdb7 Guide to Database
Maintenance.

• The maximum acceptable time the database is allowed to be unavailable

• The dependence of other databases on your database

Databases on other devices or nodes may require data in your database.
For example, the payroll department accesses employee data from the
mf_personnel database when processing payroll. If the availability of your
database is interrupted because of a device failure, or needs more time to
recover after system failure because the journal file is excessively large, the
dependent processes must remain idle, thus causing inefficiencies in your
management information system.

Oracle Rdb allows you to use either a single extensible journal or multiple
fixed-size journals for after-image journaling. In most cases, Oracle
Corporation recommends using multiple fixed-size journals. See the chapter
on after-image journaling in the Oracle Rdb7 Guide to Database Maintenance
for a complete discussion on the advantages and disadvantages of each type of
journal.

Section 8.1.2.2 describes how to check for performance problems related to
after-image journaling.

Analyzing Performance Factors 3–33

3.5.1 Using the AIJ Log Server (ALS) to Improve the Performance of
After-Image Journal File Write Operations to Disk

Multiple-user databases with medium to high update activity sometimes
experience after-image journal (.aij) file bottlenecks. You can eliminate .aij file
bottlenecks by using a special process called the AIJ log server (ALS).

When the ALS is not enabled, user processes need to get a local lock for their
own updated buffers and the updated buffers of other processes in a database’s
global section or shared memory partition before doing a group commit of the
updated buffers to the disk on which the .aij file resides. When high update
activity is occurring in the database, this lock contention can cause a decrease
in performance.

To alleviate these .aij file bottlenecks, Oracle Rdb allows you to use the AIJ
log server (ALS) to flush log data to the .aij file. When the ALS is used,
all database user processes leave the log data in a global section or shared
memory partition and the ALS flushes the log data to disk on behalf of all the
user processes. Because the ALS is a dedicated process, writing to the .aij file
is much faster than when the ALS is not used. Also, there is no contention
between user processes for the local lock in the global section or shared
memory partition when ALS is used, because the ALS is the only process that
ever requests the lock.

Before you begin using the ALS process for a database, you first need to decide
whether you want to use the automatic or manual startup mode for ALS.
The ALTER DATABASE statement in Example 3–6 specifies the automatic
ALS startup mode for the database. The Performance Monitor Journaling
Information screen displays the ALS startup mode for the database.

Example 3–6 Specifying the Automatic Startup Mode for the ALS Process

SQL> -- Specifying the automatic startup mode for the ALS
SQL> ALTER DATABASE FILENAME database-name
cont> JOURNAL ENABLED (LOG SERVER IS AUTOMATIC);
SQL>

If ALS startup mode is automatic and the database open mode is automatic,
the ALS starts on a node when the first process from the node attaches to
the database; the ALS stops when the last process from the node detaches,
when the RMU Server After_Journal Stop command is issued, or when the
RMU Close command is issued. If ALS startup mode is automatic and the
database open mode is manual, the ALS starts on a node when the database
is explicitly opened with the RMU Open command; the ALS stops when the

3–34 Analyzing Performance Factors

database is explicitly closed with the RMU Close command or when the RMU
Server After_Journal Stop command is issued.

Table 3–4 shows, for databases with open modes automatic and manual,
how the ALS is started and stopped when the ALS startup mode is set to
automatic.

Table 3–4 Starting and Stopping the ALS When the ALS Startup Mode Is
Automatic

If Database
Open Mode Is: ALS Starts: ALS Stops:

Automatic When the first process attaches
to the database

When the last user detaches
from the database, or the RMU
Server After_Journal Stop or
RMU Close command is issued

Manual When the database is opened
with the RMU Open command

When the database is closed
with the RMU Close command
or when the RMU Server After_
Journal Stop command is issued

By default, the ALS startup mode is set to manual. The ALTER DATABASE
statement in Example 3–7 sets the startup mode to manual.

Example 3–7 Specifying the Manual Startup Mode for the ALS Process

SQL> -- Specifying the manual startup mode for the ALS
SQL> ALTER DATABASE FILENAME database-name
cont> JOURNAL ENABLED (LOG SERVER IS MANUAL);
SQL>

When the ALS startup mode for a database is set to manual, you must use
the RMU Server After_Journal Start command to start the ALS on a node, as
shown in Example 3–8.

Example 3–8 Manually Starting the ALS Process on a Node

$ RMU/SERVER AFTER_JOURNAL START database-name
$ rmu -server after_journal start database-name

Note that the RMU Server After_Journal Start command will start the ALS
process only if the database is open. This means that if the ALS startup mode
is manual and the database open mode is automatic, the ALS will start only
if at least one process is attached to the database from the node from which

Analyzing Performance Factors 3–35

the RMU Server After_Journal Start command is issued. If the ALS startup
mode is manual and the database open mode is manual, the ALS will start
only if the database has been explicitly opened with an RMU Open command
from the node from which the RMU Server After_Journal Start command is
issued. In other words, if a database is closed when you issue the RMU Server
After_Journal Start command, the ALS process will not be started.

When the ALS startup mode is manual, the ALS stops when the RMU Server
After_Journal Stop command is issued. Example 3–9 shows how to use the
RMU Server After_Journal Stop command to manually stop the ALS process
for a database on a node. You can use this command even when users are
accessing the database. When the RMU Server After_Journal Stop command
is used to stop the ALS process, any active processes still using the database
must write their own updated buffers and the updated buffers of other users to
the .aij file in group commit operations. You can also stop the ALS process by
issuing an RMU Close command; in this case, all the processes in the database
are stopped as part of the database shutdown.

Example 3–9 Manually Stopping the ALS Process on a Node

$ RMU/SERVER AFTER_JOURNAL STOP database-name
$ rmu -server after_journal stop database-name

You can start and stop the ALS process while the Performance Monitor is
executing. Invoke the tools facility by entering the exclamation point (!), and
select the Start/Stop AIJ Log Server option.

When the ALS startup mode for a database is set to manual and the ALS
process has been manually started for the database using the RMU Server
After_Journal Start command, the ALS process remains in effect until it
is manually stopped with an RMU Server After_Journal Stop command
(assuming that the RMU Close command is not used to close the database).
Even if all the database users on a node detach from the database, the ALS
process remains in effect.

Table 3–5 shows, for databases with open modes automatic and manual, how
the ALS is started and stopped when the ALS startup mode is set to manual.

3–36 Analyzing Performance Factors

Table 3–5 Starting and Stopping the ALS When the ALS Startup Mode Is
Manual

If Database
Open Mode Is: ALS Starts: ALS Stops:

Automatic When at least one process is
attached to the database and the
RMU Server After_Journal Start
command is issued

When the RMU Server
After_Journal Stop or the
RMU Close command is
issued

Manual When the database is opened
with the RMU Open command
and the RMU Server After_
Journal Start command is issued

When the RMU Server
After_Journal Stop
command is issued or
the database is closed
with the RMU Close
command

You can determine whether or not the ALS process is started for a database on
the current node by using the RMU Show Users command. In Example 3–10,
the process RDM_ALS701 is the ALS process. If the ALS process is not started
for the database, information on the RDM_ALS701 process does not appear in
the RMU Show Users display.

OpenVMS
VAX

OpenVMS
Alpha

Example 3–10 Determining When the ALS Process Is Started for a Database

$ RMU/SHOW USERS mf_personnel
Oracle Rdb V7.0-00 on node TRIXIE 16-MAY-1996 14:51:26.32

database 111DUA68:[RICK]MF_PERSONNEL.RDB;1
- after-image journal file is SQL_DISK1:[RICK.V70_AIJS]AIJ2.AIJ;1
- 2 active database users

- 3D01029D:1 - RICK, RICK - active user
- image 111DUA33:[SQL.V070.][SRC.MID]SQL$70.EXE;2

- 3D00F921:1 - RDM_ALS701_1, RDBVMS - active user
- image 111DUJ0:[SYS5.SYSCOMMON.][SYSEXE]RDMALS701.EXE;49

$
♦

If you do not specify a database name with the RMU Show Users command,
information on the users of all the active databases on the node is displayed if:

• You have the OpenVMS WORLD, SYSPRV, or BYPASS privilege on
OpenVMS

• You are the dbsmgr user or the superuser on Digital UNIX

Analyzing Performance Factors 3–37

If the ALS process is started for a database, each node that has the database
open will have its own ALS process for user processes accessing the database
from that node.

If the ALS process stops abnormally (by some means other than an RMU
Server After_Journal Stop command or an RMU Close command, or by the last
process detaching from the database), it is not restarted automatically. The
ALS process is recovered by the database recovery (DBR) process, but it needs
to be restarted manually. The RMU Server After_Journal Start command is
normally used only for databases with the ALS mode set to manual. However,
if the ALS process stops abnormally, the RMU Server After_Journal Start
command must be used to start the ALS process again, regardless of whether
the database’s ALS startup mode is manual or automatic.

OpenVMS
VAX

OpenVMS
Alpha

ALS process bugcheck dumps are written to the RDMALSBUG.DMP file in the
SYS$SYSTEM directory. ♦

3.5.2 Improving ALS Process Performance by Using an AIJ Cache on an
Electronic Disk

Enabling the AIJ log server (ALS) process for a database improves performance
for databases with medium to high update activity. However, a database
with the ALS process enabled still experiences minimal stalls for AIJ write
operations and commit operations. To further reduce the duration of these
minimal stalls, you can create a file called an AIJ cache on an electronic disk
to use as a temporary cache for AIJ write operations.

Electronic disks are solid-state disks, which have memory with battery backup;
these disks function like a stable magnetic disk. They offer better performance
than magnetic disks. Although it is possible to create an AIJ cache for an ALS
process on a magnetic disk, you must create the AIJ cache on an electronic
disk to get improved performance from this feature.

To enable and disable an AIJ cache on an electronic disk, use the SQL ALTER
DATABASE statement, as shown in Example 3–11.

Example 3–11 Enabling and Disabling the AIJ Cache for an ALS Process

SQL> -- Enabling the AIJ cache for an ALS process
SQL> ALTER DATABASE FILENAME ’SQL_DISK1:[RICK]mf_personnel’
cont> JOURNAL IS ENABLED
cont> (CACHE FILENAME ’SQL_DISK2:[RICK]pers_cache’);

(continued on next page)

3–38 Analyzing Performance Factors

Example 3–11 (Cont.) Enabling and Disabling the AIJ Cache for an ALS
Process

SQL> --
SQL> -- Disabling the AIJ cache for an ALS process
SQL> ALTER DATABASE FILENAME mf_personnel
cont> JOURNAL IS ENABLED
cont> (NO CACHE FILENAME);

Enabling and disabling the AIJ cache on an electronic disk for an ALS process
is an offline operation, which means it can be done only when there are no
users attached to the database. Also, you cannot enable or disable the AIJ
cache if the ALS process for the database is active (which can be determined
by using the RMU Show Users command, as described in Section 3.5.1).

The SQL SHOW DATABASE statement and the Performance Monitor
Journaling Information screen display the name of the cache file when an
AIJ cache on an electronic disk for an AIJ process is enabled.

An AIJ cache on an electronic disk for an ALS process is partitioned into 64
blocks on each node in the cluster. The ALS processes on individual nodes in a
cluster use different portions of the same AIJ cache.

An AIJ cache on an electronic disk for an ALS process improves the response
time and throughput of database applications, while taking up only a small
amount of space. It works in a cluster, does not need to be backed up, and
is recovered automatically as part of the automatic database recovery (DBR)
process if the ALS process fails.

3.5.3 Improving Performance by Disabling After-Image Journaling for WORM
Storage Areas

Oracle Rdb allows users to store list (segmented string) data in storage areas
on write-once, read-many (WORM) devices. By default, when databases have
after-image journaling enabled and data is written to a WORM area (a storage
area on a WORM device), Oracle Rdb also logs this information to the .aij
file. Because information in a WORM area will never be overwritten, some
users consider the logging of WORM changes to the .aij file to be unnecessary
overhead. Such users would prefer to disable the logging of WORM changes to
the .aij file, especially when loading data into WORM areas.

Analyzing Performance Factors 3–39

Disabling the writing of WORM changes to the .aij file also decreases the time
spent rolling forward the database after a failure. The WORM area’s journal
records in the .aij file need to be applied even though the information in the
WORM area is never overwritten. This increases the time spent recovering the
database after a failure.

You can disable AIJ logging for write operations to WORM areas using the
SQL ALTER DATABASE or CREATE DATABASE statements. The ALTER
DATABASE statement shown in Example 3–12 disables AIJ logging of write
operations for the WORM area 1986_EVENTS in the marketing database. This
is an offline operation (it can be done only when there are no users attached to
the database).

Example 3–12 Disabling AIJ Logging for WORM Area Write Operations

SQL> ALTER DATABASE FILENAME marketing
cont> ALTER STORAGE AREA 1986_EVENTS
cont> WRITE ONCE (JOURNAL IS DISABLED);

Note

If you disable AIJ logging for write operations to WORM areas, the
performance of applications using those WORM areas should improve.
However, because data written to the WORM area is not being logged
to the .aij file, there is no guaranteed way of being able to recover
from WORM media failures. Before you disable AIJ logging for write
operations to a WORM storage area to improve performance, you need
to carefully consider the possibility that this action could result in lost
data in the WORM area if the WORM media fails.

For example, suppose you have a WORM area for which AIJ logging has been
disabled. Suppose that 120 pages were allocated in the WORM area, 100 pages
were written to the area, and the last backup of the area was done when the
area had 50 pages of information. If the WORM device fails, you will need to
restore the WORM area from the last backup to new WORM media. The first
50 pages that were backed up earlier will be restored. Although the database
may contain pointers to the WORM area between pages 50 and 120, the data
for those pages is lost. In this database, an exception will be raised each time
a request is made to fetch a page in the WORM area that was not restored.

3–40 Analyzing Performance Factors

Also, consider the case in which AIJ logging for write operations to a WORM
area has been enabled or disabled more than once and the WORM area has
not been properly backed up. If the WORM device fails, after the restore
and rollforward operation completes, the WORM area will have several holes
corresponding to regions that were not logged. An exception will be raised
whenever a reference is made to one of these holes.

Disabling AIJ logging for a WORM area is a trade-off between the gain in
performance from this action and the loss of data reliability (if a WORM device
fails). If you disable AIJ logging for a WORM area, the following actions can
help guard against the loss of data in WORM areas:

• Use other devices to shadow the WORM devices.

• Perform regular backups of the WORM storage areas.

• Keep multimedia objects written to WORM devices on other media until a
backup is performed (for example, if you scan an image and store the data
in a WORM area, keep the original image until the WORM area has been
backed up).

3.6 Improving the Performance of the RMU Optimize After_Journal
Command

You can improve the performance of the RMU Optimize After_Journal
command by defining the RDM$BIND_OPTIMIZE_AIJ_RECLEN logical name
or the RDB_BIND_OPTIMIZE_AIJ_RECLEN configuration parameter.

If you issue the RMU Optimize After_Journal command with the Log qualifier,
a message similar to the following is displayed:

%RMU-I-OPTRECLEN, AIJ optimization record length was XXX characters in length

The XXX indicates the largest after-image journal optimization record whose
size is smaller that the maximum configurable record size. The maximum
configurable record size is 1536 characters by default. The optimized record
length may be in the range of 512 to 4096 characters.

Analyzing Performance Factors 3–41

OpenVMS
VAX

OpenVMS
Alpha

Consider the following OpenVMS example:

$ RMU/OPTIMIZE/AFTER/LOG backup1.aij opt.aij
%RMU-I-LOGOPNAIJ, opened journal file DISK$:[USER.WORK.AIJ]BACKUP1.AIJ;1
%RMU-I-LOGCREOPT, created optimized after-image journal file
DISK$:[USER.WORK.AIJ]OPT.AIJ;40
%RMU-I-OPTRECLEN, AIJ optimization record length was 474 characters in length
%RMU-S-AIJOPTSUC, AIJ optimization completed successfully
%RMU-I-LOGSUMMARY, total 8203 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
♦

Use the value of the after-image journal optimization record length displayed
in the message for the value of the RDM$BIND_OPTIMIZE_AIJ_RECLEN
logical name or the RDB_BIND_OPTIMIZE_AIJ_RECLEN configuration
parameter to optimize performance (474 in this example). You cannot predict
the appropriate value before the optimization operation, but a given application
is likely to generate comparable .aij record sizes. The value of the previous
optimization operation is likely to be applicable to the next; a message will be
displayed if the selected value is too small.

In general, Oracle Corporation recommends the following guidelines to improve
the overall after-image journal optimization performance:

• Always use the RDMS$BIND_SORT_WORKFILES logical name or the
RDB_BIND_SORT_WORKFILES configuration parameter to specify the
number of work files you wish to use.

• Always use the SORTWORKn logical names to specify the file names of
temporary work files on an unused, preferably fast, device.

• Never put two or more work files on the same device.

• Use fewer work files if the work file devices have lots of free space. Use
more work files if available free space is limited.

• Do not use the Trace qualifier if you do not need to trace the output. The
trace output greatly increases the number of buffered and direct I/Os and
the overall elapsed time.

• Use the Log qualifier to obtain the OPTRECLEN message.

• Use the output of the OPTRECLEN message plus 10 percent as the value
of the RDM$BIND_OPTIMIZE_AIJ_RECLEN logical name or the RDB_
BIND_OPTIMIZE_AIJ_RECLEN configuration parameter; the minimum
value is 512 and the maximum value is 4096.

3–42 Analyzing Performance Factors

• Do not optimize an .aij file containing many DDL records or .aij records
greater than the RDM$BIND_OPTIMIZE_AIJ_RECLEN value; these
types of records require an immediate sort and flush operation, which is
extremely expensive and generates larger output files. The exact number
of records depends largely on the application and the overall size of the
input after-image journal.

DDL records and after-image journal records whose size is greater than the
maximum do not prohibit the generation of the optimized .aij output file. They
merely inhibit optimal performance of the optimization operation.

A message similar to the following is displayed if an .aij record is encountered
that forces a sort and flush operation:

%RMU-I-OPTEXCMAX, TSN XXX record size YYY exceeds maximum ZZZ record size

If an .aij record contains a DDL operation that forces a sort and flush
operation, a message similar to the following will be displayed:

%RMU-I-OPTDDLREC, TSN XXX contains DDL information that cannot be optimized

Also, if the Trace qualifier is specified, each internal sort operation will display
a set of statistics information about the sort operation. For example:

%RMU-I-OPTSRTSTAT, Number of input records: 10048
%RMU-I-OPTSRTSTAT, Number of sorted records: 10048
%RMU-I-OPTSRTSTAT, Number of output records: 0
%RMU-I-OPTSRTSTAT, Number of merge passes: 1
%RMU-I-OPTSRTSTAT, Number of sort nodes: 6490
%RMU-I-OPTSRTSTAT, Workfile allocation blocks: 29675

To emphasize the importance of the RDM$BIND_OPTIMIZE_AIJ_RECLEN
logical name and the RDB_BIND_OPTIMIZE_AIJ_RECLEN configuration
parameter, consider the difference between the following identical tests:

Using RDM$BIND_OPTIMIZE_AIJ_RECLEN=4096:

Direct I/O count : 7816
Elapsed CPU time : 0 00:01:29.91
Connect time : 0 00:04:17.31

Using RDM$BIND_OPTIMIZE_AIJ_RECLEN=512:

Direct I/O count : 925
Elapsed CPU time : 0 00:00:37.70
Connect time : 0 00:01:25.59

If the value of the .aij optimization record length is 4096, then set the
RDM$BIND_OPTIMIZE_AIJ_RECLEN logical name or the RDB_BIND_
OPTIMIZE_AIJ_RECLEN configuration parameter to 4096. However, setting
the value too large may decrease system performance.

Analyzing Performance Factors 3–43

3.7 Constraint Optimizations
Several types of constraint evaluation operations are optimized in Oracle Rdb,
including:

• Existence

• Uniqueness

• Modification

• Database key (dbkey) retrieval and erasing

The following sections describe the nature of these optimizations. Also, refer to
Section 8.1.3.1 for additional information on constraints and performance.

3.7.1 Existence Constraint
The existence constraint is not evaluated when you store rows in or delete rows
from tables named in the constraint. For example:

SQL> ALTER TABLE SALARY_HISTORY
cont> ADD CONSTRAINT CONSTRAINT SH_EMP_ID_EXISTS
cont> CHECK (EMPLOYEE_ID = ANY (SELECT EMPLOYEE_ID
cont> FROM EMPLOYEES))
cont> DEFERRABLE;

Oracle Rdb need not evaluate this constraint when you store rows in the
EMPLOYEES table or delete rows from the SALARY_HISTORY table.

3.7.2 Uniqueness Constraint
The uniqueness constraint is not evaluated when a row in a table named in the
constraint is deleted from the database. For example:

SQL> ALTER TABLE EMPLOYEES
cont> ALTER EMPLOYEE_ID COL1 CONSTRAINT EMP_UNIQUE
cont> UNIQUE DEFERRABLE;

The EMP_UNIQUE constraint does not have to be evaluated when you delete
rows from the EMPLOYEES table.

3.7.3 Modification Operation
If the columns in the table you modify are not named in the constraint
definition, Oracle Rdb need not evaluate the constraint. For example:

SQL> ALTER TABLE EMPLOYEES
cont> ALTER EMPLOYEE_ID CONSTRAINT EMP_ID_RANGE
cont> CHECK (EMPLOYEE_ID > ’00000’)
cont> NOT DEFERRABLE;

3–44 Analyzing Performance Factors

If you modify columns other than EMPLOYEE_ID in the EMPLOYEES table,
Oracle Rdb does not have to evaluate this constraint.

If any column named in the constraint is a COMPUTED BY field, the
constraint always is evaluated whenever you modify any column in the
table.

If the modification is an equivalence statement, the constraint does not have to
be evaluated. For example, Oracle Rdb does not evaluate the constraint when
the following query executes:

SQL> UPDATE EMPLOYEES
cont> SET EMPLOYEE_ID = EMPLOYEE_ID;

3.7.4 Database Key Retrieval and Erasing
Consider the following constraint definition:

SQL> ALTER TABLE EMPLOYEES
cont> ADD CONSTRAINT CONSTRAINT EMP_EXIST_SH
cont> CHECK (EMPLOYEE_ID = ANY (SELECT EMPLOYEE_ID
cont> FROM SALARY_HISTORY))
cont> DEFERRABLE;

Oracle Rdb uses database keys to locate rows in the database for retrieval. In
this example, any query executed for the EMPLOYEES table processes rows in
that table one row at a time. Because Oracle Rdb already has dbkeys for each
row it processes, the constraint evaluation mechanism can use these database
keys to retrieve single rows for constraint evaluation.

3.8 Locking
One of the primary features of a database management system is its ability to
ensure data consistency. When many users access the database at the same
time, a column’s value may be modified several times. After all modifications
to that column have been completed, you should expect the final value assigned
to that column to be the most current and correct value. If no mechanism were
in place to protect the current value of a retrieved column from corruption by
another user, you would have little confidence in any values in the database.
Oracle Rdb uses a lock manager1 to synchronize access of shared resources.

Lock conflict between users is a cause of performance problems. Lock conflicts
occur when more than one transaction attempts to lock the same resource at
the same time. You can use the Performance Monitor to display statistics on:

• Locks (particular lock type)

1 On OpenVMS, Oracle Rdb uses the OpenVMS lock manager. On Digital UNIX,
Oracle Rdb uses the Oracle Rdb lock manager.

Analyzing Performance Factors 3–45

• Summary locking statistics (locks requested, locks promoted, locks
demoted, locks released, blocking asynchronous system traps (ASTs), stall
time, and invalid lock block)

• Lock statistics for one statistics field (for example, locks requested)

• Lock statistics (by file)

You can use the RMU Show Locks command to display information about
process locking activity.

OpenVMS
VAX

OpenVMS
Alpha

The OpenVMS MONITOR LOCK command can also help you determine the
cause of database lock problems. See the OpenVMS documentation set for
more information. ♦

Section 3.8.1 describes the tools you can use to gather locking information.
Subsequent sections in this chapter describe lock considerations that can affect
database performance. Section 8.4 provides a step-by-step check for diagnosing
lock problems.

3.8.1 Gathering Lock Information
Sections 3.8.1.1 through 3.8.1.6 describe RMU Show commands, Performance
Monitor screens, and the System Dump Analyzer (SDA) utility1, all of
which can be used to gather lock information. Stall messages, described in
Section 3.2.1.3 and Section 3.2.1.5, also provide locking information. Refer to
Section 8.4 for more advice on analyzing locks.

3.8.1.1 RMU Show Locks Command
The RMU Show Locks command displays information about process locking
activity and lock contention for all active databases on a specific node.

In a clustered system, the RMU Show Locks command normally displays
detailed information for your current node only, although you can retrieve some
general, clusterwide information.

OpenVMS
VAX

OpenVMS
Alpha

To use the RMU Show Locks command on an OpenVMS system, you must have
the OpenVMS process privilege WORLD or a higher privilege. ♦

1 On OpenVMS systems only

3–46 Analyzing Performance Factors

Digital UNIX To use the RMU Show Locks command on a Digital UNIX system, you must be
the dbsmgr user or the superuser. ♦

Table 3–6 shows the RMU Show Locks command qualifiers and provides a brief
description of each. Further information is supplied in the text accompanying
the examples at the end of this section. For a detailed description of the RMU
Show Locks command, refer to the Oracle RMU Reference Manual.

Table 3–6 RMU Show Locks Command Qualifiers

Qualifier Description

Lock=(lock-id [, lock-id ...]) Displays locking information for a specified lock ID or
list of lock IDs. If you specify more than one lock, the
IDs must be enclosed in parentheses and separated by
commas. A lock ID is an 8-digit, hexadecimal number
that must be local to the node on which the RMU Show
Locks command is issued.

You can use the Performance Monitor Stall Messages
screen to show the lock ID that is causing a process to
wait.

(continued on next page)

Analyzing Performance Factors 3–47

Table 3–6 (Cont.) RMU Show Locks Command Qualifiers

Qualifier Description

Mode = mode-list Indicates the lock mode (Blocking or Waiting) that you
want to display.

• The Blocking mode option displays processes
whose locks are blocking the lock requests of other
processes. The first line of output identifies a
process that is waiting for a lock request to be
granted. Subsequent lines of output identify those
processes that are preventing the lock request
from being granted. When multiple processes are
waiting for the same lock resource, multiple sets of
process-specific information, one for each waiting
process, are displayed.

• The Waiting mode option displays the set of
processes whose lock requests are waiting due
to conflicting locks that have been granted to other
processes. The first line of output identifies the
process that has been granted a resource lock.
Subsequent lines of output identify those processes
that are waiting for a lock on the same resource.
When multiple processes are blocking the same
lock resource, multiple sets of process-specific
information, one for each blocking process, are
displayed.

If you specify both Blocking and Waiting, you must
separate the options with a comma and enclose them
in parentheses.

(continued on next page)

3–48 Analyzing Performance Factors

Table 3–6 (Cont.) RMU Show Locks Command Qualifiers

Qualifier Description

Options = options-list Indicates the type of information and the level of detail
the output should include. The two Options values are:
All and Full.

• Use the All option to display lock information for
all other processes that also have an interest in
the lock held by the specified process. The All
option must be used with the Process qualifier and
without the Mode qualifier.

• Use the Full option to display lock information
about special database processes. A number of
special database processes, such as monitors,
perform work on behalf of a database. These
database processes frequently request locks that,
by design, conflict with other processes’ locks.

If you specify more than one Options value, you must
separate the values with a comma and enclose the
options-list in parentheses.

Output = file-name Specifies the name of the file where output is sent. If
you do not specify a file type, the default output file
type is .lis. If you do not specify a file name, output is
sent to SYS$OUTPUT on OpenVMS and the standard
output (stdout) device on Digital UNIX.

Process = (process-id
[, process-id ...])

Displays locking information for the specified process
ID or list of process IDs. If you specify more than one
process, the IDs must be enclosed in parentheses and
separated by commas.

If you do not specify any qualifiers, RMU Show Locks displays all the locks on
your node. This display can be large.

You can halt the output from the RMU Show Locks command by pressing
Ctrl/S and then restart the halted output by pressing Ctrl/Q. If you decide that
you want to completely terminate the RMU Show Locks command, you can do
this on OpenVMS by pressing either Ctrl/C or Ctrl/Y and on Digital UNIX by
pressing Ctrl/C.

Table 3–7 indicates the actions that result from several different combinations
of the command qualifiers; the table does not show all the possible
combinations. You can specify the Options qualifier using the Full value with
every combination shown in the table without affecting the action. Therefore,
Options=Full is not included in the table.

Analyzing Performance Factors 3–49

Table 3–7 RMU Show Locks Command Qualifier Combinations

If You Specify RMU Show Locks with . . . You Will See Lock Information for . . .

Process=process-id and
Mode=Blocking

All the processes blocking the specified
process or list of processes

Process=process-id and
Mode=Waiting

All the processes waiting for the specified
process or list of processes

Process=process-id and
Options=All

All the processes that have an interest in
the lock held by the specified process or
list of processes

Lock=lock-id and
Mode=Blocking

All the processes blocking the specified
lock or list of locks

Lock=lock-id and
Mode=Waiting

All the processes waiting for the specified
lock or list of locks

Mode=(Blocking,Waiting) and
Process=(id-1,id-2)

All the processes blocking process id-1,
and all the processes waiting for process
id-2

When you specify a list of process or lock identifiers, make sure the processes
or locks are local to the node on which the RMU Show Locks command is
issued.

The rest of this section provides sample commands and output from several
RMU Show Locks qualifier combinations. Each example shows output that
results from contention between two transactions. The first transaction is
associated with process ID 44A047C9:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR EXCLUSIVE WRITE;

The second transaction is associated with process ID 44A045D1:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SELECT * FROM EMPLOYEES WHERE LAST_NAME=’Toliver’;

The second transaction must wait for the first transaction to commit or roll
back before it can execute. The first transaction has exclusive access to the
EMPLOYEES table, which the second transaction needs to read.

The heading for each report that you generate indicates what qualifiers were
used in the command line. Refer to the Oracle RMU Reference Manual for
an explanation of the report format and content. Refer to Table 3–8 for a
description of the lock types that can appear in the Requested and Granted
queues. Note that the SR and SW locks shown in Table 3–8 are equivalent
to the CR and CW locks, respectively, that can appear in a RMU Show Locks
report. Also, the NL (NULL) lock appears in the report but not in the table.

3–50 Analyzing Performance Factors

The NL lock is used to indicate an interest in the resource, or as a placeholder
for future lock conversions.

Example 3–13 shows a portion of the output generated by the RMU Show
Locks command with the Process=44A047C9 qualifier. The actual report is
several pages long because it shows all the locks held by process ID 44A047C9.
The report text shows the resource on which the lock is held, ID information,
and lock status (Requested and Granted).

Example 3–13 Displaying Locks for a Process

==
SHOW LOCKS/PROCESS Information
==

.

.

.
--
Resource: page 352

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 7CC80BC8 00020025 PR PR

--
Resource: cluster membership

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 16180C1A 00020025 PR PR

.

.

.
--
Resource: logical area 39

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 45983EC0 00020025 EX EX

.

.

.

(continued on next page)

Analyzing Performance Factors 3–51

Example 3–13 (Cont.) Displaying Locks for a Process

--
Resource: logical area 33

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 0480973C 00020025 CR NL

--
Resource: logical area 53

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 56009774 00020025 EX EX

.

.

.

Example 3–14 shows the output generated by the RMU Show Locks command
with the Process=44A047C9 and the Mode=Waiting qualifiers. The report
shows that process ID 44A045D1 is waiting for the exclusive lock held on
logical area 39 by the specified process (44A047C9) to be released.

This command identifies the waiting process. If you specify the ID of a process
that is itself a waiting process, Oracle RMU returns the following message: no
locks on this node with the specified qualifiers.

Example 3–14 Identifying Processes Waiting for Locks

==
SHOW LOCKS/PROCESS/WAITING Information
==

--
Resource: logical area 39

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 44A047C9 USER1.......... 45983EC0 00020025 EX EX
Waiting: 44A045D1 _RTA11:........ 3B5467DA 00020025 CR NL

Example 3–15 shows the output generated by the RMU Show Locks command
with the Process=44A045D1 and Mode=Blocking qualifiers. The report shows
that process ID 44A047C9 has an exclusive lock on logical area 39, and is
blocking the specified process (44A045D1).

3–52 Analyzing Performance Factors

This command identifies the blocking process. If you specify the ID of a process
that is itself the blocking process, Oracle RMU returns the following message:
no locks on this node with the specified qualifiers.

Example 3–15 Identifying Blocking Processes

==
SHOW LOCKS/BLOCKING Information
==

--
Resource: logical area 39

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Waiting: 44A045D1 _RTA11:........ 3B5467DA 00020025 CR NL
Blocker: 44A047C9 USER1.......... 45983EC0 00020025 EX EX

Example 3–16 shows the output generated by the RMU Show Locks command
with the Lock=45983EC0 and Mode=Waiting qualifiers. The report is identical
to the display shown in Example 3–14 because process ID 44A047C9 has taken
out only one lock. If process ID 44A047C9 held multiple locks, Example 3–14
would display all of them, but this example would only display lock information
for lock ID 45983EC0.

Example 3–16 Displaying Lock IDs for Waiting Processes

==
SHOW LOCKS/LOCK/WAITING Information
==

--
Resource: logical area 39

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 44A047C9 USER1.......... 45983EC0 00020025 EX EX
Waiting: 44A045D1 _RTA11:........ 3B5467DA 00020025 CR NL

Example 3–17 shows a portion of the output generated by the RMU Show
Locks command with the Process=44A047C9 and Options=All qualifiers. The
full report is several pages long because it lists all the resources that have
locks held by process ID 44A047C9 and all the locks on the same resource held
by other processes. Compare this report with the one shown in Example 3–13.

Analyzing Performance Factors 3–53

Example 3–17 Identifying All Resources Held by a Process Lock

==
SHOW LOCKS/PROCESS Information
==

.

.

.
--
Resource: page 352

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 7CC80BC8 00020025 PR PR
Owner: 44A045D1 _RTA11:........ 134C0979 00020025 PR CR
--
Resource: cluster membership

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 16180C1A 00020025 PR PR
Owner: 44A045D1 _RTA11:........ 333C95ED 00020025 PR PR

.

.

.
--
Resource: logical area 39

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 45983EC0 00020025 EX EX
Waiting: 44A045D1 _RTA11:........ 3B5467DA 00020025 CR NL

.

.

.
--
Resource: logical area 33

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 0480973C 00020025 CR NL
Owner: 44A045D1 _RTA11:........ 31900BAE 00020025 CR CR
--
Resource: logical area 53

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Owner: 44A047C9 USER1.......... 56009774 00020025 EX EX

.

.

.

3–54 Analyzing Performance Factors

Example 3–18 shows the output generated by the RMU Show Locks command
with the Mode=(Waiting,Blocking) and the Process=(44A045D1,44A047C9)
qualifiers. This command combines the output shown in Example 3–15 and
Example 3–16 into a single report.

Example 3–18 Identifying Waiting and Blocked Processes

==
SHOW LOCKS/PROCESS/BLOCKING Information
==

--
Resource: logical area 39

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Waiting: 44A045D1 _RTA11:........ 3B5467DA 00020025 CR NL
Blocker: 44A047C9 USER1.......... 45983EC0 00020025 EX EX

==
SHOW LOCKS/PROCESS/WAITING Information
==

--
Resource: logical area 39

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 44A047C9 USER1.......... 45983EC0 00020025 EX EX
Waiting: 44A045D1 _RTA11:........ 3B5467DA 00020025 CR NL

Interpreting the Meaning of the Granted and Requested Modes in RMU Show
Locks Output Displays
When displaying locks using the RMU Show Locks command, the ‘‘Requested’’
and ‘‘Granted’’ modes of the given lock are displayed. The definitions of these
modes are:

• Requested

This is the mode for which the process has requested the lock. Valid modes
are NL, PR, PW, CR, CW, and EX. This mode is not guaranteed to be
granted; some locks are intentionally held in conflicting modes forever (for
example, the termination lock).

• Granted

This is the mode that the process was last granted for the lock. Valid
modes are NL, PR, PW, CR, CW, and EX. If the lock has never been
previously granted, the lock mode is displayed as NL mode.

Analyzing Performance Factors 3–55

If the Requested and Granted lock modes are different in the RMU Show Locks
output, then the lock requested is currently blocked on either the Waiting or
Conversion queue. If the modes are the same, then the lock has been granted.

The lock manager does not always update the Requested lock mode. This
means that potentially conflicting information can be displayed by the RMU
Show Locks command.

The Requested lock mode is only updated under the following situations:

1. The lock request is for a remote resource.

2. The lock request is a Nowait request.

3. The lock request could not be granted due to a lock conflict (that is, it was
canceled by the application or aborted due to lock timeout/deadlock).

4. The lock request is the first for the resource.

Example 3–19 shows a portion of the output from the RMU Show Locks
command.

Example 3–19 RMU Show Locks

$ RMU/SHOW LOCKS
==

SHOW LOCKS Information
==

.

.

.
--
Resource Name: page 533
Granted Lock Count: 1, Parent Lock ID: 01000B6C, Lock Access Mode: Executive,
Resource Type: Global, Lock Value Block: 03000000 00000000 00000000 00000002

-Master Node Info- --Lock Mode Information-- -Remote Node Info-
ProcessID Lock ID SystemID Requested Granted Queue Lock ID SystemID
2040021E 0400136A 00010002 EX CR GRANT 0400136A 00010002
--

.

.

.

It is ordinarily difficult to explain how the combination of lock modes shown in
Example 3–19 could occur. Note that the CR (concurrent read) mode is on the
Grant queue (not the Conversion queue).

Knowledge of the operating environment is necessary to know that there was
only one node on this system. Two lock requests occurred to generate this
output, in the opposite order of what appears to have occurred.

3–56 Analyzing Performance Factors

The first lock request was for EX (exclusive) mode, which was immediately
granted. Thus, the Requested and Granted modes were updated according to
situation 4. Then, the lock was demoted from EX to CR mode, which was also
immediately granted. However, the Requested field was not updated because
none of the four preceding rules was true, so the Requested mode was never
updated to reflect the CR lock request.

3.8.1.2 Displaying Integrated Lock Information
The Performance Monitor provides integrated lock information on the Stall
Messages, Active User Stall Messages, and DBR Activity screens.

Type L to display a menu of any lock IDs currently displayed on the active
screen.

For example, consider the following Performance Monitor Active User Stall
Messages screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:48:03
Rate: 1.00 Second Active User Stall Messages Elapsed: 03:06:07.20
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Since...... Stall.reason............................. Lock.ID.
2B600554:1 15:38:27.04 - waiting for record 55:321:2 (EX) 1500624B
2B600556:1 15:40:40.66 - waiting for record 55:321:2 (EX) 1200A2E4
2B600555:1 writing pages back to database

--
Config Exit Help LockID Menu >next_page <prev_page Set_rate Write Zoom !

Typing L displays the menu of available lock IDs. For example:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:48:11
Rate: 1.00 Second Active User Stall Messages Elapsed: 03:06:07.20
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Since...... Stall.reason............................. Lock.ID.
2B600554:1 15:38:27.04 - waiting for record 55:321:2 (EX) A. 1500624B
2B600556:1 15:40:40.66 - waiting for record 55:321:2 (EX) B. 1200A2E4
2B600555:1 writing pages back to database

--
Config Exit Help LockID Menu >next_page <prev_page Set_rate Write Zoom !

Note the displayed lock IDs have been prefixed with the standard menu-
selection letter choice. The desired lock ID can be selected by either typing the
desired letter, or moving the highlighted cursor using the up arrow or down
arrow keys and then pressing the Return key.

If there are no lock IDs on the display, typing L has no effect.

Analyzing Performance Factors 3–57

When the desired lock ID is selected, the Lock Information display appears.
For example:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:48:15
Rate: 1.00 Second Active User Stall Messages Elapsed: 03:06:07.20
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Since...... Stall.reason............................. Lock.ID.
2B600554:1 15:38:27.04 - waiting for record 55:321:2 (EX) >1500624B<
2B600556:1 15:40:40.66 - waiting for record 55:321:2 (EX) 1200A2E4
2B600555:1 writing pages back to database

+-- Lock Information: 1500624B ----------------------------+
| |
| Resource: record 321:2 |
| State... ProcessID Process.Name... Lock.ID. Rq Gr Queue |
| |
| Blocker: 2B600555 RICK3.......... 0F005AB6 EX EX Grant |
| Waiting: 2B600556 RICK4.......... 1200A2E4 EX NL Cnvrt |
| Waiting: 2B600554 RICK2.......... 1500624B EX NL Cnvrt |
| |
+--+

--
Config Exit Help LockID Menu >next_page <prev_page Set_rate Write Zoom !

The Lock Information display is not dynamic. The lock information is captured
at the time the lock ID is selected, and the information does not dynamically
change. The Lock Information display is a snapshot in time of the selected lock
ID.

The Lock Information display can only be displayed. It cannot be saved using
the Write option.

The Lock Information display provides the following information:

Information Status

State This field indicates whether the respective lock is an owner,
a blocker, or is waiting for the resource.

ProcessID This field indicates the ID of the process that owns the
respective lock.

Process.Name This field indicates the name of the process that owns the
respective lock.

Lock.ID This field indicates the ID of the lock on the indicated
resource.

Rq This field indicates the mode in which the respective lock
was requested. Modes are NL, CR, CW, PR, PW, and EX.

3–58 Analyzing Performance Factors

Information Status

Gr This field indicates the mode in which the respective lock
was granted. Modes are NL, CR, CW, PR, PW, and EX. The
granted mode may differ from the requested mode if the
lock is on the conversion queue or if the lock was demoted
from a stronger to a weaker mode.

Queue This field indicates the queue on which the respective lock
resides. There are three queues:

• Grant —the Grant queue

• Cnvrt—the Conversion queue

• Wait—the Waiting queue

Note that while the order of displayed locks is arbitrary, you can identify
the order in which waiting locks will be granted. For instance, in the
previous example, two processes are waiting for the same lock. Displaying
the information for lock 1500624B simply indicates that both processes are
waiting for the same resource. Displaying the information for lock 1200A2E4
shows the following information:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:49:01
Rate: 1.00 Second Active User Stall Messages Elapsed: 03:06:07.20
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Since...... Stall.reason............................. Lock.ID.
2B600554:1 15:38:27.04 - waiting for record 55:321:2 (EX) 1500624B
2B600556:1 15:40:40.66 - waiting for record 55:321:2 (EX) >1200A2E4<
2B600555:1 writing pages back to database

+-- Lock Information: 1500624B ----------------------------+
| |
| Resource: record 321:2 |
| State... ProcessID Process.Name... Lock.ID. Rq Gr Queue |
| |
| Blocker: 2B600555 RICK3.......... 0F005AB6 EX EX Grant |
| Blocker: 2B600554 RICK2.......... 1500624B EX NL Cnvrt |
| Waiting: 2B600556 RICK4.......... 1200A2E4 EX NL Cnvrt |
| |
+--+

--
Config Exit Help LockID Menu >next_page <prev_page Set_rate Write Zoom !

This display indicates that, although lock 1200A2E4 is on the conversion
queue, it is blocking the other lock and will be granted before the other lock.

The Lock Information display can contain more information than can be
displayed on the terminal screen. Therefore, you can scroll through the Lock
Information display either one line at a time or one screen at a time.

Analyzing Performance Factors 3–59

You can move the lock information up or down one line at a time using the up
arrow or down arrow keys. You can also move the lock information up or down
one page at a time using the Previous Screen or left arrow key, or the Next
Screen or right arrow key. These keys are activated when the indicators ‘‘<–
MORE’’ and/or ‘‘MORE–>’’ dynamically appear on the lock information display
itself. The horizontal menu at the bottom of the screen also indicates whether
these keys are activated. If the navigational keys are not activated, nothing
happens if you attempt to use them.

Note that the Lock Information display size is based on the number of lines
configured for the terminal. For instance, a terminal with 48 lines has a larger
Lock Information display than a terminal with 24 lines.

Because the database is continuing to operate while you display the lock
information, the selected lock can be released before its information can be
displayed. If this happens, the message ‘‘Lock has been released since it was
displayed’’ is displayed on the terminal screen. Also, the lock ID menu is
canceled when you return from the Lock Information screen.

If you do not have sufficient privilege to retrieve the lock information, the
message ‘‘Insufficient privilege to display lock information’’ is displayed on the
terminal screen. Also, the lock ID menu is canceled when you return from the
Lock Information screen.

Because of the dynamic nature of the lock information, the lock information is
not written to the output file and cannot be replayed from an input file.

While the Lock Information display is displayed, terminal broadcast messages
are suspended. The messages resume after you leave the Lock Information
display.

Note that on the Active User Stall Messages screen, stalled locks that are no
longer stalled are still displayed. Even if the displayed lock is no longer stalled,
you can still attempt to display information on that stalled lock. However, the
lock that was stalled is probably released.

The Lock Information display does not attempt to provide detailed information
about the process holding a respective lock. The process information can be
obtained using the Process Accounting screen if the process is on the current
node.

Because of the current nonsplitting menu limitation of 36 options, using the
menu-selection letters A to Z and 0 to 9, only the first 36 lock IDs on a given
display are selectable. This restriction may be removed in the future. To work
around this restriction, set the terminal screen length to less than 42 lines or
use the other Stall Messages screen, where the order of the displayed lock IDs
may be different from the current screen.

3–60 Analyzing Performance Factors

3.8.1.3 Gathering Lock Statistics with the Performance Monitor
The Performance Monitor provides the following screens to help gather
information about locking:

• The Summary Locking Statistics screen shows a summary of the lock
activity done by Oracle Rdb.

• The Locking for One Lock Type screen shows lock statistics for a particular
lock type. You should use this screen when you want all the available
information on a specific lock type. The only difference between this lock
screen and the Lock Statistics for One Statistics Field screen is that these
statistics pertain only to the type of lock that you specify and are, therefore,
more useful for detailed analysis of lock activity.

• The Locking for One Statistics Field screen shows lock statistics for all the
lock types of a particular statistical field. You should use this screen when
you want to see specific information about all the different lock types.

• The Lock Deadlock History screen can be used to identify the object that
causes a deadlock event.

For more information, see Section 3.8.1.4.

• The Lock Timeout History screen can be used to identify the object that
causes a timeout event.

For more information, see Section 3.8.1.5.

• The Lock Statistics by file screen displays information about page locks
that are specific to storage areas and snapshot files. This information is
vital in determining which storage areas have the most locking activity,
and analyzing the validity of storage area partitioning.

3.8.1.4 Performance Monitor Lock Deadlock History Screen
The Lock Deadlock History screen can be used to identify the object that
causes a deadlock event. You access the Lock Deadlock History screen from the
Process Information submenu.

The Stall Messages screen provides stall information, but when a lock is
deadlocked, the stall is terminated and the information is no longer available
on the Stall Messages screen.

For each active process on the current node, the Lock Deadlock History screen
shows the process ID, the time that the process was most recently involved in a
deadlock, the reason for the most recent deadlock, and the number of deadlocks
the process has encountered since attaching to the database.

Analyzing Performance Factors 3–61

The following Lock Deadlock History screen shows a record deadlock. The
lock deadlock reason indicates that the process was waiting for a record and
provides the dbkey of that record.

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:48:12
Page: 0.10 Seconds Lock Deadlock History Elapsed: 00:07:21.10
Page: 1 of 3 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Occurred... Lock.timeout.reason...................... #Timeout
65505487:1 08:55:21.16 Waiting for record 1:2:1 (CR) 1

--
Config Exit Help Menu >next_page <prev_page Set_rate Write Zoom !

By using the Lock Deadlock History screen to examine the most recent
deadlocks, a DBA can more easily identify potential database hot spots and
application bottlenecks. Looking at a screenful of deadlock information can
help the DBA differentiate between frequent and infrequent problems and
correlate common causes of the problems.

The following Lock Deadlock History screen shows a page deadlock. Although a
page deadlock is not necessarily a bad occurrence, it could indicate a potential
performance problem. Note that process 7660441F has had 36 deadlocks,
although not necessarily on the indicated page (the lock deadlock reason gives
the reason for only the most recent deadlock). If 36 deadlocks is a high number
for the time the process has been attached to the database, the DBA should
examine the process in detail. A high number of deadlocks for a process can
indicate a major design problem.

3–62 Analyzing Performance Factors

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:51:33
Page: 0.10 Seconds Lock Deadlock History Elapsed: 00:07:23.12
Page: 1 of 3 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Occurred... Lock.deadlock.reason.................... #Deadlock
76601621:1 0
7660441F:1 14:09:01.89 - waiting for page 1:258 (PR) 36

--
Config Exit Help Menu >next_page <prev_page Set_rate Write Zoom !

In general, record deadlocks are undesirable and the cause of such deadlocks
should be discovered and fixed. Page deadlocks are not always bad, but they
need to be analyzed.

3.8.1.5 Performance Monitor Lock Timeout History Screen
The Lock Timeout History screen can be used to identify the object that causes
a timeout event. You access the Lock Timeout History screen from the Process
Information submenu.

The Stall Messages screen provides stall information, but when a process times
out while waiting for a lock, the stall is terminated and the information is no
longer available on the Stall Messages screen.

For each active process on the current node, the Lock Timeout History screen
shows the process ID, the time that the process most recently timed out while
waiting for a lock, the reason for the most recent timeout experienced by the
process, and the number of timeouts experienced by the process since attaching
to the database.

Analyzing Performance Factors 3–63

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 16-MAY-1996 14:54:13
Rate: 3.00 seconds Lock Timeout History Elapsed: 00:00:31.75
Page: 1 of 3 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Occurred... Lock.timeout.reason...................... #Timeout
65505487:1 08:55:21.16 Waiting for record 1:2:1 (CR) 1

--
Config Exit Help Menu >next_page <prev_page Set_rate Write Zoom !

By examining the first Lock Deadlock History screen example in Section 3.8.1.4
and this Lock Timeout History screen, the DBA could determine that the record
with a dbkey of 1:2:1 is a database hot spot and the source of contention.

3.8.1.6 System Dump Analyzer

OpenVMS
VAX

OpenVMS
Alpha

To find out more about locks, you can use the System Dump Analyzer (SDA)
utility. For more information, see the OpenVMS documentation set.

To use SDA, take the following steps:

1. You must have the OpenVMS CMKRNL privilege to use SDA. The
CMKRNL privilege is powerful; it should not be given to users who do
not need it.

2. Use the Stall Messages or Active User Stall Messages screens to isolate the
process ID (PID) of the stalled process.

3. Invoke SDA, as follows:

$ ANALYZE/SYSTEM

4. Get the index value of the PID of the stalled process:

SDA> SHOW SUMMARY

5. Select the stalled process by PID:

SDA> SET PROCESS/INDEX=index_value

6. Verify that you have the right process:

SDA> SHOW PROCESS

7. Create an output file that you will be able to edit later:

SDA> SET OUTPUT file_name.ext

3–64 Analyzing Performance Factors

8. Display the process information:

SDA> SHOW PROCESS/INDEX=index_value/LOCKS

9. Close the file containing the process information by redirecting output of
subsequent commands to SYS$OUTPUT:

SDA> SET OUTPUT SYS$OUTPUT

10. Start a subprocess so that you can edit the file that you created with the
lock information:

SDA> SPAWN

11. Search, starting from the bottom of the file, for the text string ‘‘Waiting’’:

$ EDIT file_name.ext

12. Write down the lock ID for this particular lock and log out of the
subprocess.

$ LO (get back to SDA)

13. Show information about the particular lock:

SDA> SHOW RESOURCE/LOCK=lock_id

This shows what locks are granted, what locks are waiting, and what
resource is locked. Write down all LOCK QUEUE information.

14. Determine the PID value:

SDA> SHOW LOCK lock_id

15. Locate a valid process ID value:

SDA> SHOW PROCESS/INDEX=pid_from_previous_step

16. Exit:

SDA> EXIT

17. Show which process has caused or is partially responsible for the stall:

$ SHOW PROCESS/ID=Process_ID_value

This process may have to be repeated for any stalled processes.

If the problem is caused by a batch job, the logic in that software may have
to be changed. In most cases, transactions should be started as NOWAIT,
and have the software trap errors and schedule retries. Oracle Rdb defaults to
transactions started as WAIT, which more than likely relate to a stall condition.

Analyzing Performance Factors 3–65

Use of sorted indexes and their associated index node sizes may also relate
to the problem. Hashed indexes may be an effective alternative. Otherwise,
consider reducing the index node size.

It is also possible that somebody suspended the process holding the locks,
possibly by entering Ctrl/Y without a STOP or EXIT command, or by
suspending a batch job. ♦

3.8.2 Lock Considerations
When one user’s query fetches a row from the database in a read/write
transaction, a series of protected read (PR) or protected write (PW) locks
prevents other users from altering that row. Oracle Rdb places these locks
not only on that row, but on database tables, pages, and index nodes as well.
Any subsequent attempt to retrieve the row must not conflict with the current
user’s operation on that row. However, if a user’s query fetches a row from the
database in a read-only transaction, the query uses a shared read (SR) lock on
the logical area so other users know a transaction is active in the logical area.
No locking is done at the row level, but the read-only transaction uses page
locking to ensure that the instance of the database page is valid in each user’s
cache. Refer to the Oracle Rdb7 Guide to Database Design and Definition for
further information on Oracle Rdb locking activity.

Oracle Rdb controls access to database resources through transactions. When
you begin a transaction, you specify the kind of database activity that will take
place; you can restrict access to those tables you intend to use, or permit other
users to share the same data. Once a transaction is started, all operations
performed within the scope of a transaction are guaranteed to be consistent.
That is, the rows a user retrieves or updates are stable for the duration of
the transaction. When the transaction is terminated, updated rows become
available to other database users. However, while the transaction is in
progress, no intervening user can modify any of those rows.

By specifying a transaction mode that permits a set of database operations
to complete successfully, the user can influence the type of concurrent
database activity against which his or her transaction competes. If your
application requires concurrent multiuser read access, enabling snapshot
files and using read-only transactions prevents conflict with other transaction
types except batch-update transactions and transactions that use the lock
specification clause (RESERVING . . . FOR EXCLUSIVE . . .). For most other
cases, read/write transactions are used where update access is necessary.
Section 3.8.3 describes the database access modes you can include in the SQL
SET TRANSACTION statement. Refer to the Oracle Rdb7 SQL Reference
Manual for details on the SQL SET TRANSACTION statement and detailed
information on lock compatibility among the different types of transactions.

3–66 Analyzing Performance Factors

3.8.3 Reserving Options
The best transaction design keeps the amount of locking to a minimum. By
using a reserving option in your SQL SET TRANSACTION statement, you
can attain the level of database concurrency or security your tasks require. A
reserving option is the combination of a share mode and a lock type (read or
write). The share mode options are:

• Shared

• Protected

• Exclusive

Because multiuser access to the database can increase or decrease depending
on the application and data used, you should try to anticipate the number of
concurrent users in the database and use this number as a guide for access
modes.

If you schedule single-user access to perform large updates to the database,
you can minimize locking resources and increase performance by specifying
the exclusive write mode in the SQL SET TRANSACTION statement. The
exclusive write mode does not incur the overhead of writing to the snapshot
file or maintaining row-level locking information. Therefore, a transaction that
uses the exclusive write mode can finish in less time and use less memory than
the same transaction using another share mode and lock type.

If your application requires concurrent multiuser access, the access mode you
choose will rely on the type of query being used. If the query requires only
read access, use a read-only transaction. If the query updates the database,
use the shared write mode where possible. The shared write mode promotes
high concurrency. The protected write mode yields low concurrency and allows
one single-update user in the specified table. Other users who attempt to write
to the protected table will fail or wait, and must roll back. Users who request
a read-only transaction are still allowed access to that table.

If your tasks require many concurrent update users in the table, use the
shared mode in the SQL SET TRANSACTION statement. Other users may
update the table. While the shared write mode increases the number of users
allowed to update the table at the same time, it also increases lock contention
for all users. Deadlocks may occur and force a user to redo work. Using the
shared write mode increases transaction protection, but overall transaction
turnaround may be slightly longer because users will wait longer for lock
conflicts to be resolved.

Analyzing Performance Factors 3–67

Examples 3–20, 3–21, 3–24, 3–25, and 3–26 describe the reserving options and
the level of compatibility with other transactions.

Example 3–20 Starting a Transaction in a Shared Read Reserving Option

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR SHARED READ;

A shared read request as shown in Example 3–20 grants all retrieval
transactions access to the specified database resource. Other transactions
that update a table reserved in this mode are also allowed access to the same
resource. Shared readers and shared writers can access the same resource
until the writer actually modifies the resource.

When a physical area is readied in shared read mode by one transaction and
in shared write mode by the next transaction, the buffers belonging to the area
are not flushed when the second transaction readies the area.

For all other mode conversions for physical areas, Oracle Rdb must flush
the buffers belonging to the area before the second transaction readies the
area. If the mode conversion is for a data area, Oracle Rdb first flushes the
buffers belonging to the corresponding snapshot area, then flushes the buffers
belonging to the data area, and finally demotes or promotes the locks, as
appropriate.

When a table is reserved for shared write or shared read, the behavior is
identical from a locking standpoint to the behavior when the reserving clause
is not specified, except that:

• A reserving for shared read transaction always obtains locks in CR
(concurrent read) mode, which prevents the transaction from writing to the
table.

• Reserving for shared read and reserving for shared write transactions
should never deadlock with transactions that specified the reserving for
protected or reserving for exclusive share modes.

When a table is reserved, all the logical areas of the table are not readied prior
to starting the transaction. Instead, only one logical area needs to be locked at
the time the transaction starts to prevent a protected or exclusive transaction
from succeeding. Subsequent logical areas are locked when accessed, as if
no reserving clause had been specified. In the worst case, a reserving for
shared read or reserving for shared write transaction would thus require one
additional lock operation for each table accessed during the transaction.

3–68 Analyzing Performance Factors

Update transactions share access to the same table. There are several ways
to minimize lock contention when you update rows. If you are updating rows
whose indexes will not be modified, you can specify that dbkeys are valid
until you issue a DISCONNECT statement. Use the SQL DBKEY SCOPE IS
ATTACH clause when you first declare or invoke the database. This guarantees
that the dbkey of each row does not change (in the case of deletions) until this
user detaches from the database, usually with a DISCONNECT statement.

To minimize lock contention, start a read-only transaction by locating the rows
you want to modify and their dbkeys. Issue a COMMIT statement. Then start
a read/write transaction as shown in Example 3–21, look up the rows you
want to modify by their dbkeys, and make the necessary modifications. This
is a good method to use when you must make many updates in a concurrent
environment.

Example 3–21 Starting a Transaction in a Shared Write Mode

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE;

The cost in I/O operations makes this method impractical for transactions in
which only a few updates are required or for cases in which the indexes may
change in the table being modified. Thus, if you are updating a row without
changing the values of any columns that are part of an index, then you will
have less lock contention if you retrieve the row by its dbkey.

For example, consider the EMPLOYEES table in the mf_personnel sample
database. Assume that you retrieve a row for an employee and you want to
change the employee’s address. If your program retains the dbkey of the row,
it could use the syntax shown in Example 3–22.

Example 3–22 Updating and Retrieving a Row by Dbkey

SQL> SELECT E.EMPLOYEE_ID
cont> FROM EMPLOYEES E
cont> WHERE E.RDB$DBKEY=<.saved dbkey>;
SQL> UPDATE EMPLOYEES
cont> SET ADDRESS_DATA_1 = <new address>
cont> WHERE EMPLOYEE_ID=<.saved dbkey>;

In Example 3–22 only the data row is locked.

Analyzing Performance Factors 3–69

If the program fetches the row based on the value in the EMPLOYEE_
ID column (shown in Example 3–23), any index nodes for the index on
EMPLOYEE_ID that must be traversed to reach the row are locked. The data
row is also locked. If there is no index on EMPLOYEE_ID, then the entire
table will be locked to find the row.

Example 3–23 Updating and Retrieving a Row by Column Value

SQL> SELECT E.EMPLOYEE_ID
cont> FROM EMPLOYEES E
cont> WHERE E.EMPLOYEE_ID=<some ID number>;
SQL> UPDATE EMPLOYEES
cont> SET ADDRESS_DATA_1 = <new address>
cont> WHERE EMPLOYEE_ID=<some ID number>;

Thus, in Example 3–22, fetching by dbkey reduces possible locking contention.
A lock conflict is less likely because no index is locked.

If you modify a row using a dbkey, and the columns you modify are used in
an index, then the index must be updated. This means that index nodes will
be locked. In this case, fetching by dbkey does not reduce the possibility of
lock contention. The same locks are held regardless of whether you retrieve by
dbkey or by column value.

Another way to reduce lock contention, using an SQL precompiled or module
language program, is to declare the same database twice with two different
aliases. In the DECLARE ALIAS statement, you must specify the DBKEY
SCOPE IS ATTACH clause to ensure that the dbkeys are always pointing
to the same rows even if some rows are deleted. This prevents Oracle Rdb
from using these dbkeys again until the user who deleted the rows issues a
DISCONNECT statement. This method is useful for each update transaction
you perform, if you include the database once in a read/write and once in
read-only transaction. You can find the dbkeys or perform some other retrieval
from the read-only copy of the database and then update the read/write copy.
This method uses a good deal of the system resources, but can dramatically
reduce lock contention. See the DECLARE ALIAS statement in the Oracle
Rdb7 SQL Reference Manual for more information.

Transactions performing protected read operations can share the EMPLOYEES
table. No other update transactions are permitted access. Example 3–24 shows
how to declare a protected read transaction.

3–70 Analyzing Performance Factors

Example 3–24 Starting a Transaction in a Protected Read Mode

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED READ;

An update transaction as shown in Example 3–25 can access the EMPLOYEES
table and share access with other retrieval transactions. No concurrent update
transactions are permitted.

Example 3–25 Starting a Transaction in a Protected Write Mode

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED WRITE;

The exclusive share mode as shown in Example 3–26 grants only one
transaction access to database resources at a time. The exclusive read mode
lets you only read data from the EMPLOYEES table, while the exclusive write
mode lets you insert, update, or delete data in the EMPLOYEES table.

Example 3–26 Starting a Transaction in an Exclusive Read or Write Mode

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR EXCLUSIVE READ;
cont> COMMIT;
SQL>
SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR EXCLUSIVE WRITE;

To ensure maximum concurrent access, select the most compatible locks when
you request a database resource. For example, for very short transactions
that have contention problems on an index, using protected write may be
faster than shared write, even if there are concurrent users. A compatible
lock can coexist with other locks for the same database resources. Table 3–8
shows lock compatibility between a current transaction and access modes other
transactions may specify.

Analyzing Performance Factors 3–71

Table 3–8 Lock Compatibility Between a Current Transaction and Access
Modes Other Transactions Can Specify

Mode of Requested
Mode of Current Lock

Lock SR SW PR PW EX

SR Yes Yes Yes Yes No

SW Yes Yes No No No

PR Yes No Yes No No

PW Yes No No No No

EX No No No No No

Key to lock modes:

SR—Shared Read. Sometimes referred to as Concurrent Read (CR).
SW—Shared Write. Sometimes referred to as Concurrent Write (CW).
PR—Protected Read
PW—Protected Write
EX—Exclusive
Yes—Locks are compatible
No—Locks are not compatible

You may want to prevent other transactions from retrieving or updating a
table. Specifying exclusive mode in your SQL SET TRANSACTION statement
causes Oracle Rdb to lock the entire table. If the table is in a mixed storage
area, an exclusive access transaction can prevent another transaction from
accessing the tables in that storage area under the following circumstances:

• Hashed indexes are defined on the tables.

• The other transaction (or transactions) is read/write.

• The other transaction (or transactions) uses a hashed index in its query.

This is because tables in the same storage area share the same system records.
While Oracle Rdb updates the hash bucket for the table in exclusive mode, the
system record is locked, which prevents access to the other table. You should
place tables that require updates in exclusive mode in separate areas.

Follow these guidelines to allow other users access to tables and rows in the
database and to ensure lock compatibility:

• Specify only those rows you need by restricting the record stream in a
precise record selection expression.

• Include the fewest possible queries in a single transaction.

3–72 Analyzing Performance Factors

• Specify a compatible lock mode in the SQL SET TRANSACTION statement
that lets other users access the same resources concurrently.

See Section 3.8.5 for more information on how Oracle Rdb protects a database
resource through locking.

3.8.3.1 Incompatible Share Mode and Lock Type
Oracle Rdb considers the exclusive write share mode and the read-only
transaction type that uses the default read lock type to be incompatible because
no snapshot files are written by an exclusive write share mode transaction.
Transactions started in exclusive write mode cause subsequent read-only
transactions to wait and fail when the exclusive write transaction attempts a
COMMIT or ROLLBACK operation. If the read-only transaction includes the
WAIT qualifier, Oracle Rdb returns a message that indicates that a resource is
locked, converts it to a NO_WAIT qualifier, and returns a second message that
indicates that the storage area cannot be readied for snapshot files, as shown
in Example 3–27.

Example 3–27 Error Message for Incompatible Share Mode and Lock Type

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ ONLY WAIT;
SQL> SELECT * FROM EMPLOYEES;
%RDB-E-LOCK_CONFLICT, request failed due to locked resource
-RDMS-F-CANTSNAP, can’t ready storage area $DUA0:[ORION]EMPIDS_LOW.RDA;1
for snapshots

Therefore, the user whose current transaction is the read-only transaction
must roll back.

If your transaction requires exclusive access to an area of the database,
you should be aware of the results of the exclusive mode on other read-only
transactions that attempt to access the snapshot file.

3.8.3.2 Carry-Over Locks and the [NO]WAIT Option
Carry-over lock optimization allows transactions to avoid some logical area
and physical area lock request overhead at commit time. This section provides
a general description of how carry-over lock optimization works, and then
describes its particular effects on WAIT and NOWAIT transactions.

An area lock requested by a current transaction is called an active lock. At
commit time, Oracle Rdb tries to avoid demoting area locks. Those area locks
that are not demoted at commit time are called carry-over locks.

Analyzing Performance Factors 3–73

While attached to the database, a process can have some active locks (locks
used by the current transaction) and some carry-over locks (locks requested in
earlier transactions that have not been demoted). If a transaction needs a lock
that it has currently marked as carry-over, it can reuse the lock by changing
it to an active lock. Thus, the same lock can go from active to carry-over to
active multiple times without paying the cost of lock request and demotion.
This substantially reduces the number of lock requests if a process accesses the
same set of areas repeatedly.

WAIT Transactions
Whenever a WAIT transaction requests an area lock, Oracle Rdb must
distinguish between the following two cases in which process A has a lock
on area X and process B wants to access the same area:

• If the lock that process A has on area X is a carry-over lock, A gives up the
lock on demand, process B gets it, and B continues to process.

• If the lock that process A has on area X is an active lock, A cannot give
up the lock before its transaction has completed. In this case, Oracle Rdb
sets a flag to indicate that this lock must be demoted when A’s transaction
commits, so that B can acquire it. Because process B cannot get the lock
on demand, B must wait.

For WAIT transactions, the reduced number of locks associated with carry-over
lock optimization can result in an increase in blocking ASTs. You can see an
increase in blocking ASTs by using the various Performance Monitor Locking
screens.

Carry-over lock optimization works well when applications are designed so
that each transaction accesses its own set of data; that is, transactions do
not randomly access data in all partitions, thereby increasing contention.
For example, consider the EMPLOYEE_ID column, which partitions the
EMPLOYEES table to three areas. Applications that access the EMPLOYEES
table should be designed so that transactions access a particular area or set
of areas instead of randomly selecting any area. Furthermore, carry-over lock
optimization works best if transactions repeatedly access the same area or
set of areas. The partitioning and placement features available in Oracle Rdb
should help in this regard.

3–74 Analyzing Performance Factors

NOWAIT Transactions
NOWAIT transactions do not wait for locks. If a lock requested by a NOWAIT
transaction cannot be granted immediately, Oracle Rdb issues an error message
and the transaction aborts. As part of carry-over lock optimization, a NOWAIT
transaction requests, acquires, and holds a NOWAIT lock. This signals other
processes accessing the database that a NOWAIT transaction exists and
results in the release of all carry-over locks. If carry-over locks were not
released, a NOWAIT transaction could not access an area held by a WAIT
transaction’s carry-over lock until the WAIT transaction’s process detached
from the database.

However, a NOWAIT transaction can experience a delay in acquiring the
NOWAIT lock if another transaction is holding the lock. This can result in the
following Performance Monitor Stall message:

waiting for NOWAIT signal (CW)

If NOWAIT transactions are noticeably slow in executing, you can disable
carry-over lock optimization by using the CARRY OVER LOCKS ARE
[ENABLED | DISABLED] clause with either the SQL CREATE DATABASE
or SQL ALTER DATABASE statements. By default, carry-over locks are
enabled. Example 3–28 shows how to disable carry-over locks that have been
enabled by default.

Example 3–28 Disabling Carry-Over Locks

SQL> ALTER DATABASE FILENAME test1
cont> CARRY OVER LOCKS ARE DISABLED;

You can determine if carry-over locks are enabled or disabled by examining the
Performance Monitor Lock Information screen. For example:

Analyzing Performance Factors 3–75

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 27-JUN-1996 13:57:26
Rate: 3.00 Seconds Lock Information Elapsed: 00:06:55.94
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Adjustable record locking granularity is enabled
- Fanout factor 1 is 10 (10 pages)
- Fanout factor 2 is 10 (100 pages)
- Fanout factor 3 is 10 (1000 pages)
Carryover lock optimization is enabled
Lock Tree Partitioning is disabled
Lock timeout is disabled

--
Exit Help Menu Options Refresh Set_rate Write !

If you do disable carry-over lock optimization, you may see some degradation
in performance. This is because every transaction will acquire and release
area and top level ALG locks instead of trying to hold them across multiple
transactions.

3.8.3.3 Optimizing Update Carry-Over Locks for Tables
Under normal circumstances, a process may start an update transaction
that reads a row first, and then updates it later. In this case, Oracle Rdb
may first grant the process a logical area lock in CR (concurrent read) mode,
then upgrade the lock to CU (concurrent update) mode later. If the process
starts another update transaction, the same situation can occur. Many lock
operations can be required to transition from CR to CU mode and back again.

You can enable update carry-over locks at the table level for a process by
defining the RDMS$AUTO_READY logical name or the RDB_AUTO_READY
configuration parameter for the process. If the RDMS$AUTO_READY logical
name or RDB_AUTO_READY configuration parameter is defined, when the
process requests a logical area lock in CR mode, it will obtain that lock in CU
mode if it is already holding a carry-over lock on the logical area in CU mode.
This optimization of carry-over locks for logical areas reduces the locking
overhead for most update transactions.

3–76 Analyzing Performance Factors

OpenVMS
VAX

OpenVMS
Alpha

Example 3–29 shows how to enable update carry-over locking at a table level
for a process. Note that carry-over locking must be enabled when you define
the RDMS$AUTO_READY logical name to 1, otherwise defining the logical
name will not enable update carry-over locks at the table level.

Example 3–29 Enabling Update Carry-Over Locking at a Table Level for a
Process

$ DEFINE RDMS$AUTO_READY 1

To disable update carry-over locking at a table level for a process, deassign the
RDMS$AUTO_READY logical name. ♦

A process benefits from update carry-over lock optimization for tables only if
the process is updating the database. The benefit of enabling update carry-over
locks at a table level for a process is that when the process starts a new update
transaction on a table for which it holds a carry-over lock in CU mode for the
logical area, it will get the logical area lock in CU mode. Getting the logical
area lock in CU mode at the start of the transaction means the process avoids
the locking overhead of first downgrading and then upgrading the lock later. If
the process does not perform any updates, getting the logical area locks in the
lower (CR) mode is sufficient.

The RDMS$AUTO_READY logical name and RDB_AUTO_READY configura-
tion parameter should be used in high volume, update-intensive, transaction
processing environments when the Performance Monitor indicates that a large
number of lock conversions are taking place for each transaction.

A process that has enabled update carry-over locking at the table level can
cause concurrency problems if the process reserves tables in PROTECTED
READ or PROTECTED WRITE modes, or if it performs sequential scans of
tables.

3.8.3.4 Explanation of ‘‘Lock Conflict on Freeze Lock’’ Errors
In some circumstances, it is possible for a NOWAIT transaction to receive a
‘‘lock conflict on freeze lock’’ error message. Consider the following potentially
dangerous scenario:

Process A Process B

Holds lock on resource 1.

Requests lock on resource 1 and is
waiting.

Modifies resource 1.

Process A is terminated prematurely.

Analyzing Performance Factors 3–77

Operating system releases all locks
held by A.

B is granted the lock on resource 1
and may see uncommitted changes
made by A.

When Oracle Rdb is running in a cluster, it is necessary to ensure that
termination of a process (Process A) does not result in granting locks to other
application processes (Process B) before the database monitor has detected the
error and recovered the transactions for the failed process (if necessary).

The ‘‘freeze protocol’’ is used to ensure that any new lock request by another
application process is not granted until the monitor has had a chance to do any
cleanup (recovery) operations that are necessary for the terminated process. In
the example, the freeze protocol ensures that Process B’s lock request is not
granted until recovery operations for the terminated process (Process A) have
been completed.

Here is how the ‘‘freeze protocol’’ algorithm works. Note that this explanation
omits the intricate details to simplify the explanation.

When each user process attaches to the database, it gets the FREEZE lock in
concurrent write (CW) mode.

Whenever there is a potential need to recover the database (when, for example,
a process aborts abnormally or a node in the cluster fails), the FREEZE lock is
requested by the database recovery (DBR) process in protected read (PR) mode.
Because the DBR process requests the FREEZE lock in an incompatible mode,
blocking ASTs are generated for every user process holding the FREEZE lock
in CW mode. Every process gives up the FREEZE lock, then the DBR process
acquires the FREEZE lock in PR mode and begins recovery operations.

Whenever a user process is granted a lock request for a resource, Oracle Rdb
also checks whether the FREEZE lock is held by that process in CW mode.
If the process does not have the FREEZE lock in CW mode, then Oracle Rdb
knows that the monitor is trying to recover the database and return it to
a consistent state. In this situation, the process that was granted the lock
request to the resource needs to give it up so the DBR process can obtain the
lock to the resource and recover the database.

Oracle Rdb releases the lock that the process was granted to the resource and
(if the process’ lock request was a WAIT request) requests the FREEZE lock
in CW mode for the process. After this is granted, Oracle Rdb reissues the
process’ original lock request to the resource.

3–78 Analyzing Performance Factors

If the process’ lock request was a NOWAIT lock request, Oracle Rdb flags the
‘‘lock conflict on freeze’’ message to indicate that the lock request cannot be
granted because (potentially) recovery is in progress. Any of the following
events (and perhaps others) could cause the ‘‘lock conflict on freeze’’ error
message to occur:

• The lock request is a NOWAIT request and recovery is taking place (as
shown by DBR processes in the monitor log).

• A node failed while users were accessing the database.

• The monitor log has logged events such as: ‘‘cluster recovery completed
successfully’’ or ‘‘received request from remote node to join . . . ’’. This
indicates that new database activity is occurring on a node, or there are no
more users on a node accessing a database. When these events happen, the
monitor has to ensure that this transition did not leave the database in an
inconsistent state.

3.8.3.5 Batch-Update Transactions
Batch-update transactions can be useful if you want to reduce overhead in
large, initial-load operations. However, Oracle Corporation recommends that
you use the read/write exclusive mode for these initial load operations because
batch-update transactions offer some risks if problems develop. In batch-
update transactions, no .ruj file is created, so if the transaction fails, the
operation cannot be rolled back. Then the database becomes corrupt, and you
must either restore the database from the most recent backup file or start
over. Be sure to back up your database before you attempt to use batch-update
transactions for initial load operations if you use this method for loading tables.
When you use the exclusive share mode, an .ruj file is created, so you can roll
back the transaction if the transaction fails. See the Oracle Rdb7 Guide to SQL
Programming for more information on how to use batch-update transactions.

3.8.3.6 Update Locking for Cursors
When you use a cursor to select a record stream to read and possibly update
rows, Oracle Rdb cannot know if every fetched row will be updated. The
default Oracle Rdb behavior is to lock the specified rows for READ and then
upgrade the lock to WRITE if a row is updated. With the current version of
Oracle Rdb, if you know in advance that all or most of the fetched rows will
be updated, you can apply more restrictive locking during the initial read
operation. This results in lower locking overhead and reduced deadlocks.

To define an update cursor, use the UPDATE ONLY clause of the DECLARE
CURSOR statement. The generalized statement is shown in the following
example; for complete syntax details, see the Oracle Rdb7 SQL Reference
Manual.

Analyzing Performance Factors 3–79

DECLARE cursor_name UPDATE ONLY CURSOR FOR select-expr

3.8.4 Transaction Scope
All database activity is controlled within transactions. When you begin a
transaction, you specify the kind of database access other users can have
to data while your transaction is active. You can restrict all access to the
tables you are using or you can allow other users to share the same data.
Whatever the access mode your transaction specifies, it, along with other
active transactions, accumulates an increasing set of restrictions on the data
resource. It is common to wait for a row to be released by another transaction
before you can retrieve the row. Because Oracle Rdb lets the user fetch one row
or several rows in a record stream, the more rows you retrieve, particularly
for an update, the greater the chance of conflict with another user. When you
terminate your transaction, you release all locks on the rows you retrieved.

To reduce potential lock conflicts with other users of the database, you should
keep your transactions as short as possible while allowing the greatest degree
of data sharing within your transaction. If you need to retrieve a row to display
certain columns on a user’s terminal, you should specify a share mode that
allows other users to read the same rows. You can share access to the rows you
need to retrieve if you specify READ ONLY in your SQL SET TRANSACTION
statement. Avoid writing transactions that request terminal input from the
user within the transaction that is holding locks on rows.

If you are updating the database, specify shared write in your read/write
transaction. As soon as you modify the row, terminate your transaction. In
this way, you surrender the lock resource to the system and allow another
user to read or update that row if needed. If you retrieve a row in read-only
mode and then decide to update that row, you can start another transaction,
specifying read/write to modify the row in the database. If you delete the
row, the dbkey scope determines when the dbkey of the deleted row can be
used again by Oracle Rdb. If you specify DBKEY SCOPE IS TRANSACTION,
the default, Oracle Rdb cannot use the dbkey of a deleted row again to store
another row until the transaction that deleted the original row completes with
a COMMIT statement. If you specify DBKEY SCOPE IS ATTACH, Oracle Rdb
cannot use the dbkey of a deleted row again to store another row until the user
who deleted the original row detaches from the database with a DISCONNECT
statement.

Dbkey scope is determined in the following manner:

• If all active users use the DBKEY SCOPE IS TRANSACTION clause, the
dbkey scope is TRANSACTION for all users.

3–80 Analyzing Performance Factors

• If just one user attaches to the database using the DBKEY SCOPE IS
ATTACH clause, then the dbkey scope is ATTACH for all users.

Keeping the transaction as short as possible, that is, minimizing the database
activity within the transaction, helps to maintain concurrent access at an
optimal level. In the event of a system failure, short update transactions
permit faster recovery and make the database current up to the last committed
transaction. The longer the uncommitted transaction, the more work there is
to do after a system failure. You will have to reenter what was rolled back.
Because the size of your .ruj file increases with the scope of your update
transaction, you also risk an increased demand for disk space for the .ruj files.

Table 3–9 summarizes the impact of the transaction scope on database users,
files, and performance.

Table 3–9 Effect of Long and Short Database Transactions

Extent of
Update
Transaction Impact

Long with exclusive
share mode

Advantages: Updates quickly
Eliminates access contention
Uses fewest locks

Trade-offs: Reduces concurrency
Slower recovery from system failure

Long with shared
share mode

Advantages: Greater concurrency

Trade-offs: Requires more locks
Updates are longer because of high
contention

Short Advantages: Database is current
Reduces .ruj file size and storage
requirements
Faster recovery from system failure
Increases concurrency

Trade-offs: Requires more transactions and higher
lock manager overhead

Analyzing Performance Factors 3–81

3.8.5 Adjustable Lock Granularity
Adjustable lock granularity (ALG) is the mechanism Oracle Rdb uses to
maintain as few locks as possible during a transaction, while still ensuring
maximum concurrent access to pages within a logical area. ALG attempts to
lock groups of rows (index nodes or data rows), anticipating that additional
rows, which may need to be accessed later in the same transaction, are
included in the locked group.

ALG is based on a logical, inverted tree structure that maintains locks on
database resources at a variety of levels. Oracle Rdb defaults to three page
range levels by default with a fanout factor of 10 at each level. You can control
the lock granularity further by specifying the number of page levels with
the COUNT parameter of the ADJUSTABLE LOCK GRANULARITY clause.
The value of the COUNT parameter can range from 1 to 8. A value of 8 is
interpreted as follows:

• Level 10, the top of the inverted tree (the root), includes all the rows found
in a logical area.

• Level 9 includes the rows found on 1,000,000,000 consecutive pages within
the logical area.

• Level 8 includes the rows found on 100,000,000 consecutive pages within
the logical area.

• Level 7 includes the rows found on 10,000,000 consecutive pages within the
logical area.

• Level 6 includes the rows found on 1,000,000 consecutive pages within the
logical area.

• Level 5 includes the rows found on 100,000 consecutive pages within the
logical area.

• Level 4 includes the rows found on 10,000 consecutive pages within the
logical area.

• Level 3 includes the rows found on 1000 consecutive pages within the
logical area.

• Level 2 includes the rows found on 100 consecutive pages within the logical
area.

• Level 1 includes the rows found on 10 consecutive pages within the logical
area.

• Level 0, the bottom of the inverted tree (the leaves), is the row level.

3–82 Analyzing Performance Factors

If your database has high page contention (many users accessing the same area
simultaneously), consider specifying a lower COUNT value. If your database
has few users who are performing queries that access many widely dispersed
rows, specifying a higher COUNT value may result in less locking.

If you specify ADJUSTABLE LOCK GRANULARITY IS DISABLED, Oracle
Rdb requests a lock for each database row requested. Oracle Rdb recommends
that you start with adjustable lock granularity enabled, using the default
COUNT value and then, if CPU time is a problem, adjust the count or
disable the adjustable lock granularity and determine if this improves your
performance.

Figure 3–1 illustrates the default ALG tree structure.

Figure 3–1 Adjustable Lock Levels

NU−2172A−RA

and index records)

Record Level
(Both data rows

Levels of Locking

Logical Area

100 pages

10 pages

4

3

2

1

1000 database
pages

RRRRRRRR RRRRRRRR 0

If you are using a default value of 3 for the page level, all transactions initially
request a strong lock at level 4 (the logical area). If there is no contention (no
other transactions want to access rows in the same logical area), a transaction
needs only one lock for all the rows in that logical area. This is because a
strong lock at a higher level implicitly locks all objects at the lower levels that
it dominates.

Analyzing Performance Factors 3–83

If another transaction needs to access rows from the same logical area, the
first transaction’s strong lock at level 4 is de-escalated to a weak lock, and a
strong lock is requested at level 3 for the appropriate page range. The second
transaction also acquires a weak lock at level 4 and a strong level 3 lock on
the appropriate page range. If there is conflict at level 3, the first transaction’s
strong level 3 lock is de-escalated to a weak level 3 lock, and a strong level
2 lock is requested for the appropriate page range. The second transaction
follows the same procedure. This paired acquisition and de-escalation of locks
continues towards the leaves of the ALG tree until there is no contention. If
the two transactions attempt to access the same row, conflict eventually occurs
at the row level. In this case, the second transaction must wait until the first
transaction finishes and releases all its locks.

The number of locks required depends on the number of transactions
attempting to access rows in a logical area, and how many conflicts have
been encountered in the ALG tree. By default, in the worst case, a transaction
would need weak locks at levels 4, 3, 2, and 1 before finally acquiring a strong
row lock at level 0, thus requiring a total of 5 locks to access a single row. This
worst case would arise only if there is high contention on nearby rows.

This mechanism is useful when a number of transactions need to access
different groups of pages concurrently. Enabling ALG can reduce lock activity
if applications are designed so that transactions access data rows located on
nonconflicting page ranges.

As a general rule, you should enable ALG if transactions need to access many
rows stored in close proximity to each other. Because ALG takes out the
highest level lock possible for a transaction, rows can be accessed with the
minimum number of locks for each transaction.

You should disable ALG if transactions need to access only a few rows from a
logical area. In this case, it is more efficient to allow Oracle Rdb to lock the
lowest level immediately. Remember, if ALG is enabled and there is contention
for pages at a low level, ALG must take out locks at all the intermediate levels
of the ALG tree even if the transaction needs to access only a single row.

If a transaction needs to access millions of rows, you should set the transaction
to lock the table in a protected mode. The protected mode lock saves the
overhead of performing implicit or explicit locking for each accessed row.
This can save a considerable amount of virtual memory. In other words, if a
transaction accesses a majority of the rows in a table, you should reserve the
table in a protected mode.

3–84 Analyzing Performance Factors

Note

ALG is enabled or disabled for the entire database, not for specific
transactions. You should determine the general characteristics of all
the transactions running on your database before you decide to enable
or disable ALG.

When you create a database, ALG is enabled by default. To disable ALG, use
the ADJUSTABLE LOCK GRANULARITY IS DISABLED clause of the SQL
ALTER DATABASE statement. See Section 8.4 for more information on when
to enable and disable adjustable lock granularity.

The Performance Monitor Stall Messages screen can indicate where lock
contention exists in the ALG tree. For example, the stall message waiting for
record 5:0:-4 indicates the database system is attempting to acquire an ALG
lock and should be interpreted as follows:

• The first number (in this case, 5) indicates the logical area number.

• The second number (in this case, 0) indicates the starting page of the page
range that is locked by this ALG lock.

• The negative number (in this case, –4) indicates the level in the ALG tree,
and can range from –10 for a logical area lock, to –1 for a lock on a range
of ten pages.

Refer to Section 3.2.1.3 for additional information on how to use and read the
Stall Messages screen.

3.8.6 Selecting Page-Level or Row-Level Locking
Oracle Rdb uses row-level locks to provide logical consistency and page-level
locks to provide mutual exclusion. The page-level and row-level locking
mechanisms operate independently of each other.

Figure 3–2 shows two processes accessing different records on a data page.
The row-level locks provide logical consistency, and the page-level locks ensure
that the changes are ordered one after the other.

In Figure 3–2, Process 1 acquires the page lock and a row lock to one of the
rows on the page. When Process 2 wants to access a different row on the
page, Process 1 gives up the page lock, and Process 2 acquires the page lock
and the row lock for the row it wants to access. When Process 1 wants to
access another row on the page, Process 2 gives up the page lock, and Process
1 acquires the page lock and the row lock for the row it wants to access.
After a process acquires a row lock, it holds that row lock until the end of its
transaction (the process continues to hold the row lock even when another

Analyzing Performance Factors 3–85

process has a page lock for the page). Oracle Rdb allows a process to update a
row on a page only when the process has the page lock for that page (assuming
that the transactions are executing at isolation level SERIALIZABLE). Only
one process has the page lock for a page at a time, so only one process at a
time can update rows on a page.

Figure 3–2 Page-Level and Row-Level Locking When Two Processes Access
Different Rows on a Data Page

Acquire

Reacquire

row

Acquire

Acquire

Acquire

Acquire

Demote

Demote

page

page

page

page
page

row

row

lock

lock

lock

lock

lock

lock
lock

lock

NU−2958A−RA

Time

Process 2Process 1

You can specify that only page-level locking be used for one or more storage
areas or for all the storage areas in the database by using the LOCKING
IS PAGE LEVEL clause of the SQL CREATE DATABASE and ALTER
DATABASE statements. The Oracle Rdb7 SQL Reference Manual describes the
syntax for these statements. When page-level locking is enabled for a storage
area, transactions accessing the storage area hold only page-level locks and
do not request any row-level locks. The page-level locks provide both logical
consistency and mutual exclusion.

When page-level locking is enabled for a storage area, a process that accesses
rows from that area is granted a page lock for each page accessed, but the
process does not need to obtain any row-level locks for any of the rows accessed
on the page. This reduces locking overhead.

3–86 Analyzing Performance Factors

When the LOCKING IS PAGE LEVEL clause is specified, page locks are held
until the end of the transaction, which may cause other transactions that
need to access rows on the page to be blocked. Thus, when you reduce lock
operations by specifying the LOCKING IS PAGE LEVEL clause, you may also
reduce concurrency. In Figure 3–3, page-level locking has been enabled and the
two processes shown in Figure 3–2 are accessing the same rows on the same
data page. When page-level locking is enabled, a process that gets a page lock
is allowed to hold the lock until it completes the current transaction with a
COMMIT or ROLLBACK statement. All other users are blocked from the page
until the process that holds the page lock completes the current transaction.
In Figure 3–3, a smaller number of locks are used than in Figure 3–2, but
concurrency is also reduced because each process blocks the other when it has
the page lock. If more processes were trying to access the page, the stall times
for all these processes would increase.

Figure 3–3 Reduced Concurrency When Page Locking Is Enabled and Two
Processes Access Different Rows on a Data Page

Acquire page lock

NU−2959A−RA

Time

Commit Acquire page lock

Process 1 Process 2

Enabling page-level locking is most likely to benefit a partitioned application,
in which individual application processes do not access the same data pages at
the same time. Figure 3–4 depicts a payroll application in which information
on employees is partitioned based on an employee’s geographical location. That
is, information on eastern employees is stored in the EAST storage area, and
information on western employees in the WEST storage area. When separate

Analyzing Performance Factors 3–87

application processes are used to update the employee information for each
geographical location, the same data page should be requested seldom, if ever,
by more than one application process at the same time. In such situations,
you can enable page-level locking to remove the overhead of row locks, thereby
improving performance without reducing concurrency.

Figure 3–4 Partitioned Application Likely to Benefit from Page Locking

NU−2960A−RA

Eastern Employees Western Employees

Payroll Application 1 Payroll Application 2

accessing data pages in accessing data pages in

west.rdaeast.rda

Enabling page-level locking may also benefit applications with the following
characteristics:

• Contention for resources is limited

After page-level locking is enabled, a process will be able to quickly obtain
a single page lock for a page and all the rows on the page.

• Transactions are short in duration

After page locking-level is enabled, processes hold page locks until the end
of a transaction. When transactions are short, a conflicting process has
to wait only a short time if it requests a page already locked by another
process.

Enabling page-level locking could also benefit an application that accesses a
storage area in which all the rows on each data page are clustered on that page
because they have the same value for a hashed index key. For example, if a
group of rows is clustered (hashed) to the same page, the application can fetch
the page and read or modify all the rows using only one page lock, instead of
getting individual row locks for each row. However, the application is likely
to benefit from enabling page-level locking only when no other processes or
applications are attempting to access the same data pages at the same time
as the application. If more than one process tries to access a data page at
the same time in a storage area with page locking enabled, each process

3–88 Analyzing Performance Factors

should have very short transactions; otherwise, each process will stall regularly
waiting for page locks, thereby decreasing performance.

You should use the LOCKING IS PAGE LEVEL option carefully, only when
the implications of enabled page-level locking have been considered. When
the LOCKING IS PAGE LEVEL option is used for a storage area, page-level
locking is enabled for the entire storage area. Most applications operate
on logical entities such as tables, and when multiple tables exist within a
storage area, special care must be taken when enabling page-level locking.
The decision to enable page-level locking is easier if the storage area contains
rows for only one table, and only one application accesses the table at a time.
Enabling the LOCKING IS PAGE LEVEL option for a storage area is more
likely to result in higher contention, longer delays, and more deadlocks as the
number of tables in the area and the number of applications accessing the area
at the same time increases.

The default is LOCKING IS ROW LEVEL. When the LOCKING IS ROW
LEVEL option is in effect for one or more storage areas, a transaction accessing
the storage area will use both row and page locks. In general, the LOCKING
IS ROW LEVEL option is appropriate for most transactions, especially those
that lock many rows in one or more storage areas and that are long in
duration.

The LOCKING IS PAGE LEVEL and LOCKING IS ROW LEVEL clauses
can be specified with the SQL CREATE DATABASE and ALTER DATABASE
statements. These clauses can be specified at the storage area level (using
the CREATE STORAGE AREA or ALTER STORAGE AREA clauses) or the
database level.

Example 3–30 shows how to enable page-level locking for one storage area
(JOBS) in a database.

Example 3–30 Modifying the LOCKING IS Setting for a Storage Area

SQL> -- Change the setting of the JOBS storage area from the default
SQL> -- setting of LOCKING IS ROW LEVEL to LOCKING IS PAGE LEVEL:
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA JOBS
cont> LOCKING IS PAGE LEVEL;
SQL>

Example 3–30 shows how the LOCKING IS clause can be used as part of
the ALTER STORAGE AREA clause to specify page or row-level locking for
a single storage area. To specify page or row-level locking for more than one
storage area, specify the LOCKING IS clause as part of the ALTER STORAGE
AREA clause for each storage area. You can also use the LOCKING IS clause

Analyzing Performance Factors 3–89

without the ALTER STORAGE AREA clause as a convenient shorthand
method for enabling page or row locking for all the storage areas in a database.
Example 3–31 shows how to enable page-level locking for all the storage areas
in the mf_personnel database.

Example 3–31 Enabling Page Locking for All the Storage Areas in a
Database

SQL> ALTER DATABASE FILENAME mf_personnel
cont> LOCKING IS PAGE LEVEL;

Remember that the LOCKING IS PAGE LEVEL and LOCKING IS ROW
LEVEL settings are storage area attributes (because they can be changed on a
per storage area basis), not database-wide attributes.

The Performance Monitor provides the lock level setting for each storage area.
Select the Storage Area Information screen from the Database Parameter
Information submenu to display storage area characteristics, including the lock
level settings. Section 4.2.1.3 shows an example of a Storage Area Information
screen.

You can set page-level or row-level locking only when the database is off line
(when other users are not attached to the database).

The following restrictions apply to enabling page-level locking:

• Page-level locking is illegal for single-file databases. You will receive an
RDB$_BAD_DPB_CONTENT error if you attempt to enable page-level
locking for a single-file database.

• Page-level locking is never applied to the RDB$SYSTEM storage area by
the SQL CREATE DATABASE or ALTER DATABASE statements because
the locking protocol may stall metadata users.

• Page-level locking cannot be specified explicitly for the RDB$SYSTEM
storage area. If you attempt to do this, Oracle Rdb issues an RDB$_BAD_
DPB_CONTENT error that explains page-level locking is not allowed for
the RDB$SYSTEM storage area.

Although the proper use of the LOCKING IS PAGE LEVEL feature results in
fewer locks being requested by a transaction, quotas should not be adjusted
based on use of this feature.

3–90 Analyzing Performance Factors

3.8.7 Recoverable Latches
Recoverable latches are Oracle Rdb locks used for node-specific locking
operations where exclusive locks for low contention resources are required. A
recoverable latch performs the same function as an Oracle Rdb lock, but the
advantage of the recoverable latch is that it can be locked or unlocked with
fewer instructions than the Oracle Rdb lock.

Recoverable latches maintain the information needed by the database recovery
(DBR) process to recover a database that fails.

Note that no syntax is required to enable recoverable latches. Oracle Rdb uses
recoverable latches automatically in databases with global buffers enabled.
This feature improves performance for any database that has global buffers
enabled.

3.8.8 Read-Only Storage Areas
For storage areas with stable data that are not expected to grow, you can
modify the access to the tables in the storage area to be read-only. To do this,
change the read attribute for the storage area from read/write to read-only
using an SQL ALTER DATABASE statement. This change eliminates the
possibility of users taking out write locks in read/write transactions to read
data from a table and getting page-level or row-level locks from other users
performing similar tasks. For example, to change the DEPARTMENTS storage
area to read-only, use the statement shown in Example 3–32.

Example 3–32 Changing Read/Write Status to Read-Only

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA DEPARTMENTS READ ONLY;

A read-only storage area is a useful way to deal with stable data in your
database. To add rows to a table stored in a read-only storage area, just
change the read-only attribute back to read/write using the SQL ALTER
DATABASE statement. See the Oracle Rdb7 Guide to Database Maintenance
for developing backup and restore operation strategies for databases that
contain read-only storage areas.

Analyzing Performance Factors 3–91

3.8.9 Using an RDB$SYSTEM Read-Only Storage Area
For databases with stable metadata and tables in the RDB$SYSTEM default
storage area that are stable in size, you can also change the read/write
attribute of the RDB$SYSTEM default storage area to read-only. This change
eliminates the page and row locking in this read-only storage area. Note that
you cannot change any metadata other than the cardinalities of logical areas
using the RMU Collect Optimizer_Statistics command after the RDB$SYSTEM
storage area is set to read-only. You must set the read-only attribute back
to read/write for the RDB$SYSTEM storage area to make a change in the
metadata, such as changing the protection for users accessing the database.

Note

When you set a storage area to read-only, objects in that area cannot
be readied in update mode, including any indexes created in the area.
This means that if an index that is stored in a read-only area is readied
in update mode, the operation will fail. For example, if you set the
RDB$SYSTEM storage area to read-only, the following query fails:

SQL> UPDATE EMPLOYEES
cont> SET MIDDLE_INITIAL = NULL
cont> WHERE EMPLOYEE_ID > ’00200’;
%RDMS-F-READONLY, data in a read-only storage area may not be accessed
for update

Because the query specifies a range retrieval, the optimizer used
the sorted index on EMPLOYEE_ID to retrieve the rows to be
updated. This sorted index is located in the RDB$SYSTEM area.
When the query executes, Oracle Rdb tries to ready the index area
(RDB$SYSTEM) in update mode, and the operation fails.

Therefore, if you set the RDB$SYSTEM storage area to read-only,
ensure that RDB$SYSTEM does not contain any indexes required by
update operations.

You can change the RDB$SYSTEM storage area to read-only as shown in
Example 3–33.

3–92 Analyzing Performance Factors

Example 3–33 Changing the Read/Write Status of the RDB$SYSTEM Storage
Area to Read-Only

SQL> ALTER DATABASE FILENAME mf_personnel READ ONLY;

When the RDB$SYSTEM storage area is set to read-only, automatic updates
to table and index cardinalities are disabled. This has the side effects
of stabilizing manual changes to the cardinalities (number of rows) in
the metadata tables and indexes that influence the query optimizer, and
eliminating the I/O operations associated with the cardinality update.

To update the cardinality of all tables and indexes in the RDB$SYSTEM
storage area while it is read-only, use the RMU Collect Optimizer_Statistics
command.

Note

You must have snapshots enabled and allowed to use the RMU Collect
Optimizer_Statistics command. Because cardinality table counts are
made by accessing each row of each table, locking in any other manner
would cause the entire database to become locked out.

For example, suppose you want to update the cardinalities of the tables
and indexes in the RDB$SYSTEM storage area to reflect new cardinalities
for tables and indexes that have had new rows added since you set the
RDB$SYSTEM storage area to read-only. You may want to do this to permit
the query optimizer to devise the best query strategy based on the most
current values for all table and index cardinalities stored in the metadata in
this storage area. You would update the metadata as shown in Example 3–34.

Example 3–34 Updating Table and Index Cardinalities in RDB$SYSTEM

$ RMU/COLLECT OPTIMIZER_STATISTICS/STATISTICS=CARDINALITY mf_personnel
$ rmu -collect optimizer_statistics -statistics=cardinality mf_personnel

This command updates the cardinality values in the RDB$CARDINALITY
column of the system tables RDB$RELATIONS and RDB$INDICES.

Note

Dynamic optimization attempts to approach optimal query performance
by relying heavily on the statistics collected during query execution.
If index and table cardinalities are artificially shifted away from their
correct values, they will contradict the dynamically collected statistics

Analyzing Performance Factors 3–93

and cause quite unpredictable selection of strategies and sequence
of their evaluation. Hence any adjustment of cardinalities will most
probably result in poorer query optimizer performance.

3.9 Index Retrieval
Index retrieval is one of the two methods Oracle Rdb uses for accessing rows;
the other method is sequential access.

There are three types of index access:

• Direct index access. Oracle Rdb uses a unique index key to locate data and
access it directly from the table. In this case, the key matches only one
row.

• Retrieval by index. Oracle Rdb uses a partial index key or a duplicate to
locate data. Oracle Rdb scans through the index until it finds all rows that
match the key at the bottom of the range of a search (the low Ikey) and all
rows that match the key at the top of the range (high Ikey). For both low
Ikeys and high Ikeys, Oracle Rdb uses the dbkey to read the actual row.
For more information on low Ikeys and high Ikeys, see Appendix C.

• Index-only retrieval. Oracle Rdb uses the index to find the row entry. In
this case, the data is part of the index key; hence, Oracle Rdb returns the
data from the index, rather than using the dbkey to read a row.

In terms of cost in the number of I/O operations, index-only retrieval is the
most efficient. Retrieval by index requires the most CPU overhead. Sequential
access works best for small tables.

Indexes are used not only for data retrieval, but also for update operations.

An update transaction can update other columns for which no indexes are
defined. You can use an indexed column to locate a row and update another
nonindexed column without incurring the overhead required to update the
index.

A transaction that updates an indexed column does the following:

• Locks the index node that refers to the updated row.

• Locks any index nodes that must be split when the transaction adds more
rows to the table. The transaction, then, also updates the index itself.

• Prevents any read/write transactions from accessing the database rows
through those index nodes.

3–94 Analyzing Performance Factors

If your transaction uses the dbkey itself, rather than allowing Oracle Rdb
to find the dbkey for you using the index, your program can access the row
directly without using the index. Refer to the Oracle Rdb7 SQL Reference
Manual for more information about dbkeys.

3.9.1 Types of Indexes
Oracle Rdb uses two types of indexes:

• Sorted indexes

A sorted index is generally the best overall access method. It offers
good performance for exact matches, determining the existence of a row,
retrieving ranges of values, and retrieving partial keys; and when clustered
(clustered B-tree) performs very well for sorted retrievals. It works best
with dynamic tables.

• Hashed indexes

A hashed index performs best for exact match retrieval, especially when
used in very large tables where the B-tree access method does not do so
well due to the overall large size of the B-tree for tables of this size.

After you define a sorted index structure, Oracle Rdb can access the rows in
a table by searching the index to find a dbkey and getting the information
directly from the index key, or finding the row in the database by using the
dbkey.

After you define a hashed index structure, Oracle Rdb can access rows in a
table through direct access by searching the hash bucket for the search key
and dbkeys and going directly to the relative data page number where the data
row is located. Hashed indexes are best for random, direct access for exact
matches of the search key.

When you use sorted index retrieval, be sure that adjustable lock granularity
(ALG) is enabled. ALG greatly improves database concurrency by
automatically adjusting the level of locking granularity downward from
the highest level (the entire logical area, table, or index) to lower levels that
encompass successively smaller groups of pages until the lowest level (an
individual row) is reached when other retrieval or update transactions access
index nodes or rows in the table. However, access by other transactions to
those rows through the sorted index may encounter wait conditions because of
locking at index nodes that have been updated and locked. See Section 3.9.6
for details on forming indexing strategies.

Analyzing Performance Factors 3–95

When you define sorted and hashed indexes for specific columns in the
database, you give the optimizer the option to choose an access method to
retrieve data with fewer disk accesses than may be required using a sequential
search and retrieval. As a database designer, you must carefully identify those
columns that can benefit from either type of index. The primary key is always
a good candidate for an index, but certain read-only tasks may also benefit
from indexes on other columns.

See Section 3.9.6 for more information about sorted indexes. See Section 3.9.7
for more information about hashed indexes.

3.9.2 Logical Area Names for Indexes
For a single-file database, Oracle Rdb stores all the index structures for a table
in a single logical area of the .rdb file and treats the pages allocated to this
logical area as data pages; that is, indexes contain the same data structure as
any other data page.

For a multifile database, you can use the STORE clause to assign the storage
area in which to store the sorted index structures for a table. Oracle Rdb
stores each individual index structure for a table in individual logical areas of
the .rda file and treats the pages allocated to this logical area as data pages.

Logical area names appear in the output from the RMU Analyze command
and the RMU Dump command with the Larea=RDB$AIP qualifier and help to
analyze the database structure.

Oracle Rdb uses the convention that indexes created explicitly or implicitly
in the RDB$SYSTEM storage area all share the same logical area if they are
for the same table. The name of the first index is assigned as the name of the
logical area used by all indexes for the same table.

For example, consider this simple table and index definition:

SQL> CREATE TABLE TEST (I_COL integer, C_COL char);
SQL> CREATE INDEX IND_1 on T (I_COL);
SQL> CREATE INDEX IND_2 on T (C_COL);

Index IND_1 and IND_2 are both mapped by default to the RDB$SYSTEM
storage area. There is one logical area created for the indexes of table TEST
and it is named after the first created index (in this case IND_1) and contains
information for all indexes of table TEST mapped to the RDB$SYSTEM storage
area (in this case IND_1 and IND_2).

If the index IND_1 is subsequently dropped and re-created in another storage
area, the database administrator will notice that the logical area IND_1
still exists in RDB$SYSTEM (physical area 1). The IND_1 name is retained
because it still contains data for the IND_2 index. This may cause confusion

3–96 Analyzing Performance Factors

because the logical area IND_1 now exists in multiple storage areas even
though the index itself no longer resides in RDB$SYSTEM.

If later still, the index IND_2 is dropped and re-created in another storage
area, the original IND_1 logical area in RDB$SYSTEM will be removed
because it is unused.

If indexes are mapped to storage areas other than RDB$SYSTEM, they will
always be assigned a separate and private logical area.

Note

Oracle Corporation recommends that all new databases be created as
multifile databases and that all indexes and tables have storage maps.
This will avoid this point of confusion as well as allow more flexibility
for database physical restructuring.

This convention of sharing logical areas for indexes is part of the single-file
database model and is retained for upward compatibility with older versions
of Oracle Rdb. The benefit of this convention is to save space in single-file
databases and for system tables that are always stored in the RDB$SYSTEM
storage area.

3.9.3 Index Compression
You can specify that indexes should be compressed. In a compressed index,
information within the index nodes is reduced in size so that data takes up less
space. The four types of index compression are:

• Prefix and suffix compression, described in Section 3.9.3.1

• SIZE IS segment truncation, described in Section 3.9.3.2

• MAPPING VALUES compression, described in Section 3.9.3.3

• Run-length compression, described in Section 3.9.3.4

The benefits of index compression include:

• Much lower storage requirements for some applications

• Fewer I/O operations to retrieve data, because more user index nodes may
be included in buffers

• More efficient index-only retrieval, because more data may reasonably be
included in an index

Analyzing Performance Factors 3–97

3.9.3.1 Prefix and Suffix Compression
Prefix and suffix compression occur automatically for sorted indexes only. At
the lowest level of the index, which points to the data rows (level 1 index
nodes), only prefix compression takes place.

At higher levels of the index, both prefix and suffix compression occur. For
these higher level index nodes, prefix compression consists of removing
leading bytes that are identical between consecutive index keys from the
front of the index key. Suffix compression consists of removing noninformative
bytes from the back of the index key. See the description of Example 3–46 in
Section 3.9.5.1 for more information on index key prefixes and suffixes.

3.9.3.2 SIZE IS Segment Truncation
Use the SIZE IS clause of the CREATE INDEX statement to specify that the
‘‘first n’’ characters of a certain key are to be used in the index. For example,
to place an index on a 100-byte column that is generally unique in the first 20
bytes, you could specify that only the first 20 bytes be used in the index and
save as much as 80 bytes per entry. You can specify segment truncation for
sorted indexes only.

To create a SIZE IS compressed index for columns that use the CHAR
or VARCHAR data types, use the SIZE IS clause of the SQL CREATE
INDEX statement for the column or columns being indexed, as shown in
Example 3–35.

Example 3–35 Setting SIZE IS Index Compression for a CHAR Data Type
Column

SQL> CREATE INDEX EMP_LAST_NAME ON EMPLOYEES
cont> (LAST_NAME SIZE IS 10)
cont> TYPE IS SORTED;

You can specify the UNIQUE clause when you create a SIZE IS compressed
index. However, if you specify the UNIQUE clause with a SIZE IS compressed
index, truncating the index key values may make the key values not unique.
In that case, the index definition or insert or update statements will fail. For
example, if you define the index EMP_LAST_NAME index as unique and
attempt to insert a row for an employee with the last name ‘‘Kilpatrick’’ and
a row for an employee with the last name ‘‘Kilpatricks’’, SQL returns the
following error:

%RDB-E-NO_DUP, index field value already exists; duplicates not allowed for
EMP_LAST_NAME

3–98 Analyzing Performance Factors

3.9.3.3 MAPPING VALUES Compression
When you specify MAPPING VALUES compression, Oracle Rdb reduces the
number of bits needed to store indexes of all numeric columns by translating
the column values into a more compactly encoded form. You specify this type of
compression with the MAPPING VALUES clause of the SQL CREATE INDEX
statement. Note that MAPPING VALUES compression cannot be specified for
text columns. You can specify MAPPING VALUES compression for sorted and
hashed indexes.

The MAPPING VALUES clause requires that you specify a range of values that
can be stored in the column. The MAPPING VALUES clause therefore acts as
a constraint, because it disallows values outside the specified range.

To create a MAPPING VALUES compressed index for columns that use
TINYINT, SMALLINT, and INTEGER data types, use the MAPPING VALUES
clause of the SQL CREATE INDEX statement for the column or columns being
indexed (shown in Example 3–36). You can use the UNIQUE clause with an
integer compressed index. In Example 3–36, PRODUCT_ID, YEAR_NUMBER,
and PRODUCT_DESCR are the three columns that are defined with the
UNIQUE clause.

Example 3–36 Setting MAPPING VALUES Index Compression for a
SMALLINT Data Type Column

SQL> CREATE UNIQUE INDEX PS_DATE_2 ON PRODUCT_SCHEDULE
cont> (PRODUCT_ID,
cont> YEAR_NUMBER MAPPING VALUES 1970 to 2070,
cont> PRODUCT_DESCR SIZE IS 20);

All index keys have an additional single bit added by Oracle Rdb. For most
index key values, this bit is contained in a leading extra byte of which the low
bit is the only significant bit. For numeric index keys for which MAPPING
VALUES and ENABLE COMPRESSION are specified, this additional bit is a
leading bit and no additional byte is required. This extra bit or byte is clear
if there is an actual data value for the index key and set if the data value is
missing or null.

The null bit is used to ensure that null index keys are sorted after non-null
index keys and to provide data for the hash algorithm if hashed index keys are
null.

Oracle Rdb automatically uses null bit compression for all index keys.

Analyzing Performance Factors 3–99

3.9.3.4 Run-Length Compression
When you specify run-length compression, Oracle Rdb compresses a sequence
of space characters (octets) from text data types and binary zeros from nontext
data types. (Different character sets have different representations of the space
character. Oracle Rdb compresses the representation of the space character for
the character sets of the columns comprising the index values.) Run-length
compression is most useful when you have many sequences of space characters
or binary zeros. You specify run-length compression by specifying the ENABLE
COMPRESSION MINIMUM RUN LENGTH clause of the SQL CREATE
INDEX statement. You can specify run-length compression for hashed and
sorted indexes. Run-length compression can also be specified for system
indexes, as described in Section 3.9.4.

To create a run-length compressed index for columns that use the CHAR
or VARCHAR data types, use the ENABLE COMPRESSION MINIMUM
RUN LENGTH clause of the SQL CREATE INDEX statement, as shown
in Example 3–37. The value you specify in the MINIMUM RUN LENGTH
clause indicates the minimum length of the sequence that Oracle Rdb should
compress. For example, if you specify MINIMUM RUN LENGTH 2, Oracle
Rdb compresses each sequence of two or more space characters or two or more
binary zeros.

Example 3–37 Setting MINIMUM RUN LENGTH Index Compression for CHAR
Data Type Columns

SQL> CREATE TABLE TELEPHONE_LIST
cont> (NAME CHAR (60),
cont> ADDRESS CHAR (141),
cont> TELEPHONE_NUMBER CHAR (12),
cont> TIME_DATE_OF_CALL DATE);
SQL>
SQL> CREATE INDEX TELEPHONE_CUSTOMER ON TELEPHONE_LIST
cont> (NAME, ADDRESS, TELEPHONE_NUMBER)
cont> ENABLE COMPRESSION
cont> (MINIMUM RUN LENGTH 2);

When Oracle Rdb compresses a sequence of space characters or binary zeros,
the sequence is replaced by the number of space characters or binary zeros
specified by the mininum run-length value plus an extra byte that contains
information about the number of space characters or binary zeros compressed
for that sequence.

3–100 Analyzing Performance Factors

The storage savings from run-length compression can be significant. Consider
the TELEPHONE_CUSTOMER index created in Example 3–37. If the
TELEPHONE_CUSTOMER index were defined without specifying run-length
compression, each uncompressed index key would be 216 bytes in length. Each
216-byte uncompressed index key consists of:

• 60 bytes for the NAME column (the first segment in the index)

• 141 bytes for the ADDRESS column (the second segment in the index)

• 12 bytes for the TELEPHONE_NUMBER column (the third segment in the
index)

• 3 other bytes (each of the three index key segments has an extra byte that
contains the null bit for that index key segment)

If the average name to be stored in the NAME column is only 13 characters in
length, run-length compression will reduce the amount of space used to store
the index keys.

Example 3–38 shows how Oracle Rdb compresses space characters for the
index entry ‘‘Terry L Smith’’ when MINIMUM RUN LENGTH 2 is specified for
the TELEPHONE_CUSTOMER index. In Example 3–38, the number sign (#)
character represents a space character, and the c character represents a byte
that contains compression information. The uncompressed index key segment
is 60 characters in length, which includes the 13 characters for the name and
47 trailing space characters. When MINIMUM RUN LENGTH 2 is specified,
Oracle Rdb replaces the 47 trailing space characters with 2 space characters
(the value specified by the MINIMUM RUN LENGTH clause) and adds the
extra byte with the compression information. The total size of the compressed
index key segment is therefore only 16 bytes, which is a savings of 44 bytes
compared to the uncompressed index key segment.

Example 3–38 Compression of an Index Key for the NAME Column of the
TELEPHONE_CUSTOMER Index

Uncompressed index key entry:

Terry#L#Smith###

Compressed index key entry with MINIMUM RUN LENGTH 2:

(continued on next page)

Analyzing Performance Factors 3–101

Example 3–38 (Cont.) Compression of an Index Key for the NAME Column
of the TELEPHONE_CUSTOMER Index

Terry#L#Smith##c
^ ^ ^ ^
| | | |
| | | |
1 13 16 60
Number of characters in the index key

Similarly, if the average address to be stored in the ADDRESS column is only
18 characters in length, run-length compression will reduce the amount of
space used to store the index keys. With an uncompressed index key segment
for the ADDRESS column of 18 characters in length, there will be 123 trailing
space characters (based on a column size of 141 characters for the ADDRESS
column).

When MINIMUM RUN LENGTH 2 is specified, Oracle Rdb replaces the
123 trailing space characters with 2 space characters (the value specified
by the MINIMUM RUN LENGTH clause) plus adds the extra byte with the
compression information. The total size of the compressed index key segment
is therefore only 21 bytes (18 bytes for the index key segment plus the 3 bytes
resulting from the MINIMUM RUN LENGTH 2 clause), which is a savings of
120 bytes compared to the uncompressed index key segment.

The average size for each compressed index key in the TELEPHONE_
CUSTOMER index would therefore be 52 bytes, consisting of:

• 16 bytes for the NAME column (the first segment in the index)

• 21 bytes for the ADDRESS column (the second segment in the index)

• 12 bytes for the TELEPHONE_NUMBER column (the third segment in the
index)

• 3 other bytes (each of the three index key segments has an extra byte that
contains the null bit for that index key segment)

Assume that you plan to store 100,000 entries in the TELEPHONE_
CUSTOMER index. If you were to store the index entries in their uncom-
pressed form, the storage space for the index entries would be 42188 disk
blocks:

100,000 index entries * 216 bytes per entry = 21,600,000 bytes

21,600,000 bytes / 512 bytes per block = 42187.5 blocks

3–102 Analyzing Performance Factors

However, if you specified MINIMUM RUN LENGTH 2 when you created
the index, the storage space for the 100,000 index key entries would be
approximately 10157 blocks (some index key entries might be larger or smaller
than the average 52-byte entry):

100,000 index entries * 52 bytes per entry = 5,200,000 bytes

5,200,000 bytes / 512 bytes per block = 10156.3 blocks

The storage savings from run-length compression in this case is approximately
32,030 blocks (42188 blocks minus 10157 blocks). Table 3–10 shows the storage
space saved by enabling run-length compression for the TELEPHONE_
CUSTOMER index when the index has 100,000 or 10 million index key
entries.

Table 3–10 Storage Savings for the TELEPHONE_CUSTOMER Index with
Run-Length Compression Enabled

Number of Index
Entries Uncompressed Index Entries Compressed Index Entries Savings

100,000 42,188 blocks 10,157 blocks 32,030
blocks

10,000,000 4,218,750 blocks 1,015,625 blocks 3,203,125
blocks

Table 3–10 shows that an index with uncompressed keys takes up more space
than the same index with compressed keys. Another benefit of compressing
index keys is that more index keys can be stored in each sorted index node.

Figure 3–5 shows a sorted index created with a node size of 2048 bytes. When
100,000 uncompressed index key entries are stored, there will be 5 levels of
nodes in the index. If the same 100,000 index keys are compressed, however,
there will be only 4 levels of nodes in the index. Reducing the number of index
node levels is beneficial from an I/O perspective because as the number of node
levels is reduced, the number of I/O operations required to access index key
entries is also reduced.

Analyzing Performance Factors 3–103

Figure 3–5 Reducing the Number of Index Node Levels by Specifying Run-
Length Compression

Node size = 2048 bytes

0

2

4

6

8

10

6
7

8
9

10
5

10
6

10
7 10

8
10

9

5

4 4
5 5

6Number of
Node Levels

Number of Entries in Sorted Index

Uncompressed keys
Compressed keys

NU−2977A−RA

One effect of storing more index keys in each node can be reduced concurrency.
When more index keys fit in a node, you lock more index values each time you
update a row. If you find that reducing the size of your index keys reduces
concurrency, you can increase concurrency by reducing the node size so that
each node contains fewer index keys.

You should have a good understanding of the data that will be stored in an
index before you specify a MINIMUM RUN LENGTH value for the index.
In some cases, you can inadvertently cause a compressed index to be larger
than an uncompressed index by specifying a less than optimal MINIMUM
RUN LENGTH value. In the following example, MINIMUM RUN LENGTH
1 has been specified for an index. The number sign (#) character represents a
binary zero and the c character represents a byte that contains compression
information.

Uncompressed index key entries:

1#2#3#4#5#6
2#3#4#5#6#7
3#4#5#6#7#8

Compressed index key entries with MINIMUM RUN LENGTH 1:

3–104 Analyzing Performance Factors

1#c2#c3#c4#c5#c6
2#c3#c4#c5#c6#c7
3#c4#c5#c6#c7#c8
^ ^ ^
| | |
| | |
1 11 16
Number of characters in the index key

Note that for this particular index, the compression that occurs when
MINIMUM RUN LENGTH 1 is specified causes the compressed index keys to
be larger than the uncompressed index keys (16 bytes for the compressed keys
compared to 11 bytes for the uncompressed keys). The compressed index keys
are larger because MINIMUM RUN LENGTH 1 tells Oracle Rdb to compress
each binary zero with the number of zeros specified by the minimum run-
length value. The result in this case is that Oracle Rdb replaces each single
binary zero with one binary zero plus the extra byte that contains information
on the number of binary zeros compressed (the single binary zero is replaced by
two characters). Note that although the uncompressed index key entries take
11 bytes of storage space, Oracle Rdb can still store the 16-byte uncompressed
index key entries. Oracle Rdb can store any compressed or uncompressed index
key entry that is less than 255 bytes in size. If the size of a compressed index
key exceeds 255 bytes at run time, you receive the following error message:

%RDMS-F-IKEYOVFLW, compressed IKEY for index index-name exceeds 255 bytes

If you receive this message, it means that the index key cannot be stored in the
index; delete the index and define it again. To avoid receiving the same error
message with the new index, you should specify that run-length compression
is disabled for the new index, or you can enable run-length compression and
specify a larger minimum run-length compression value.

Note that when you specify run-length compression, you cannot specify which
characters are compressed, only the minimum length of the sequences you
want Oracle Rdb to compress. Oracle Rdb determines which characters are
compressed.

The SQL SHOW INDEXES statement shows the compression characteristics
for defined indexes. The RMU Analyze Indexes command using the default
Option=Normal qualifier shows how much space each index node uses
for sorted indexes; see Section 3.9.5.1. You can see the results of index
compression if you note the values displayed for individual nodes before and
after index compression. Because sorted indexes are preallocated structures,
this information is visible. Compression information is not readily visible for
the dynamic hashed index structures because the Used/Avail values in the
RMU Analyze Indexes Option=Normal display are the same. You must use
the Option=Debug qualifier on the command line and inspect individual values

Analyzing Performance Factors 3–105

for the hashed index structures before and after index compression to notice
differences.

For more information on compressed indexes, see the Oracle Rdb7 Guide to
Database Design and Definition and the Oracle Rdb7 SQL Reference Manual.

3.9.4 System Index Compression
When you create a database, you can specify that Oracle Rdb compress the
system indexes. To do so, use the SYSTEM INDEX COMPRESSION IS
ENABLED clause of the CREATE DATABASE statement. To enable system
index compression for an existing database, you must export and import the
database and specify the SYSTEM INDEX COMPRESSION IS ENABLED
clause with the IMPORT statement.

For system indexes, Oracle Rdb uses run-length compression, which
compresses a sequence of space characters from text data types and binary
zeros (also called ASCII NUL) from nontext data types. It compresses any
sequences of two or more spaces for text data types or two or more binary zeros
for nontext data types. See Section 3.9.3.4 for more information on run-length
compression.

Compressing system indexes results in reduced storage and improved I/O.
Unless your applications often perform data definition concurrently, you should
use compressed system indexes.

3.9.5 Gathering Index Information
This section describes the RMU Analyze and RMU Show commands that
you can use to gather sorted and hashed index information. For general
information on how to use the RMU Analyze command, refer to Section 2.1.
Refer to Section 8.1.3.2 for more advice on analyzing indexes.

3.9.5.1 RMU Analyze Indexes Display
This section describes the format and content of the output when you use the
RMU Analyze command and specify the Indexes and the Option [= Normal,
Full, or Debug] qualifiers.

Using the RMU Analyze Indexes Option=Normal Command
When you use the RMU Analyze Indexes command with the Option=Normal
qualifier and specify the EMPLOYEES_HASH hashed index, Oracle RMU
displays the information shown in Example 3–39.

3–106 Analyzing Performance Factors

Example 3–39 RMU Analyze Indexes Option=Normal Command for a Hashed
Index

$ RMU/ANALYZE/INDEXES mf_personnel EMPLOYEES_HASH /OPTION=NORMAL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Hashed index EMPLOYEES_HASH for relation EMPLOYEES duplicates not allowed
Max Level: 1, ! Nodes: 69, " Used/Avail: 2797/2797 (100%), # Keys: 100, $ Records: 100 %

--

The following list describes the RMU Analyze Indexes Option=Normal display.
The callouts are keyed to fields in Example 3–39.

! Max Level:

The maximum number of levels in the index (1).

" Nodes:

The total number of nodes in the index (69). Because the display is of a
hashed index, the nodes are hash buckets.

Used/Avail:

The number of bytes used by the index (2797), the number of bytes
available (2797), and the percent of the space used by the index (100%).

For hashed indexes, the Used/Avail value includes the index header and
trailer information. Because the hashed index is a dynamic structure, its
Used/Avail values are always the same and always show 100 percent usage.

For sorted indexes, the Used/Avail values do not include the index header
and trailer information, which use 32 bytes.

$ Keys:

The total number of unique keys in the index (100). Because in this
example duplicates are not allowed, there are 100 unique keys for 100 data
rows.

% Records:

The total number of index records with unique keys in the index (100).

When you use the RMU Analyze Indexes command with the Option=Normal
qualifier and the DEPARTMENTS_INDEX sorted index, Oracle RMU displays
the information shown in Example 3–40.

Analyzing Performance Factors 3–107

Example 3–40 RMU Analyze Indexes Option=Normal Command for a Sorted
Index

$ RMU/ANALYZE/INDEXES mf_personnel DEPARTMENTS_INDEX /OPTION=NORMAL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Index DEPARTMENTS_INDEX for relation DEPARTMENTS duplicates not allowed
Max Level: 1, Nodes: 1, Used/Avail: 188/398 (47%), Keys: 26, Records: 26

--

In Example 3–40 for the DEPARTMENTS_INDEX sorted index, the maximum
level is 1, there is one node (the root node), the index uses 188 of 398 possible
bytes, and the nodes are 47 percent full. Because duplicates are not allowed,
there are 26 unique keys for 26 data rows. Note that for sorted indexes, the
amount of allocated space defaults to 430 bytes but usually not that much
space is actually used for storing keys. For this reason, the percent used space
is usually less than 100 percent.

For sorted indexes, the Used/Avail values do not include the index header
and trailer information that accounts for 32 bytes. Therefore, the actual
preallocated node size for this sorted index is 430 bytes, not 398 bytes. Because
sorted indexes, unlike hashed indexes, are preallocated structures, this value
(47 percent) is an actual percent usage value.

When you use the RMU Analyze Indexes command with the Option=Normal
qualifier and a ranked sorted index that allows duplicates, Oracle RMU
displays the information shown in Example 3–41.

Example 3–41 RMU Analyze Indexes Option=Normal Command for a Ranked
Sorted Index

$ RMU/ANALYZE/INDEXES mf_personnel DEGREES_YEAR_RANKED /OPTION=NORMAL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Index DEGREES_YEAR_RANKED for relation DEGREES duplicates allowed
Max Level: 2, Nodes: 5, Used/Avail: 772/1990 (39%), Keys: 25, Records: 3

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 18, Maps: 18, Records: 162

--

When an index allows duplicates, the RMU Analyze Index command displays
the following additional information:

• Duplicate nodes

3–108 Analyzing Performance Factors

For ranked sorted indexes, the number of overflow nodes. The number can
be zero (0) even if the index contains duplicates. For non-ranked sorted
indexes, the number of duplicate nodes. For hashed indexes, the number of
duplicate nodes.

• Used/Avail

The number of bytes used by duplicate nodes and number of bytes available
in the duplicate nodes (the percentage of space used within the duplicate
nodes of the index). This value can be zero (0) for a ranked sorted index if
the number of duplicate nodes is zero.

• Keys

The total number of duplicate keys in the index.

• Maps

For ranked sorted indexes only, the number of bit maps used to represent
the dbkeys that point to duplicate index key data. This field does not
appear for non-ranked sorted indexes or hashed indexes.

• Records

The total number of duplicate records in the index.

When you use the RMU Analyze Indexes command with the qualifier
Option=Normal and specify the JOB_HISTORY_HASH hashed index,
which allows duplicates, Oracle RMU displays the information shown in
Example 3–42.

Example 3–42 RMU Analyze Indexes Option=Normal Command for a Hashed
Index (Duplicates Allowed)

$ RMU/ANALYZE/INDEXES mf_personnel JOB_HISTORY_HASH /OPTION=NORMAL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Hashed index JOB_HISTORY_HASH for relation JOB_HISTORY duplicates allowed
Max Level: 1, Nodes: 69, Used/Avail: 2797/2797 (100%), Keys: 100, Records: 20

Duplicate nodes: 80, Used/Avail: 2992/7360 (41%), Keys: 80, Records: 254

--

In Example 3–42 for the JOB_HISTORY_HASH hashed index, the maximum
level is 1, there are 69 nodes (hash buckets) using 2797 bytes or 100 percent
of available space. There are a total of 100 keys in the index. There are 20
records with unique keys. There are 254 records with keys that are not unique,
and 80 of the 100 keys are not unique. The average number of duplicates per

Analyzing Performance Factors 3–109

non-unique key for the index is calculated as 2.175 or (254/80) –1 and the
average number of duplicates for the index as a whole is calculated as 1.74 or
((254+20)/100) –1. In addition, the 80 duplicate node records are 41 percent
filled with 2992 bytes of a possible 7360 bytes.

For sorted indexes, the value for the number of levels indicates how many
levels deep the B-tree index has become.

For hashed indexes, the value for the number of levels is the length of the
longest hash bucket overflow chain for the index. Overflows occur when there
is insufficient space on the page to make additional entries in the hash bucket,
and an overflow hash bucket is then created on an adjacent page, where
there is sufficient space. Overflows may be more prevalent when entire hash
structures for both parent and child records reside on the same page as their
data rows that use a PLACEMENT VIA INDEX clause. The value for the
number of index levels may or may not indicate how many I/O operations
are required to find a particular value when the system uses the index for
retrieval. However, the results of an RMU Analyze Placement command using
the Option=Full or Option=Debug qualifier and an inspection of the Minimum
I/O Path Length by Frequency histogram or the minimum I/O path length
values, will provide an accurate estimate of whether or not all the desired
information resides in the buffer.

If Oracle Rdb reads the top and bottom level of the sorted index and the data
page, three I/O operations would be necessary to make the retrieval. However,
the top level of the index normally stays in the buffer. If there are enough
buffers, the lower levels remain in the buffer as well. In this case, only one I/O
operation would be required to retrieve the row.

For hashed indexes that are stored in the same storage area and on the same
page as the data using the PLACEMENT VIA INDEX clause of the SQL
CREATE and ALTER STORAGE MAP statements, a minimum of one I/O
operation is required to retrieve the data row. When duplicates are allowed,
duplicate node records are created. If there are many duplicate records and the
page size is too small, data rows may be placed on the page to which they hash,
but portions of the hash structure (hash buckets) will overflow to nearby pages
because there is not sufficient space to make additional entries in the hash
bucket. Over time, as the database pages fill up, more overflows may occur. As
a result, performance may drop as more I/O operations become necessary to
gather the requested information.

The display from the RMU Analyze Indexes Option=Normal command, as
shown in Example 3–43, provides an extra line of detail for compressed
indexes. The last line of the display appears only when the index is a
compressed index.

3–110 Analyzing Performance Factors

Example 3–43 RMU Analyze Indexes Option=Normal Command for a
Compressed Index

$ RMU/ANALYZE/INDEXES test_db COMPRESSED_IND /OPTION=NORMAL
0--

Index COMPRESSED_IND for relation NEW_TABLE duplicates allowed
Max Level: 1, Nodes: 1, Used/Avail: 155/398 (39%), Keys: 8, Records: 8

Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0
Total Comp/Uncomp IKEY Size: 179/256, Compression Ratio: .70

0
0--

In the last line of Example 3–43, the 179 indicates the total byte count of
compressed leaf (Level 1 nodes only) index keys. The 256 indicates the total
byte count that would be consumed if the index were not compressed. A
compression factor greater than 1.0 indicates that the compressed index keys
occupy more space than the uncompressed index keys. Section 3.9.3.4 describes
how a compressed index key can occupy more space than an uncompressed
index key if run-length compression is used.

Using the RMU Analyze Indexes Option=Full Command
When you use the RMU Analyze Indexes command and specify the Option=Full
qualifier, information for all levels of the index is displayed. For the
DEPARTMENTS_INDEX sorted index, the index is only one level, as shown in
Example 3–44.

Example 3–44 Using the RMU Analyze Indexes Option=Full Command on a
Sorted Index

$ RMU/ANALYZE/INDEXES mf_personnel DEPARTMENTS_INDEX /OPTION=FULL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Index DEPARTMENTS_INDEX for relation DEPARTMENTS duplicates not allowed
Max Level: 1, Nodes: 1, Used/Avail: 188/398 (47%), Keys: 26, Records: 26

--

If the index has several levels, the display shows information for each level.
Because this index has only one level, the information is repeated.

Analyzing Performance Factors 3–111

Using the RMU Analyze Indexes Option=Debug Command
When you use the RMU Analyze Indexes command and specify the
Option=Debug qualifier, detailed information for each index node and index
record is displayed. Example 3–45 shows the output for the EMPLOYEES_
HASH hashed index.

Example 3–45 RMU Analyze Indexes Option=Debug Command for a Hashed
Index

$ RMU/ANALYZE/INDEXES mf_personnel EMPLOYEES_HASH /OPTION=DEBUG
0--
0
0 Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;
0
0 ID Hash Dup Name Relation
0--
4 62 T F EMPLOYEES_HASH EMPLOYEES
4 60 T F EMPLOYEES_HASH EMPLOYEES
4 58 T F EMPLOYEES_HASH EMPLOYEES
0
0--
0
0 ID DB KEY LEVEL SIZE KEY-LEN KEY
0--
0
5 58 0058:0000000002:002 1 0051/0051
5 58 0063:0000000002:001 0 0/ 0 (006)"003030313635"
5 58 0063:0000000002:003 0 0/ 0 (006)"003030313930"
5 58 0058:0000000005:002 1 0032/0032
5 58 0063:0000000005:001 0 0/ 0 (006)"003030313837"
5 58 0058:0000000007:002 1 0070/0070
5 58 0063:0000000007:001 0 0/ 0 (006)"003030313639"
5 58 0063:0000000007:003 0 0/ 0 (006)"003030313736"
5 58 0063:0000000007:004 0 0/ 0 (006)"003030313938"
5 58 0058:0000000011:002 1 0032/0032

.

.

.
5 60 0060:0000000003:002 1 0032/0032
5 60 0064:0000000003:001 0 0/ 0 (006)"003030323133"
5 60 0060:0000000004:002 1 0032/0032
5 60 0064:0000000004:001 0 0/ 0 (006)"003030323139"
5 60 0060:0000000005:002 1 0051/0051
5 60 0064:0000000005:001 0 0/ 0 (006)"003030323235"
5 60 0064:0000000005:003 0 0/ 0 (006)"003030323430"
5 60 0060:0000000006:002 1 0032/0032

.

.

.

(continued on next page)

3–112 Analyzing Performance Factors

Example 3–45 (Cont.) RMU Analyze Indexes Option=Debug Command for a
Hashed Index

5 62 0062:0000000008:002 1 0032/0032
5 62 0065:0000000008:001 0 0/ 0 (006)"003030343135"
5 62 0062:0000000018:002 1 0032/0032
5 62 0065:0000000018:001 0 0/ 0 (006)"003030343335"
5 62 0062:0000000021:002 1 0032/0032
5 62 0065:0000000021:001 0 0/ 0 (006)"003030343035"
5 62 0062:0000000026:002 1 0032/0032
5 62 0065:0000000026:001 0 0/ 0 (006)"003030343138"
5 62 0062:0000000032:002 1 0032/0032
5 62 0065:0000000032:001 0 0/ 0 (006)"003030343731"
5 62 0062:0000000046:002 1 0032/0032
5 62 0065:0000000046:001 0 0/ 0 (006)"003030343136"
0--
0
0 Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;
0
0--
0 Hashed index EMPLOYEES_HASH for relation EMPLOYEES duplicates not allowed
0 Max Level: 1, Nodes: 69, Used/Avail: 2797/2797 (100%), Keys: 100, Records: 100
0
0 Level: 1, Nodes: 69, Used/Avail: 2797/2797 (100%), Keys: 100, Records: 100
0
0--

The RMU Analyze Indexes command with the Option=Debug qualifier displays
detailed index node and index record information. The output header is divided
into two parts, general and detailed information. The headers are followed
by detailed index record information. The last part of the output displays
information identical to the RMU Analyze Indexes command when you specify
the Option=Full qualifier. Note that if an index is stored in more than one
logical area, information for all logical areas is displayed in the output.

The following list describes the RMU Analyze Indexes Option=Debug
display. Entries in parentheses that follow each field description are keyed
to Example 3–45, which uses the EMPLOYEES_HASH index. The description
references logical area 58 and the first line of detailed index information for
this logical area.

• General index information

ID

The logical area ID for the index (58).

Hash

Analyzing Performance Factors 3–113

A coded field: T = TRUE for hashed index, F = FALSE for sorted index
(T).

Dup

A coded field: T = TRUE for duplicates allowed, F = FALSE for
duplicates not allowed (F).

Name

The name of the index (EMPLOYEES_HASH).

Relation

The name of the table on which the index is defined (EMPLOYEES).

• Detailed index information

ID

The logical area ID for the index (58).

DB KEY

The dbkey for the record (0058:0000000002:002); it is composed of three
parts: the logical area ID (0058), the page number (0000000002), and
the line on the page where the record is stored (002).

LEVEL

The level of the index record (1); this indicates a node record or, in this
case, a hash bucket.

SIZE

For hashed indexes, the total size (in bytes) of each hash bucket and
following the slash (/), the amount of space (in bytes) allocated for the
hash bucket (0051 bytes/0051 bytes).

For sorted indexes (see Example 3–46), the total amount of space used
by all index records and following the slash (/), the amount of space
allocated for the node record.

KEY-LEN

The length of the key, in bytes (6).

For sorted indexes (see Example 3–46), the values in parentheses
have the following meaning. When the key value is compared to the
preceding key value, the first set of three digits (the prefix) indicates
the number of bytes in the preceding key that are the same. The second
set of three digits (the suffix) following the plus (+) sign indicates the
number of bytes that are different from the preceding key.

3–114 Analyzing Performance Factors

For example, for the key-len of (000+005), the value 000 indicates no
bytes are the same and 5 bytes are different from the preceding key
because there is no preceding key. In the next line, the key-len is
(001+004). The value 001 indicates that the first byte (00) is the same
in the preceding key, while the remaining 4 bytes are different. For
the next line, the key-len is (003+002). The value 003 indicates that
the first 3 bytes (00454C) are the same as the preceding key, while the
remaining 2 bytes are different.

This information is useful for key compression where the prefix value is
compressed because it repeats. In traversing a B-tree index, the prefix
values are picked up at each branch of the tree until the leaf node is
reached, which is where the unique suffix value is found. The total
key-len is 5 bytes for the DEPARTMENTS_INDEX sorted index.

KEY

The actual key printed as a HEX string (003030313635).

In Example 3–45 for the EMPLOYEES_HASH hashed index, note that the
index is partitioned across three logical areas (58, 60, and 62) for the table
EMPLOYEES. Dbkeys are listed by logical area and by page number within
logical area. The key is 5 bytes in size, plus 1 byte for the null bit vector is
equal to 6 bytes, plus 1 byte for the key size, or a total of 7 bytes. The total size
of each hash bucket is displayed; for example, 0051 for the first hash bucket.
The 51 bytes for this hash bucket include 13 bytes of fixed header information
for the hash bucket. The hash bucket also contains 19 bytes of information for
each data row associated with this hash bucket. These 19 bytes include:

• 7 bytes for the key: length + null bit vector + key size of the row

• 4 bytes for the duplicate count associated with the row

• 8 bytes for the dbkey pointer to the row (or to the duplicate node if the
index allows duplicates)

This means the hash bucket increases in increments of 19 bytes. The smallest
hash bucket possible for this index is 32 bytes (19 bytes for one data row + 13
bytes of fixed header information for the hash bucket). This hash bucket has
two data rows associated with it, so the size of the hash bucket is 51 bytes.
The actual dbkey and key value is displayed for each data row.

When you use the RMU Analyze Indexes command and specify the
Option=Debug qualifier and the DEPARTMENTS_INDEX sorted index, the
information displayed is shown in Example 3–46.

Analyzing Performance Factors 3–115

Example 3–46 RMU Analyze Indexes Option=Debug Command for a Sorted
Index

$ RMU/ANALYZE/INDEXES mf_personnel DEPARTMENTS_INDEX /OPTION=DEBUG
0--
0
0 Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;
0
0 ID Hash Dup Name Relation
0--
4 72 F F DEPARTMENTS_INDEX DEPARTMENTS
0
0--
0
0 ID DB KEY LEVEL SIZE KEY-LEN KEY
0--
0
5 72 0072:0000000002:002 1 0188/0430 (000)""
5 72 0073:0000000002:001 0 0/ 0 (000+005)"0041444D4E"
5 72 0073:0000000002:003 0 0/ 0 (001+004)"00454C454C"
5 72 0073:0000000002:004 0 0/ 0 (003+002)"00454C4753"
5 72 0073:0000000002:005 0 0/ 0 (003+002)"00454C4D43"
5 72 0073:0000000002:006 0 0/ 0 (002+003)"00454E4720"
5 72 0073:0000000002:007 0 0/ 0 (001+004)"004D424D46"
5 72 0073:0000000002:008 0 0/ 0 (004+001)"004D424D4E"
5 72 0073:0000000002:009 0 0/ 0 (004+001)"004D424D53"
5 72 0073:0000000003:001 0 0/ 0 (002+003)"004D43424D"
5 72 0073:0000000003:002 0 0/ 0 (004+001)"004D434253"
5 72 0073:0000000003:003 0 0/ 0 (002+003)"004D475654"
5 72 0073:0000000003:004 0 0/ 0 (002+003)"004D4B5447"
5 72 0073:0000000003:005 0 0/ 0 (002+003)"004D4E4647"
5 72 0073:0000000003:006 0 0/ 0 (002+003)"004D534349"
5 72 0073:0000000003:007 0 0/ 0 (003+002)"004D534D47"
5 72 0073:0000000003:008 0 0/ 0 (002+003)"004D54454C"
5 72 0073:0000000003:009 0 0/ 0 (001+004)"005045524C"
5 72 0073:0000000003:010 0 0/ 0 (004+001)"0050455253"
5 72 0073:0000000003:011 0 0/ 0 (002+003)"005048524E"
5 72 0073:0000000003:012 0 0/ 0 (002+003)"0050524D47"
5 72 0073:0000000003:013 0 0/ 0 (001+004)"0053414C45"
5 72 0073:0000000003:014 0 0/ 0 (002+003)"0053455552"
5 72 0073:0000000003:015 0 0/ 0 (002+003)"0053554E45"
5 72 0073:0000000003:016 0 0/ 0 (003+002)"0053555341"
5 72 0073:0000000003:017 0 0/ 0 (004+001)"005355534F"
5 72 0073:0000000002:010 0 0/ 0 (003+002)"0053555745"
0--

(continued on next page)

3–116 Analyzing Performance Factors

Example 3–46 (Cont.) RMU Analyze Indexes Option=Debug Command for a
Sorted Index

0
0 Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;
0
0--
0 Index DEPARTMENTS_INDEX for relation DEPARTMENTS duplicates not allowed
0 Max Level: 1, Nodes: 1, Used/Avail: 188/398 (47%), Keys: 26, Records: 26
0
0 Level: 1, Nodes: 1, Used/Avail: 188/398 (47%), Keys: 26, Records: 26
0
0--

Example 3–46 shows the DEPARTMENTS_INDEX sorted index for the
DEPARTMENTS table. The index is a non-ranked sorted index.

The entire index (26 records) is located on pages 2 and 3 in logical area 72 and
uses 188 bytes of a possible 430 bytes or the node record is 47 percent full.
Note that due to index compression, the node size has decreased in size from
214 bytes to 188 bytes and the percent fullness of the node records has dropped
from 54 to 47 percent. Also note that the used/avail value in the summary
information at the end of the output does not include the index header and
trailer information, which accounts for 32 bytes. This value is shown for each
node record in the detailed part of the output. The number of bytes used by
the index is calculated as follows: the key is 4 bytes plus a null byte for a total
of 5 bytes. The key length is 1 byte for the number of bytes, less the prefix
length, that are stored in the key data; and the prefix length is 1 byte for the
number of bytes of the previous entry that are prefixed to this one, for a total
of 2 bytes. There are 26 data rows multiplied by 7 (5+1+1) or a total of 182
bytes. Add 32 bytes for index header and trailer information for the index node
to the 182 bytes for a total of 214 bytes used. Index compression reduces the
number of bytes used to 188 bytes used.

For detailed information on sizing ranked and non-ranked sorted indexes, see
the Oracle Rdb7 Guide to Database Design and Definition.

For sorted indexes, you should pay close attention to the length of the index
node and to the number of duplicates, if they are allowed. If the length of the
index is large, you are using a lot of system resources to keep the index on the
table. At the same time, if you allow duplicates and there are many duplicate
values for the index, the efficiency of the index is reduced. You may want to
do further testing to determine if the index improves performance enough to
justify the overhead required to store and update it. You may also gain the

Analyzing Performance Factors 3–117

advantage of using the index by defining multisegmented indexes to distribute
access across more index nodes than are currently available.

Example 3–47 shows the display for the RMU Analyze Indexes Option=Debug
command when a compressed index is specified.

Example 3–47 RMU Analyze Indexes Option=Debug Command for a
Compressed Index

$ RMU/ANALYZE/INDEXES test_db COMPRESSED_IND /OPTION=DEBUG
0--
0
0 Indices for database - $DUA3:[ORION]TEST_DB;
0
0 ID Hash Dup Name Relation
0--
4 13 F T COMPRESSED_IND NEW_TABLE
0
0--
0
0 ID DB KEY LEVEL SIZE KEY-LEN KEY
0--
0
5 13 0004:0000000146:005 0 0/ 0 (006+025)"0052444224524C435F434F4E535
5241494E545F4E414D455F4E445820202020"
5 13 0004:0000000147:001 0 0/ 0 (009+017)"0052444224524C435F4649454C4
5F4E414D455F4E4458202020202020202020" ^ ^

. | |

. | Hexadecimal dumps

. | (uncompressed keys)
These lengths are for the
compressed index key

The RMU Analyze Indexes Option=Debug command uncompresses index keys
from compressed indexes before display. The hexadecimal output displayed
shows the uncompressed index key. However, the length reported for each
index key is the length of the compressed index key, as shown in Example 3–47.

3.9.5.2 Gathering Index Information Using the Performance Monitor
The Performance Monitor provides the following screens to help you gather
information about sorted and hashed indexes:

• The Hash Index Statistics screen

The Hash Index Statistics screen monitors the update and retrieval
activity of a database’s hashed indexes. It indicates the total number
of key insertions and deletions. It also indicates the number of scans that
were opened. For retrievals (successful fetches), the screen indicates the
total number of nodes (either bucket fragments or duplicate nodes) that
were fetched.

3–118 Analyzing Performance Factors

You can also refer to Section 8.1.3.4 and Section 8.1.3.5 for more advice on
analyzing hashed indexes.

• The Index Statistics (Retrieval) screen

The Index Statistics (Retrieval) screen monitors how much retrieval
activity is taking place in a database’s sorted indexes. Oracle Rdb often
uses direct index lookups and index scans to access records in the database.
The Index Statistics (Retrieval) screen monitors these operations as well as
the number of index nodes fetched.

• The Index Statistics (Insertion) screen

The Index Statistics (Insertion) screen monitors the update activity of
a database’s sorted indexes during insertions; that is, when you insert
or modify an index key field or when you use the SQL CREATE INDEX
statement on a table. This screen also indicates in which type of index
node the insertions occur and displays node creations by node type. By
examining this screen, you can monitor how a database balances its sorted
indexes after insertions into the database.

• The Index Statistics (Removal) screen

The Index Statistics (Removal) screen monitors the update activity of
a database’s sorted indexes when you perform any removal operation;
that is, delete or modify an index key field or drop an index. This screen
indicates from which type of index node the removals occur. It also shows
node deletions by node type. This screen lets you monitor how a database
balances its sorted indexes when nodes are removed from the indexes.

For information about each screen and each field in each screen, see the
Peformance Monitor help.

3.9.6 Sorted Index Structure
The sorted index structure is based on a tree structure and contains nodes.
Each sorted index (system or user) has a separate index structure or B-tree.
Each B-tree structure is created by linking index nodes together in a balanced
hierarchical structure. These nodes are also horizontally linked in low-to-high
key value. The links between the nodes are created using dbkeys.

The type of nodes in the B-tree depends on whether the index is a ranked or
non-ranked sorted index.

Ranked sorted indexes contain the following types of nodes:

• Index key nodes

Analyzing Performance Factors 3–119

Index key nodes contain unique index keys and pointers to other nodes.
A B-tree structure can have many levels of index key nodes. Level 1 nodes,
also known as leaf nodes, point to rows in the table or to overflow nodes.
Level 2 (and above) nodes point to lower-level index nodes.

With ranked sorted indexes, Oracle Rdb compresses duplicates using
byte-aligned bitmap compression. It takes a list of dbkeys that point to
data rows with the same index values and stores the list as a compressed
bitmap in the leaf node. If you store duplicate entries, Level 1 nodes
contain the compressed bitmaps of dbkeys.

• Overflow nodes

Oracle Rdb creates overflow nodes when the compressed bitmaps of
duplicates in the leaf node overflow that node. The overflow nodes
contain the continuation of the compressed bitmap stored in the leaf node
and a pointer to the next overflow node.

Because index nodes are themselves rows, they are subject to row locking.

Figure 3–6 illustrates a B-tree index structure for a ranked sorted index.

3–120 Analyzing Performance Factors

Figure 3–6 B-Tree Index Structure for a Ranked Sorted Index

Nodes

L2

L1 L1 L1 L1

R R R R

L2

Legend

L1 = Level 1 Node

RR

L1 L1 L1 L1 L1L1

R R R RRR R RR

L2 = Level 2 Node
R = Rows

NU−3613A−RA

= bdr, bit representing a duplicate node

RR

. . .

R

. . .

RR R

Index Root
(Level 3)

Overflow Node

The level 2 (and above) nodes contain:

• A record type header that identifies index nodes and overflow nodes.

• Two fragmentation flags.

• A storage area ID that identifies the logical area of the index node.

• A level type that identifies the level of the B-tree structure in which the
index node resides.

• Index key values with prefix and suffix compression.

• The entry cardinality of the row and leaf cardinalities.

• A list of dbkeys stored as a compressed bitmap. The dbkeys point to the
data rows with the same index values.

Analyzing Performance Factors 3–121

• A pointer to the next node on the right at the same level and higher key
value.

• Pointers to lower level nodes.

The level 1 nodes (the level closest to the data rows) contain:

• A record type header that identifies index nodes and overflow nodes.

• Two fragmentation flags.

• A storage area ID that identifies the logical area of the index node.

• A level type that identifies the level of the B-tree structure in which the
index node resides.

• Index key value with prefix compression (leading bytes of the key value
that repeat from one entry to the next are not stored).

• If the node contains duplicates, pointers to data rows that use compressed
dbkeys storing the relative location of the row. If there are duplicates, the
pointers are not used until the duplicates overflow. At that time, pointers
indicate the location of the overflow dbkey.

• The entry cardinality of the row.

• If the node contains duplicates, a list of dbkeys stored as a compressed
bitmap. The dbkeys point to the data rows with the same index values.

• Pointers to overflow nodes, if necessary. (Oracle Rdb creates overflow nodes
only when the list of duplicates overflows the index node.)

• A pointer to the next level 1 node on the right (higher key value).

The overflow nodes contain:

• A record type header that identifies index nodes and duplicate nodes.

• Two fragmentation flags.

• A storage area ID that identifies the logical area of the index node.

• A list of dbkeys stored as a compressed bitmap. The dbkeys point to the
data rows with the same index values.

• A pointer to the next overflow node in the chain.

For duplicate records, instead of pointing to individual records, the entry
contains a list of dbkeys that, in turn, point to all the data rows with identical
index key values. When many data rows have the same index key value, more
than one overflow node might be required. This is called an overflow chain.

3–122 Analyzing Performance Factors

Figure 3–7 shows part of a B-tree structure with an overflow node.

Figure 3–7 Overflow Index Nodes

(R) = individual row

NU−3612A−RA

EENG

Level 2 Node

Index Key (Level 1) Nodes

EENG(R)

EENG(R)

EENG(R)

DGFR

DGFR(R)

CLRK

CLRK(R)

APGM

APGM(R)

PRGM

PRGM(R)

EENG(R)

EENG(R)

EENG(R)

. . .

. . .

= bdr, bit representing a duplicate node

Overflow Node

Non-ranked sorted indexes contain the following types of nodes:

• Index key nodes

Index key nodes contain unique index keys and pointers to other nodes.
A B-tree structure can have many levels of index key nodes. Level 1 nodes,
also known as leaf nodes, point to rows in the table or to duplicate index
rows. Level 2 (and above) nodes point to lower-level index nodes.

• Duplicate nodes

Oracle Rdb creates duplicate index nodes when you define the index
without using the UNIQUE keyword and you store a duplicate key value.
The duplicate nodes contain a list of the duplicate row dbkeys.

Because index nodes are themselves rows, they are subject to row locking.

Analyzing Performance Factors 3–123

Figure 3–8 illustrates a B-tree index structure for a non-ranked sorted index.

Figure 3–8 B-Tree Index Structure for a Non-Ranked Sorted Index

Nodes

L2

Index Root
(Level 3)

D PU

L1

D PU

L1 L1 L1 L1

R R R R R R

L2

Legend

L1 = Level 1 Node

RR

L1 L1 L1 L1 L1 L1L1

R R R R R R RRR R R R R RR

NU−2089A−RA

RRRR

L2 = Level 2 Node
DUP= Duplicate Node
R = Rows

The level 2 (and above) nodes contain:

• A record type header that identifies index nodes and duplicate nodes.

• Two fragmentation flags.

• A storage area ID that identifies the logical area of the index node.

• A level type that identifies the level of the B-tree structure in which the
index node resides.

• Index key values with prefix and suffix compression.

• A pointer to the next node on the right at the same level and higher key
value.

• Pointers to lower level nodes.

3–124 Analyzing Performance Factors

The level 1 nodes (the level closest to the data rows) contain:

• A record type header that identifies index nodes and duplicate nodes.

• Two fragmentation flags.

• A storage area ID that identifies the logical area of the index node.

• A level type that identifies the level of the B-tree structure in which the
index node resides.

• Index key value with prefix compression (leading bytes of the key value
that repeat from one entry to the next are not stored).

• Pointers to data rows that use compressed dbkeys storing the relative
location of the row.

• Pointers to duplicate nodes that use dbkeys with negative logical area
numbers.

• A pointer to the next level 1 node on the right (higher key value).

The duplicate nodes contain:

• A record type header that identifies index nodes and duplicate nodes.

• Two fragmentation flags.

• A storage area ID that identifies the logical area of the index node.

• Pointers to the data rows with same index key value.

• A pointer to the next duplicate node in the duplicate chain.

For duplicate node records, instead of pointing to individual records, the B-tree
structure points to a duplicate node that, in turn, points to all the data rows
with identical index key values. When many data rows have the same index
key value, more than one duplicate node might be required. This is called a
duplicate chain.

Figure 3–9 shows a duplicate node.

Analyzing Performance Factors 3–125

Figure 3–9 Duplicate Index Nodes

EENG

(R) = individual row

Duplicate Node

NU−2088A−RA

EENG

Level 2 Node

Index Key (Level 1) Nodes

EENG(R)

EENG(R)

EENG(R)

EENG(R)

EENG(R)

EENG(R)

DGFR

DGFR(R)

CLRK

CLRK(R)

APGM

APGM(R)

PRGM

PRGM(R)

3.9.6.1 Reducing Locking of Chronological Keys
One common example of index design that increases lock contention in index
structure is a chronological key; that is, an indexed key value stored in the
database over time as its value increases. Access to key values, therefore,
tends to be within the same few nodes of the index structure.

A good example of this type of key is an INVOICE_NUMBER column. Recent
invoice numbers tend to contain larger values than older invoice numbers, and
access to invoices may be clustered more toward recent additions. Because
most access to these indexed columns is concentrated in a few nodes, as in
Figure 3–10, updating the index while there are other users in the table can
restrict database concurrency.

3–126 Analyzing Performance Factors

Figure 3–10 Clustered Access Contention at One Index Node

Index node locked

Concurrent access to
recent invoice numbers
clustered at this node

23800 − 23899

R R R R R R R R

ZK−7008−GE

23900 − 23999

R R R R R R R R

R = Row

This lock contention problem has several solutions:

• You can concatenate another key value to the invoice number. This
should be a column you would ordinarily need to satisfy the query. The
goal is to have a value in the key that distributes the values of the
multisegmented key more evenly throughout the entire index, instead
of clustering access on one side. In the case of the INVOICE_NUMBER
column, a multisegmented index that contains the CUSTOMER_NUMBER
and INVOICE_NUMBER columns would be suitable. The SQL CREATE
INDEX statement in Example 3–48 creates this multisegmented index.
The trade-off with this approach is that new, redundant data must be
stored in the index structure, and requires extra storage area space to
maintain.

Example 3–48 Reducing Lock Contention When Using Chronological Keys

SQL> CREATE UNIQUE INDEX CUSTOMER_INVOICE ON INVOICES
cont> (CUSTOMER_NUMBER,
cont> INVOICE_NUMBER);

• You can preallocate the chronological keys at night in a batch run and then
modify the rows with real data during online operation. This avoids the
index contention, but may lead to fragmentation.

• You can consider the possibility of using a hashed index, which does not
have problems with chronological keys.

Analyzing Performance Factors 3–127

3.9.6.2 Reducing Locking of Duplicate Nodes Key
Another lock contention problem results from a very small number of key
values for the table, with a large number of duplicates, that are frequently
updated. Because one index node can maintain many duplicate key values,
updating just one key may lock the entire node.

A common example that illustrates this duplicates problem is a mailing list
with an index defined for the 2-character STATE code and many duplicates for
each index node. It is possible that the top node of the index will contain all
the key values. When a user needs to update one of the duplicate values, the
top node (the root of the tree) is locked for this update transaction and denies
other users access to the table.

A solution to this problem is to concatenate the STATE code column with a
POSTAL_CODE column. This multisegmented key distributes the key values
across a larger, wider index structure and helps to reduce lock contention. The
trade-off is that more storage space is needed to maintain the larger index
structure.

The following SQL CREATE INDEX statement and RMU Analyze Indexes
command output shows that an index has been defined for the STATE
column in the EMPLOYEES table of the mf_personnel database. A second,
multisegmented index has also been defined using two columns, STATE and
POSTAL_CODE, to distribute the values across more nodes of the index, as
shown in Example 3–49.

Example 3–49 Reducing Lock Contention When Many Duplicates Exist

SQL> CREATE INDEX STATE_IDX ON EMPLOYEES
cont> (STATE)
cont> TYPE IS SORTED;
SQL>
SQL> CREATE INDEX STATE_POSTAL_IDX ON EMPLOYEES
cont> (STATE,
cont> POSTAL_CODE)
cont> TYPE IS SORTED;
SQL> COMMIT;
SQL> EXIT

(continued on next page)

3–128 Analyzing Performance Factors

Example 3–49 (Cont.) Reducing Lock Contention When Many Duplicates
Exist

$ RMU/ANALYZE/INDEXES mf_personnel STATE_IDX, STATE_POSTAL_IDX
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Index STATE_IDX for relation EMPLOYEES duplicates allowed
Max Level: 1, Nodes: 1, Used/Avail: 25/398 (6%), Keys: 3, Records: 1

Duplicate nodes: 3, Used/Avail: 792/868 (91%), Keys: 2, Records: 99

--
Index STATE_POSTAL_IDX for relation EMPLOYEES duplicates allowed
Max Level: 2, Nodes: 3, Used/Avail: 314/1194 (26%), Keys: 35, Records: 9

Duplicate nodes: 24, Used/Avail: 728/1392 (52%), Keys: 24, Records: 91

--

Although the index structure is designed to allow increased concurrent access
to the EMPLOYEES table, access is clustered around three duplicate nodes,
preventing access to a large section of the index. When you define an index
for a column that contains duplicate values, you may discover that a table has
many rows, but only a few values for a column for which you have defined an
index. In this case, using STATE_POSTAL_IDX is beneficial because it allows
other transactions to access the EMPLOYEES table to retrieve rows not locked
by this transaction.

The trade-off in this method of indexing is that Oracle Rdb requires extra
storage space for the distributed values for the multisegmented index keys.
Remember that you can define indexes for one or more columns, use them
for specific tasks, and delete them when they are no longer required. For
example, you can use indexes for temporary reporting purposes. Create the
indexes you need before you run a read-only report and then delete them before
the database is used for production. In this way, you benefit from increased
concurrent access while you maintain efficient use of disk storage.

Analyzing Performance Factors 3–129

3.9.6.3 Clustering Indexes
A cluster index is a sorted index that is used to place presorted table rows
in a storage area so that rows are stored in approximately the same order in
which they appear in the index. This can significantly improve performance
for queries requiring range retrievals. For example, if you create an ascending
index on the LAST_NAME column and then specify that the table will be
stored using that sorted index with a PLACEMENT VIA INDEX clause in an
SQL CREATE STORAGE MAP statement, Oracle Rdb attempts to store the
rows in alphabetical order. If you specify nothing, that is, do not use a storage
map to place rows of the table into the storage area using the sorted index, the
rows are stored randomly.

When you define an index, you can specify a list of columns within the index
that Oracle Rdb should use as a key for determining in which storage area to
place an index. You can set the maximum value for the key when it is initially
stored in a specified storage area by using the WITH LIMIT OF option in the
STORE USING clause of the SQL CREATE INDEX statement. The column
names specified in the STORE USING clause in the list must be in the same
order as they appear in the index. When you define the storage map, you name
the index to be used for placing rows in the storage area. If you are storing
rows in multiple storage areas, you set the maximum value for the key when
it is initially stored in a specified storage area by using the WITH LIMIT OF
option in the STORE clause of the SQL CREATE STORAGE MAP statement.
The columns in the list must be in the same order as they appear in the
defined index. For the syntax and more information about this statement, see
the Oracle Rdb7 Guide to Database Design and Definition and the Oracle Rdb7
SQL Reference Manual.

A cluster index can result in a significant difference in performance for queries
requiring range retrievals. Suppose that you have defined a table to be
clustered using an index based on the LAST_NAME column, and that you write
a query that asks for all employees whose last name is greater than Smith. If
there are a hundred employees whose last names are greater than Smith
and five employees fit on a page, it takes Oracle Rdb approximately 20 I/O
operations to answer the query with a clustering index. With a nonclustering
index, Oracle Rdb may take as many as 100 I/O operations.

3–130 Analyzing Performance Factors

3.9.6.4 Preventing Performance Degradation That May Occur over Time Using Sorted
Indexes

When a sorted placement index is used to store rows in a storage area, each
row is stored in index key sequence near its pointer record in the index
node record. Storage begins at the first available page in the storage area
immediately following the space area management (SPAM) page. As each page
is filled, the next available page in sequence is used to store rows, and so forth.
Once an index node record becomes full, a new index node record is written
on the next available page. A forward pointer is written in the original node
record, chaining it to the new index node record. Thus, each row is stored in
the storage area in index key sequence in close proximity to its pointer record,
starting at the beginning of the storage area and continuing until all table
rows and index node records are stored.

After a data load operation, range retrieval performance is optimal because
rows and their pointer records are as closely placed to one another as possible
under the default or specified tuning parameters. Range retrieval of rows
is possible in one to a few I/O operations assuming that page size, index
parameters such as node size and percent fill, and buffer sizes are tuned to
optimize retrieval performance for the application.

It is only after new rows are inserted in the database or many updates are
made to index key column data values following an initial data load operation
that you can expect range retrieval performance to slowly degrade. The reason
is simple. New rows are stored on the next available page with space, usually
after the last full page in the storage area.

Index row pointer entries, however, are inserted in each respective index node
record that should contain the new index key column value. This results in a
row and index pointer record page displacement greater than what normally
occurs under an initial data load operation. Furthermore, as row pointers are
added to index nodes, node records are forced to split and rebalance. New node
records are then written on the next page after the last full page in the storage
area, causing additional displacement from existing rows. As rows are updated,
rows never move but their pointer records are updated and relocated if the
index key column value for the rows changes; the pointer record is relocated
to the appropriate node record to maintain index key sequence. Again, as
node records split and rebalance, rows and their node record pointers can be
displaced further and further from each other. Therefore, page displacement is
possible with the addition of new rows or update of existing rows.

Analyzing Performance Factors 3–131

This physical page displacement of each node pointer record from its data row
leads to a degradation in retrieval performance. Over time, with the addition of
more new data and changed key index column values, more I/O operations are
needed to bring a specified range retrieval of index key values and associated
rows into a buffer. Eventually, performance can be poor.

To prevent this problem, you should occasionally unload and reload the data
in the storage area to optimally minimize the page displacement of each index
node record pointer with its row. Prior to reloading the data, reexamine index
and storage space parameters to see if further tuning is possible to optimize
retrieval performance.

3.9.6.5 Forward and Reverse Scans Using a Sorted Index
Oracle Rdb can perform forward and reverse scans on a single sorted index, so
that data can be retrieved in its standard sorted order or the reverse order.

When a reverse scan is returning dbkeys and index keys for a set of duplicate
records (records with the same index key value), these duplicate record dbkeys
are returned in the same order as they would be by a forward scan. This
greatly improves the efficiency of the reverse scan of duplicate keys.

This optimization is also semantically acceptable because a sorted index does
not guarantee any particular ordering among records whose index key values
are identical.

Although two indexes are not required to perform index scans in both a forward
and reverse direction, a reverse scan may use more CPU resources than a
natural forward scan.

In Example 3–50, RDMS$DEBUG_FLAGS has been set to "S" so that the
query strategy selected by the optimizer is displayed as the query executes.
Note that the RDMS$DEBUG_FLAGS output for the second statement shows
that a reverse scan is used to process the query.

Example 3–50 Using a Single Sorted Index for Forward and Reverse Scans

SQL> -- The optimizer uses forward scan for the LAST_NAME index
SQL> -- (an ascending index) when the values are requested in the
SQL> -- same order as the index (ascending).
SQL> SELECT LAST_NAME, FIRST_NAME FROM EMPLOYEES
cont> WHERE LAST_NAME > ’A’ AND LAST_NAME < ’M’
SQL> ORDER BY LAST_NAME ASCENDING;

(continued on next page)

3–132 Analyzing Performance Factors

Example 3–50 (Cont.) Using a Single Sorted Index for Forward and Reverse
Scans

Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_LAST_NAME [1:1]

LAST_NAME FIRST_NAME
Ames Louie
Andriola Leslie

.

.

.
Lengyel Peter
Lonergan Peter

57 rows selected
SQL> --
SQL> -- When the data is requested in the reverse order of the
SQL> -- ascending EMP_LAST_NAME index in the following statement,
SQL> -- the optimizer uses a reverse scan of the index to retrieve
SQL> -- the values.
SQL> SELECT LAST_NAME, FIRST_NAME FROM EMPLOYEES
cont> WHERE LAST_NAME > ’A’ AND LAST_NAME < ’M’
SQL> ORDER BY LAST_NAME DESCENDING;
Conjunct Get Retrieval by index of relation EMPLOYEES

Index name EMP_LAST_NAME [1:1] Reverse Scan
LAST_NAME FIRST_NAME
Lonergan Peter
Lengyel Peter

.

.

.
Andriola Leslie
Ames Louie

57 rows selected
SQL>

Note that you cannot specifically request as part of your query that a forward
scan or a reverse scan of a particular index be used to process the query. In
Example 3–50, the optimizer determined that a forward scan and reverse scan
of the sorted index on the LAST_NAME column was the fastest way to process
the queries. With other queries that specify a sorted index in the ORDER
BY clause, the optimizer might find a more efficient method of processing the
query. If you want the optimizer to use a particular index when processing
a query, you can define a query outline that specifies the index you want the
optimizer to use when processing the query. See Section 5.9 for details.

Analyzing Performance Factors 3–133

3.9.7 Hashed Index Structure
The hashed index is made up of the following three types of records:

• The system record that contains one pointer for each hash bucket on the
page

• The hash bucket record that contains pointers to the data rows or if
duplicate records are allowed, pointers to the duplicate node records

• The duplicate node record that contains one pointer to each duplicate data
row, holds a maximum of 10 pointers, and if there are more duplicate data
rows, contains a pointer to the next duplicate node record

Figure 3–11 shows how the three types of hashed index records are related to
the data row when both the hashed index and data rows are stored in the same
storage area. Lengths of each record are indicated in parentheses.

3–134 Analyzing Performance Factors

Figure 3–11 Hashed Index Structure

First Duplicate Node Record
(92 bytes/set of

10 duplicate records)

Nth Duplicate Node Record
(92 bytes/set of

10 duplicate records)

System Record
(6−10 bytes/bucket entry plus

4−byte system record overhead)

Hash Bucket Record
(12 bytes + keysize + key/entry
plus 13−byte bucket overhead)

NU−2964A−RA

Data Row
(nnnnn bytes)

Data Row
(nnnnn bytes)

For further discussion of each record type, see the Oracle Rdb7 Guide to
Database Maintenance.

Analyzing Performance Factors 3–135

3.9.7.1 Hashed Index Performance Factors
This section discusses hashed index performance. For additional information,
refer to Section 8.1.3.5.

When you define a hashed index, the following factors and database
parameters are important:

• Record size

• Page size

• Initial allocation

• Page format—mixed page format only

• SPAM thresholds

• SPAM interval

• Key size

• Estimate of the number of unique key values

• Estimate of the number of duplicate rows

• Estimate of the total number of rows in the table associated with the
hashed index

• Where the hashed index is stored relative to the data—in separate storage
areas or in the same storage area using the PLACEMENT VIA INDEX
clause

A hashed index retrieves exact matches to the search key in as few as two I/O
operations when both data and hashed index reside in different storage areas,
or an average of one I/O operation when both data and hashed index occur in
close proximity to each other within the same storage area. It is best to do
some size calculations and understand your data, especially how your duplicate
rows are distributed, to estimate how performance might be improved using
a hashed index for your tables. Size estimation is explained in detail in the
Oracle Rdb7 Guide to Database Design and Definition.

3.9.7.2 Potential Sizing Problems
For the hashing algorithm to operate with greatest efficiency when placing
rows using the PLACEMENT VIA INDEX clause, sufficient space must be
allocated to ensure that rows are distributed randomly and uniformly across
all data pages in the storage area. When rows begin filling data pages in a
non-uniform way, perhaps due to insufficient page size, the efficiency of the
hashed index slowly declines until performance degradation may be noticeable.
This is true because the hashing algorithm formulates the dbkey from the

3–136 Analyzing Performance Factors

search key. If the page is full, the next nearest adjacent page is scanned for
empty space using the SPAM thresholds you set for the storage area as a guide.
This in turn causes problems when that page is chosen as a target. If this page
is full, the next page in sequence is scanned. The first available page with
sufficient space becomes the new location for the row.

Over time, as rows are placed using the hashed index, performance may
degrade to the point where queries that use this hashed index are affected and
some action must be taken. A hash retrieval query on the search key picks
up the dbkey and locates the page where the row should be. But a check of
the system record for that page may indicate that the hash bucket is located
10 pages away. The dbkey of the duplicate node record may indicate that
it is located on that same page, but the second duplicate node record is an
additional 60 pages away and the data row is another 30 pages away from it,
for a total displacement of 100 pages from the system record or perhaps three
I/O operations.

The result is poorer performance than expected because of the duplicate record
problem compounded with too small a page size and buffer size to handle
all those duplicate rows. Use the RMU Analyze command to detect these
problems.

To solve some of these problems, you should recalculate values for the
important parameters mentioned in the summary list in Section 3.9.7.1 and do
one of the following:

• Define new storage areas that specify the new calculated values. Modify
the associated storage maps to point to these new storage areas. Load your
data into the new storage areas by using the REORGANIZE clause of the
SQL ALTER STORAGE MAP statement. Delete all empty unused storage
areas.

• Unload the data from the storage areas using the RMU Unload command.
Define new storage areas that specify the new calculated values. Delete
the old storage areas. Load the data again into these new storage areas by
using the RMU Load command.

• If changes are extensive and you want to perform them all in one operation,
use the SQL EXPORT and IMPORT statements to initiate these desired
changes.

Using a hashed index for retrieval of exact matches to the search key for
tables with large numbers of unique keys has great benefit and little risk.
Using a hashed index for updates, like using the sorted index, is also of great
benefit, but with some risk if you do not make accurate estimates of these
important parameters: storage area allocation, page size, SPAM thresholds,

Analyzing Performance Factors 3–137

SPAM interval, and values for the parameters used for calculating the size of a
hashed index and data area. As your database grows, it is important to know
what aspects of it are growing the fastest to anticipate problems.

3.9.7.3 Shadow Pages
When it is not practical or is physically impossible to cluster many different
table rows and hashed indexes on the same page to gain optimum performance,
then the next best alternative is to use two different storage areas to store
related tables and use shadow pages where a minimum of two I/O operations
is guaranteed. Shadowing is the placement of child rows in the same relative
offset of another storage area that is apart from the related parent rows.
Example 3–51 shows the index and storage map definitions and how to shadow
the JOB_HISTORY rows with the EMPLOYEE rows in two different storage
areas. Parent rows and both hashed indexes are stored in one storage area and
the child rows are stored in a second storage area. Both parent and child data
rows are placed using the PLACEMENT VIA INDEX clause.

Example 3–51 Shadowing Achieves a Clustering Effect Between Two
Different Storage Areas for Storing and Retrieving
Parent/Child Data Rows

CREATE UNIQUE INDEX EMPLOYEE_HASH CREATE INDEX JOB_HISTORY_HASH
ON EMPLOYEES (EMPLOYEE_ID) ON JOB_HISTORY (EMPLOYEE_ID)
STORE IN AREA_B STORE IN AREA_B
TYPE IS HASHED; TYPE IS HASHED;

CREATE STORAGE MAP EMP_MAP CREATE STORAGE MAP JOB_HISTORY_MAP
FOR EMPLOYEES FOR JOB_HISTORY
STORE IN AREA_B STORE IN AREA_A
PLACEMENT VIA INDEX EMPLOYEE_HASH; PLACEMENT VIA INDEX JOB_HISTORY_HASH;

Shadowing is a good strategy when you have a small amount of data, as in
the EMPLOYEES table, with possibly a large number of related child rows in
the JOB_HISTORY table, inserted randomly over a period of time. Shadowing
ensures that the transactions will be grouped together, and if enough space
is allocated in AREA_B, then free space will be available to maintain the
clustering effect.

Shadowing works in the following way: JOB_HISTORY shadow rows in storage
area AREA_A are stored at the same relative offset in the storage area but not
necessarily on the same page numbers as the related EMPLOYEES rows
stored in storage area AREA_B. The grouping allows better utilization of the
in-memory buffers. When you read a buffer from storage area AREA_B to
get the hashed index bucket for the EMPLOYEES_HASH index, the buffer
from storage area AREA_B already has the related EMPLOYEE rows in it.
The buffer also includes the hash bucket for the JOB_HISTORY_HASH index

3–138 Analyzing Performance Factors

that contains the pointers to the related JOB_HISTORY data rows in storage
area AREA_A. Access by hashed indexes for both the EMPLOYEES and JOB_
HISTORY tables therefore requires two I/O operations, one to access AREA_B
for the JOB_HISTORY hashed index, and one to access the JOB_HISTORY
data row in AREA_A. Also, if AREA_A is a uniform area, then sequential
access to JOB_HISTORY rows will perform much better with the rows still
distributed similarly to the parent rows.

For the syntax and more information about the PLACEMENT VIA INDEX
clause, see the Oracle Rdb7 SQL Reference Manual.

3.9.8 Selecting the HASHED SCATTERED or HASHED ORDERED Hashing
Algorithms

When you define a new hashed index, you can select which of two available
hashing algorithms Oracle Rdb will use to store index keys for the index.
You can select the TYPE IS HASHED SCATTERED or TYPE IS HASHED
ORDERED clause of the SQL CREATE INDEX statement. The SCATTERED
option is the default.

The HASHED SCATTERED hashing algorithm converts a multi-octet string
into a single longword that is then mapped to the initial allocation of the
storage area to determine a target page. One of the characteristics of this
algorithm is the scattering of data across the area. For instance, two adjacent
key values might, in fact, be widely separated in the storage area. If data
is loaded in sorted order, this scattering has high random I/O cost; in this
case, users should use the Place qualifier of the RMU Load command, or the
PLACEMENT ONLY clause of the SQL INSERT statement to preprocess data
before loading.

The record distribution pattern is not usually uniform with the HASHED
SCATTERED algorithm; some pages are chosen as targets more often than
others. Some pages might even remain empty while others receive multiple
entries.

The HASHED ORDERED algorithm is ideal for applications in which the
key values are uniformly distributed across a range. That is, the HASHED
ORDERED algorithm should be used when an application has a range of
index key values, and each key value occurs the same number of times. An
application with a range of sequential index key values between 1 and 100,000
with no duplicate values would benefit from using the HASHED ORDERED
algorithm. Figure 3–12 shows a graph of the range of index key values for
this application. You should not consider specifying the HASHED ORDERED
clause for an application unless a plotting of the index key values for the
application produces a horizontal (or nearly horizontal) line on the graph
shown in Figure 3–12.

Analyzing Performance Factors 3–139

Figure 3–12 Identifying Index Key Values That Are Appropriate for the
HASHED ORDERED Option

6

5

4

3

2

1

1 100,0002 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of
Occurrences
of the Index
Key Value

Index Key Values
NU−2961A−RA

x x x x x x xx xx x x x x x x

. . .

. . .

The HASHED ORDERED algorithm uses the first four octets of each key to
distribute the data uniformly across the storage area. Figure 3–13 shows
the uniform distribution that results when the index key values shown in
Figure 3–12 are stored using the HASHED ORDERED algorithm. Notice that
each hash bucket contains the same number of index keys; when the storage
pattern for the index keys is plotted on the graph, the result is a horizontal
line like the one in Figure 3–12. This shows that when index key values are
uniformly distributed across a range, the HASHED ORDERED algorithm
distributes these values uniformly across a storage area.

3–140 Analyzing Performance Factors

Figure 3–13 Distribution of Data Across a Storage Area When the HASHED
ORDERED Option Is Used with Appropriate Index Key Values

10,000. . .

Page Number of Hash Bucket in Storage Area

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . .

NU−2962A−RA

x x x x x x xx xx x x x x x x

30

Number of
Index Keys
Stored in
the Hash
Bucket

25

20

15

10

5

You should use the HASHED ORDERED option only when all of the following
are true:

• The index keys are integer values, dates, timestamps, or intervals.

Note

In the BIGINT, DATE (both ANSI and VMS), TIME, TIMESTAMP,
and INTERVAL data types, the hash algorithm uses only the low order
longword.

The fractional precision (scale) is ignored for the purposes of this hash
algorithm. For example, consider the values of 1.1 and 2.1 for a column
specified as INTEGER(1). Values 1.1 and 2.1 are considered identical
to 11 and 21 and so will not be on adjacent database pages as might be
expected.

• The index is defined as an ASCENDING index

• There is a range of index key values, and each key value occurs the same
number of times

• The MAPPING VALUES clause was not used when defining the index (so
the index does not compress all numeric index key values)

Analyzing Performance Factors 3–141

A hashed ordered index can reference more than one column. The last
column in the list must conform to the data type restrictions in the preceding
list, and is the only part of the index used for distribution of data within a
storage area. However, all other columns in the list may be used in a STORE
USING . . . WITH LIMIT clause to partition the data first between different
storage areas.

The following example shows a hashed ordered index referencing more than
one column:

SQL> -- A company has 4 warehouses and within each warehouse are 10000
SQL> -- products. The warehouse managers want the data for each warehouse
SQL> -- to be stored in separate storage areas with the stock rows evenly
SQL> -- distributed within each area.
SQL> --
SQL> CREATE TABLE STOCK_CONTROL
cont> (WAREHOUSE INTEGER,
cont> STOCK_NO INTEGER,
cont> DESCRIPTION CHAR(20));
SQL> --
SQL> CREATE STORAGE MAP STOCK_MAP
cont> FOR STOCK_CONTROL
cont> STORE IN AREA_W0;
SQL> --
SQL> -- Use WAREHOUSE to partition across disks.
SQL> -- Use STOCK_NO to order the stock numbers across the area.
SQL> --
SQL> CREATE UNIQUE INDEX STOCK_INDEX
cont> ON STOCK_CONTROL (WAREHOUSE, STOCK_NO)
cont> TYPE IS HASHED ORDERED
cont> STORE USING (WAREHOUSE)
cont> IN AREA_W1 WITH LIMIT OF (1)
cont> IN AREA_W2 WITH LIMIT OF (2)
cont> IN AREA_W3 WITH LIMIT OF (3)
cont> IN AREA_W4 WITH LIMIT OF (4);
SQL> COMMIT;

If you have a set of uniformly distributed index key values and you need
to determine the initial size of the storage area that will hold the records
associated with the key values, you can reduce the amount of overhead for
the data pages in the area by using the HASHED ORDERED algorithm for
the index. Suppose, for example, that you have a set of sequential index key
values between 1 and 100,000 with no duplicate values and you want to define
a storage area to hold this data. If you know that 10 records containing these
index key values can fit on a page, you can define a storage area with an initial
allocation of 10,000 data pages (10,000 pages times 10 records per page equals
100,000 records). If you use the HASHED SCATTERED algorithm to store
these records after defining the new storage area, an average of 10 records
will be stored per page, but the number of records will vary from page to page.

3–142 Analyzing Performance Factors

Therefore, you need to provide some overhead for each page in the storage area
because the HASHED SCATTERED algorithm will store more than 10 records
on some pages. However, when the HASHED ORDERED algorithm is used to
store the records, exactly 10 records will be stored on each data page. Thus,
you can reduce the amount of overhead per page when you use the HASHED
ORDERED algorithm, which reduces the total size of the storage area and
saves disk space.

3.9.9 Sequential Retrieval
How Oracle Rdb chooses a sequential access strategy for a query depends on
many factors. One factor is whether or not any indexes are defined for columns
specified in the record selection expression (RSE). Or, the optimizer may decide
that a sequential search is the most efficient. Whatever the reason, sequential
access to rows in a table does not take advantage of adjustable locking.

Because sequential retrieval requires each row in the table to be tested to
determine if it satisfies the query’s RSE, Oracle Rdb increases (or promotes)
the level of the lock on all rows accessed by the query to keep them stable.
Otherwise, other transactions could intervene and modify rows during the
sequential search. Therefore, sequential retrieval for a read/write transaction
has the following characteristics:

• Requires locks on the entire table, which results in coarser locks.

• Uses a protected read mode on the table to prevent any subsequent update
transactions from modifying rows during the current transaction. The
protected read mode does not allow update transactions to access the
read-protected resources at the same time.

Refer to Section 4.1.12 and Section 4.1.13 for information about the effect of
snapshot files on read-only transactions.

Because adjustable locking is not in effect during a sequential search, Oracle
Rdb secures all the rows in the table from access by other transactions. For
this reason, try to avoid the use of sequential searches. When a transaction
that has reserved a table in shared write mode accesses a table sequentially,
as shown in Example 3–52, a protected write lock is placed on the table.
This denies access to that database resource by all subsequent read/write
transactions except for shared read transactions.

For example, suppose you need to access the EMPLOYEES table using a
column that does not have an index defined for it. Because the optimizer does
not have the option of using an index to locate rows directly, Oracle Rdb must
sequentially search the table itself until the rows identified by the RSE are
found. Because processing is sequential, the whole table is locked during the
search for the duration of the transaction.

Analyzing Performance Factors 3–143

Example 3–52 Sequential Access of the EMPLOYEES Table

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SELECT E.LAST_NAME, E.SEX, E.CITY
cont> FROM EMPLOYEES E
cont> WHERE E.POSTAL_CODE BETWEEN "03103" AND "03601"
cont> AND E.STATE = "NH";
SQL>

But if you define an index for both the POSTAL_CODE and STATE columns,
you gain the advantage of adjustable locking. Consequently, the current
transaction locks only those rows that satisfy the RSE and the index nodes
associated with them (locks all rows accessed). Adjustable locking allows other
transactions to select from the remaining rows in the table without interfering
with the current transaction. For example, if there is only an index on the
STATE column, the query shown in Example 3–53 locks all the rows with the
value NH, even those rows not in the specified POSTAL_CODE range.

Example 3–53 Indexed Access and Adjustable Locking

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SELECT E.LAST_NAME, E.SEX, E.CITY
cont> FROM EMPLOYEES E
cont> WHERE E.POSTAL_CODE BETWEEN "03103" AND "03601"
cont> OR E.STATE = "NH";
SQL>

3.10 Recognizing Poor Insert Performance Caused by Excessive
Page Checking

You may encounter poor performance when you store new rows in a database.
Sometimes this is due to the way that Oracle Rdb manages free space on
data pages. Sometimes Oracle Rdb reads many pages in a storage area
before it finds a page with sufficient space on it to store a row. This section
describes the symptoms you may see and presents ways to prevent poor insert
performance that can occur in the situations described.

The simplest way to verify if any of the scenarios in this section are occurring
is to use the Record Statistics and the File IO Overview displays of the
Performance Monitor. The Record Statistics display provides two entries of
particular interest:

• pages checked

• discarded

3–144 Analyzing Performance Factors

If the values for the discarded field are significant in comparison with the
pages checked values, then you can investigate further. Section 3.10.1
describes how to use the File IO Overview display to identify excessive IO in
storage areas.

Another way to validate this is to watch the Stall Messages screen in
the Performance Monitor while a process is experiencing the slow insert
performance. Look for the message ‘‘reading pages n:n to n:n’’ for that
particular process. If you see it persistently showing up and the page numbers
displayed steadily increase, then it is likely that the process is searching for
a database page that has sufficient space to store a row. Note that this stall
message is also displayed if Oracle Rdb is sequentially reading a table; you
should verify that the process is doing an insert before assuming that this stall
message indicates a problem with excessive page checking. The statistic ‘‘pages
checked’’ should also be steadily increasing at the same time.

Oracle Rdb uses space area management (SPAM) pages to determine what
database pages have space available for new rows. The SPAM page is
essentially a table representing a range of pages in a storage area. There is an
entry in the table for each page in the range, and each entry shows whether
or not space is available on the respective page. When searching for a page to
store a row, Oracle Rdb searches for SPAM entries that show that a page has
sufficient space available. There are conditions, however, where SPAM pages
may not reflect the actual availability of space on a data page. When Oracle
Rdb finds an entry that the SPAM page shows has space available on it, the
page is retrieved and the actual available space on the page is examined to
confirm that there is sufficient free space to store the new row. Sometimes the
available space on the page may not actually be enough to store the row. Those
cases are listed below:

• Thresholds are set incorrectly on a mixed format storage area or on logical
area thresholds defined for a table or index.

• Some or all of the free space is locked for use by other database users.

• The length used to represent the size of the data rows does not represent
the actual length of the data rows. This is always the case for duplicate
nodes on indexes that allow duplicates.

Analyzing Performance Factors 3–145

3.10.1 Identifying Excessive I/O in Storage Areas
After you detect the problem that Oracle Rdb is checking excessive pages while
attempting to insert a row, you can use the File IO Overview screen to identify
which storage area is exhibiting the behavior. The cause of the problem could
be locked free space, incorrect SPAM thresholds, unique indexes, or estimated
record sizes.

For high volume, transaction processing applications or applications with a
large number of storage areas, it is not practical to manually examine the
IO Statistics (by file) screen for each storage area in the database, trying to
identify the particular storage area with excessive read I/O operations.

To help you more quickly identify the storage area or areas in which excessive
page checks are occurring, use the File IO Overview screen from the IO
Statistics (by file) submenu.

The File IO Overview screen shows the synchronous and asynchronous read
and write I/O counts, and the database pages checked for all storage areas, the
.aij file, the .ruj file, the .ace file, the database root file and, finally, all data and
snapshot areas combined.

For example, consider the following File IO Overview screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 19-JUN-1996 10:21:30
Rate: 0.50 Seconds File IO Overview (Total Checked) Elapsed: 03:39:10.39
Page: 1 of 9 KODD$:[R_ANDERSON.WORK.AIJ]OE_RDB.RDB;1 Mode: Online
--
File/Storage.Area.Name........ Sync.Reads SyncWrites AsyncReads AsyncWrits PgCkd
All data/snap files 198752 23622 21388 57085 597k
data OE$ORDER1 566 791 7103 2399 164k
data OE$ORDER10 572 849 7103 2374 164k
data OE$ORDER4 567 916 7177 2287 164k
data OE$CUSTOMER1 15676 3060 0 11936 19096
data OE$CUSTOMER10 15713 3158 0 11820 19096
data OE$CUSTOMER4 15608 3633 0 11367 19096
data OE$STOCK04 2027 4338 5 524 12136
data OE$STOCK01 2131 3506 0 1254 11854
data OE$ITEM1 132913 754 0 1938 6011
data OE$NEW_ORDER1 3869 597 0 3808 5310
data OE$NEW_ORDER4 3818 788 0 3599 5308
data OE$NEW_ORDER10 3898 679 0 3732 5306
data OE$WAREHOUSE1 11 3 0 8 14
data OE$WAREHOUSE10 11 4 0 7 14
data OE$WAREHOUSE4 11 5 0 6 14
ACE (AIJ Cache Electronic) 0 0 0 0 0
--
Config Exit Help Menu >next_page <prev_page Options Reset Set_rate Unreset Write

3–146 Analyzing Performance Factors

This example shows a File IO Overview screen that has been configured to
display the synchronous and asynchronous read and write counts, sorted by
descending total pages checked. Database storage areas are identified by the
prefix data and snapshot areas are identified by the prefix snap. Storage areas
that are added to the database are automatically shown on the screen.

The ‘‘PgCkd’’ column indicates the number of database pages checked for each
area, and summarizes this information for all data/snap areas.

You can configure the File IO Overview screen to sort the storage area
information in several different ways. Type C to select the Config option from
the screen’s horizontal menu, which displays the configuration menu:

+------ Select Display Configuration -----+
| |
| A. Unsorted totals display |
| B. Sort by total synchronous reads |
| C. Sort by total synchronous writes |
| D. Sort by total asynchronous reads |
| E. Sort by total asynchronous writes |
| F. Sort by total reads & writes |
| G. Sort by total pages checked |
| H. Unsorted current rate display |
| I. Sort by synchronous read rate |
| J. Sort by synchronous write rate |
| K. Sort by asynchronous read rate |
| L. Sort by asynchronous write rate |
| M. Sort by total current I/O rates |
| N. Sort by pages checked rates |
+---+

When you select options B through N, storage areas with duplicate sort criteria
are displayed alphabetically.

The File IO Overview screen name in the display header shows the display
configuration you selected.

The File IO Overview screen is not available when the Input command line
qualifier is used to replay an output data file.

See the Performance Monitor help for more information about the configuration
options.

Analyzing Performance Factors 3–147

3.10.2 Incorrect Threshold Settings
Suppose you observe that excessive pages are checked when rows are stored in
a table under one of the following conditions:

• The table is stored in a mixed format area

• The table has logical area thresholds defined in its storage map

• The table has indexes defined that contain logical area thresholds

The excessive page checking may be caused by incorrect threshold settings.
Review the calculations used to define the thresholds to verify that the
thresholds have been set correctly.

3.10.3 Locked Free Space
When a process deletes rows from a database, and the dbkey scope is set for
the duration of an attachment to the database, the space that was allocated
to the deleted rows is reserved or ‘‘locked’’ by that process until the process
detaches from the database. This is done to ensure that the rows can be put
back on the page if the transaction is rolled back. At the time the rows are
deleted, the SPAM page is updated to reflect the space that was made available
by deleting the rows. When other database processes begin searching for
available space to store rows, they see in the SPAM page that there may be
space available on the page where rows were deleted. But, when that page
is actually retrieved, Oracle Rdb finds that some or all of the available space
on the page is locked for another process and insufficient space exists to store
another row. Another page must be selected for storing the row, and the
preceding process repeats.

Typically this scenario has little impact on database performance, but
in situations where, for example, a long-running database maintenance
process that deletes rows on many pages is active, many database pages may
contain locked free space. This can significantly impact performance if many
processes are attempting to store rows in the same area at the same time the
maintenance process is running.

3.10.4 Stored Values for AIP Lengths May Reflect the Actual Length of Table
Rows

Oracle Rdb stores the nominal length of table rows in a structure called the
area inventory page (AIP). The length stored in the AIP is used to determine
how much space must be available before a page in a uniform format area is
considered full. The length stored in the AIP for a row is not the actual length
of the row in the following three circumstances:

• Indexes that allow duplicates

3–148 Analyzing Performance Factors

• Unique indexes and tables that have been altered and had columns added
or dropped

• Segmented strings (LIST OF BYTE VARYING data type)

3.10.4.1 AIP Length Problems in Indexes That Allow Duplicates
When an index allows duplicates, the length stored in the AIP will be 215
bytes, regardless of the actual index node size. Because an index with
duplicates can have variable node sizes, the 215-byte size is used as a median
length to represent the length of rows in the index’s logical area. When the
row size in the AIP is less than the actual row length, it is highly likely that
SPAM entries will show space is available on pages when they have insufficient
space to store another full size row. This is the most common cause of insert
performance problems.

For example, consider a case where an index node size of 430 bytes (a common
default value) is used; the page size for the storage area where the index is
stored is 2 blocks. After deducting page overhead, the available space on a
2-block page is 982 bytes. Assume that the page in this example is initially
empty.

1. A full size (430-byte) index node is stored. As 8 bytes of overhead are
associated with each row stored on a page, that leaves 982 – 430 – 8 = 544
free bytes remaining on the page.

2. A duplicate key entry is made in that index node and thus a duplicate node
is created on the same page. An initial duplicate node is 112 bytes long
(duplicate nodes can have a variety of sizes depending on when they are
created, but for this particular example, 112 bytes is used). Therefore, 544
– 112 – 8 = 424 free bytes remain on the page.

At this point, 424 bytes are left on the page. That is greater than the 215 bytes
that the AIP shows as the row length for the logical area, so the SPAM page
shows that the page has space available. However, an attempt to store a full
size index node on the page will fail, because the remaining free space (424
bytes) is not enough to store a 430-byte node.

In this case, another candidate page must be selected via the SPAM page, and
the process repeats until a page that truly has sufficient free space available
is found. In a logical area that contains many duplicate nodes, a significant
percentage of the pages in the logical area may fit the scenario just described.
When that is the case, and a new full size index node needs to be stored, many
pages may need to be read and checked before one is found that can be used to
store the row.

Analyzing Performance Factors 3–149

It is possible to avoid the preceding scenario by using logical area thresholds.
The goal is to set a threshold such that the SPAM page will show a page is full
when space is insufficient to store a full size index node.

Using the previous example, here is how to properly set logical area thresholds
to prevent excessive pages checked on an index with a 430-byte node size that
is stored on a 2-block page. To calculate the proper threshold value to use, you
must first determine how full the page can get before no more full size nodes
will fit on the page. In this example, a database page can have up to 982 – 430
– 8 = 544 bytes in use before the page is too full. Therefore, if 544 or fewer
bytes are in use, then enough space remains to store another full size node.
The threshold is then 544 / 982 = .553971, or 55%.

Here is an example of creating an index with the above characteristics:

SQL> CREATE INDEX TEST_INDEX ON EMPLOYEES (LAST_NAME)
cont> STORE IN RDB$SYSTEM
cont> (THRESHOLD IS (55));

Note that the compression algorithm used on regular tables that have
compression enabled does not apply to index nodes. Index nodes are not
compressed like data rows and will always utilize the number of bytes that is
specified in the node size. Do not attempt to take into account a compression
factor when calculating thresholds for indexes.

3.10.4.2 AIP Length Problems in Segmented Strings
The length stored in the AIP for segmented strings is always 150 bytes,
regardless of the actual size of the segmented string. Thus, the same problems
described in Section 3.10.4.1 also apply to segmented strings. If a page in a
uniform area has 158 (150 + 8 overhead bytes = 158) or more bytes free on it,
then the SPAM entry for that page will show that space is available. However,
if an attempt is made to store a segmented string that is larger than the
actual free space on that page, the page will be checked when it does not have
sufficient free space to store the segment.

The proper way to avoid this condition is to store segmented strings in a mixed
format storage area only. The storage area should have appropriate thresholds
defined for the segment sizes being stored.

3–150 Analyzing Performance Factors

4
Adjusting Parameters

This chapter describes the database parameters and the OpenVMS system
parameters that you can adjust to improve database performance. It provides
guidelines to help you determine if you should enable selected Oracle Rdb
features, such as global buffering, and recommends parameter values for those
features that you do enable.

4.1 Adjusting Database Parameters
Table 4–1 summarizes the minimum effort needed to implement a physical
design of your application, based on the kind of database (simple or complex)
and the size of the database (small to very large). It describes how far the
Oracle Rdb default values will take you before you need to consider changing
them.

Adjusting Parameters 4–1

Table 4–1 How Far Will the Oracle Rdb Default Values Take You?

Amount of Tuning

Database Size
Simple Database:
Less than 10–15 Tables

Complex Database:
Fifteen or More Tables

Less than 10 Mb None Minimal

10 to 100 Mb Minimal Moderate

More than 100 Mb to 1
Gb

Moderate Extensive

More than 1 Gb Extensive Extensive

Key to Tuning Effort

None—Practically no effort; single-file database, uniform page format, sorted indexes; accept
most if not all default values.
Minimal—Minimal effort; probably single-file or maybe multifile, indexes defined properly, set
buffers properly; change some default values.
Moderate—Moderate effort; multifile database, maybe mixed page format, maybe using hashed
indexes, using segmented strings in mixed page format, set SPAM parameters; change many
default values.
Extensive—Extensive effort; multifile; careful look at all features in combination, definitions;
change most, if not all, default values; hashed indexes, B-tree node sizing.

Table 4–2 summarizes the Oracle Rdb default values for database-wide
parameters.

Table 4–2 Oracle Rdb Database-Wide Parameter Values: Default, Minimum,
and Maximum

Database-Wide Parameters
Default Values
(Minimum/Maximum)

Description None

OpenVMS
VAX

OpenVMS
Alpha Path name CDD$DEFAULT♦

Number of users 50 (1/2032)

Number of buffers 20 (2/32768)

Maximum number of cluster nodes 16 (1/96)

Number of recovery buffers 20 (2/32768)

Buffer size 3 times the maximum area page
size

(continued on next page)

4–2 Adjusting Parameters

Table 4–2 (Cont.) Oracle Rdb Database-Wide Parameter Values: Default,
Minimum, and Maximum

Database-Wide Parameters
Default Values
(Minimum/Maximum)

Global buffers Disabled

Row caching Disabled

Fast commit processing
Journal optimization

Disabled
Disabled

Carry-over lock optimization Enabled

Lock granularity Enabled

Enable/disable snapshot file Enabled

Snapshot immediate/deferred Immediate

Database opening Open is automatic

Specify after-image journal AIJ is disabled until file name is
specified

After-image journal allocation 512 blocks (0/disk device size)

After-image journal extent 512 blocks (no extent options)
(0/disk device size)

OpenVMS
VAX

OpenVMS
Alpha Requiring a dictionary Dictionary is not required♦

OpenVMS
VAX

OpenVMS
Alpha Using a dictionary Dictionary is used♦

The following sections describe the database parameters and provide
information you can use to determine optimum values for your database
applications. Because you can often attain good performance with Oracle Rdb
using the default values for each database parameter, you should use these
sections as guidelines to adjust your database for applications with unusual
characteristics.

Some characteristics of your application environment that influence database
performance include the amount of virtual memory available, the number
of users, and whether your applications are primarily read-only or update-
intensive. Using the Performance Monitor screens discussed in Section 4.1.1,
you can monitor database performance and data storage within the database
file itself to determine if you need to adjust the database parameters. You can
make any changes using SQL.

Adjusting Parameters 4–3

When your database was created, the database definer either accepted all of
the Oracle Rdb default parameters or modified some of those parameters to
suit site-specific needs. In most cases, the defaults Oracle Rdb uses provide
good performance, particularly during the development phases of your database
applications. Table 4–1 describes the applicability of the Oracle Rdb defaults
relative to database size (number of rows) and database complexity (number of
tables). If you need to modify existing database parameters, you can use the
SQL ALTER DATABASE or IMPORT statement to specify new values for those
database parameters you need to change. The chapter on modifying database
and storage areas in the Oracle Rdb7 Guide to Database Design and Definition
provides a table that shows which parameters can be updated while users are
attached to the database, and which parameters can be updated only when
users are not attached to the database.

Table 4–3 describes SQL statements that allow you to specify database-wide
parameters.

Table 4–3 SQL Statements Affecting Database Parameters

Database-Wide
Parameters

SQL
CREATE
DATABASE

SQL ALTER
DATABASE

SQL IMPORT
DATABASE

Description Yes No Yes

OpenVMS
VAX

OpenVMS
Alpha Path name Yes No Yes♦

Collating sequence is Yes No Yes

Number of users Yes Yes (multifile
only)

Yes

Number of buffers Yes Yes Yes

Maximum number of cluster
nodes

Yes Yes (multifile
only)

Yes

Number of recovery buffers Yes Yes Yes

Buffer size Yes Yes Yes

Enable/disable global buffers Yes Yes No

Enable/disable row caching Yes Yes No

Enable/disable fast commit
Journal optimization

No
No

Yes
Yes

No
No

(continued on next page)

4–4 Adjusting Parameters

Table 4–3 (Cont.) SQL Statements Affecting Database Parameters

Database-Wide
Parameters

SQL
CREATE
DATABASE

SQL ALTER
DATABASE

SQL IMPORT
DATABASE

Enable/disable carry-over lock
optimization

Yes Yes No

Lock granularity Yes Yes Yes

Enable/disable snapshot file Yes Yes Yes

Snapshot immediate/deferred Yes Yes Yes

Database opening No Yes No

Specify after-image journal No Yes No

Specify no after-image
journal

No (default) Yes No (default)

Journal allocation No Yes No

Journal extent No Yes No

Snapshot file allocation Yes Yes Yes

Snapshot file extent Yes Yes Yes

OpenVMS
VAX

OpenVMS
Alpha Requiring a dictionary Yes Yes Yes♦

OpenVMS
VAX

OpenVMS
Alpha Using a dictionary Yes No Yes♦

Segmented string storage area Yes No Yes

Table 4–4 describes the Oracle RMU commands that allow you to specify
database-wide parameters.

Table 4–4 Oracle RMU Commands Affecting Database Parameters

Database-Wide
Parameters

RMU
Restore

RMU
Copy_
Database

RMU
Move_Area

Description No No No

(continued on next page)

Adjusting Parameters 4–5

Table 4–4 (Cont.) Oracle RMU Commands Affecting Database Parameters

Database-Wide
Parameters

RMU
Restore

RMU
Copy_
Database

RMU
Move_Area

OpenVMS
VAX

OpenVMS
Alpha Path name Yes No No♦

Collating sequence is No No No

Number of users Yes Yes Yes

Number of buffers Yes No No

Maximum number of cluster
nodes

Yes Yes Yes

Number of recovery buffers No No No

Buffer size Yes No No

Row cache size No No No

Enable/disable global buffers Yes No No

Enable/disable fast commit
Journal optimization

No
No

No
No

No
No

Enable/disable carry-over lock
optimization

No No No

Lock granularity No No No

Enable/disable snapshot file No No No

Snapshot immediate/deferred No No No

Database opening Yes No No

Specify after-image journal Yes Yes Yes

Specify no after-image
journal

Yes Yes Yes

Journal allocation Yes Yes No

Journal extent Yes Yes No

Snapshot file allocation No No No

Snapshot file extent No No No

(continued on next page)

4–6 Adjusting Parameters

Table 4–4 (Cont.) Oracle RMU Commands Affecting Database Parameters

Database-Wide
Parameters

RMU
Restore

RMU
Copy_
Database

RMU
Move_Area

OpenVMS
VAX

OpenVMS
Alpha Requiring a dictionary No No No♦

OpenVMS
VAX

OpenVMS
Alpha Using a dictionary Yes No No♦

Segmented string storage area No No No

See the Oracle Rdb7 Guide to Database Maintenance and the Oracle RMU
Reference Manual for more information on how to use the RMU Restore, the
RMU Copy_Database, and the RMU Move_Area commands to modify specific
database parameters.

4.1.1 Gathering Database Parameter Information
You can use the Performance Monitor screens, discussed in sections 4.1.1.1
through 4.1.1.12, to monitor database parameters.

4.1.1.1 Performance Monitor Database Parameter Information Submenu
The Performance Monitor provides a set of screens that display dynamic
information. The information on these screens automatically changes to reflect
database parameter modifications. When you select the Database Parameter
Information option from the main menu, the following submenu is displayed:

Adjusting Parameters 4–7

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1996 14:19:16
Rate: 3.00 Seconds Summary IO Statistics Elapsed: 03:58:22.56
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
------------------- +--------------------------------+
statistic......... | Select Display |....... average......
name.............. | |....... per.trans....
transactions | A. General Information | 7 1.0
verb successes | B. Buffer Information | 4809 687.0
verb failures | C. Lock Information | 241 34.4

| D. Storage Area Information |
synch data reads | E. Row Cache Information | 259 37.0
synch data writes | F. Journaling Information | 0 0.0
asynch data reads | G. Journal Information | 105 15.0
asynch data writes | H. Fast Commit Information | 0 0.0
RUJ file reads | I. Hot Standby Information | 0 0.0
RUJ file writes | J. Audit Information | 5 0.7
AIJ file reads | K. Active User Information | 5 0.7
AIJ file writes | L. OpenVMS SYSGEN Parameters | 0 0.0
ACE file reads | | 0 0.0
ACE file writes +--------------------------------+
root file reads 64 9.1
root file writes 0 0 0.0 31 4.4
--
Type <return> or <letter> to select option, <control-Z> to cancel

The following example shows a Buffer Information screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1996 14:29:15
Rate: 3.00 Seconds Buffer Information Elapsed: 04:08:21.21
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Default user buffer count is 20
Default recovery buffer count is 20
Buffer size is 6 blocks
Global Buffers are enabled
- Global buffer count is 250
- Maximum global buffer count per user is 5
- Page transfer via memory is disabled
Global section size with global buffers disabled is 610007 bytes
- With global buffers enabled is 1522877 bytes
Asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 5 buffers
Detected asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 4 buffers
- Pre-fetch threshold is 4 pages
Asynchronous batch-write is enabled
- Clean buffer count is 5
- Maximum batch size is 4 buffers
--
Exit Help Menu Options Refresh Set_rate Write !

The Database Parameter Information screens are not recorded in the binary
output file produced using the Output qualifier. Consequently, these screens
are not available when you replay a binary file using the Input qualifier.

See the Performance Monitor help for additional information on these screens.

4–8 Adjusting Parameters

4.1.1.2 Performance Monitor PIO Statistics–Data Writes Screen
The PIO Statistics–Data Writes screen provides information concerning data
file writes and buffer unmarking activity (buffer writes to the disk). The
following is an example of a PIO Statistics–Data Writes screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 17-MAY-1996 16:30:38
Rate: 3.00 Seconds PIO Statistics--Data Writes Elapsed: 00:00:39.01
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
unmark buffer 22 0 9.7 12043 76.7

transaction 0 0 0.1 73 0.5
pool overflow 22 0 9.4 11706 74.6
blocking AST 0 0 0.0 0 0.0
lock quota 0 0 0.0 0 0.0
lock conflict 0 0 0.1 165 1.1
user unbind 1 0 0.0 22 0.1
batch rollback 0 0 0.0 0 0.0
new area mode 0 0 0.0 0 0.0
larea change 0 0 0.0 56 0.4
incr backup 0 0 0.0 1 0.0
no AIJ access 0 0 0.0 0 0.0
truncate snaps 0 0 0.0 0 0.0
checkpoint 0 0 0.0 20 0.1
AIJ backup 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in this display, see the
Performance Monitor help.

4.1.1.3 Performance Monitor PIO Statistics–Data Fetches Screen
The PIO Statistics–Data Fetches screen provides statistics on how data page
requests are handled. There are two different formats for this screen: one for
databases that have local buffers enabled, and another for databases that have
global buffers enabled. The following is an example of a PIO Statistics–Data
Fetches screen for a database with local buffers enabled:

Adjusting Parameters 4–9

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 09:45:46
Rate: 3.00 Seconds PIO Statistics--Data Fetches Elapsed: 00:05:59.16
Page: 1 of 1 RDBVMS_USER1:[LOGAN.LOCAL]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

fetch for read 2287 0 20.4 18524 926.2
fetch for write 58 0 0.4 348 17.4

in LB: all ok 2035 0 18.3 16631 831.6
LB: need lock 296 0 2.1 1949 97.5
LB: old version 0 0 0.0 0 0.0

not found: read 34 0 0.3 292 14.6
: synth 0 0 0.0 0 0.0

DAPF: success 0 0 0.0 0 0.0
DAPF: failure 0 0 0.0 0 0.0
DAPF: utilized 0 0 0.0 0 0.0
DAPF: discarded 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in this display, see the
Performance Monitor help.

4.1.1.4 Performance Monitor PIO Statistics–SPAM Fetches Screen
The PIO Statistics–SPAM Fetches screen provides statistics on how SPAM page
requests are handled. There are two different formats for this screen–one for
databases that have local buffers enabled, and another for databases that have
global buffers enabled. The following is an example of a PIO Statistics–SPAM
Fetches screen for a database with global buffers enabled:

4–10 Adjusting Parameters

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 10:02:33
Rate: 3.00 Seconds PIO Statistics--SPAM Fetches Elapsed: 00:00:24.49
Page: 1 of 1 RDBVMS_USER1:[LOGAN.GLOBAL]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
fetch for read 5 0 0.1 59 3.0
fetch for write 0 0 0.0 0 0.0
in AS: all ok 4 0 0.0 52 2.6

AS: lock for GB 0 0 0.0 0 0.0
AS: need lock 0 0 0.0 0 0.0
AS: old version 0 0 0.0 0 0.0

in GB: need lock 1 0 0.0 6 0.3
GB: old version 0 0 0.0 0 0.0
GB: transferred 0 0 0.0 0 0.0

not found: read 0 0 0.0 1 0.1
: synth 0 0 0.0 0 0.0

DAPF: success 0 0 0.0 0 0.0
DAPF: failure 0 0 0.0 0 0.0
DAPF: utilized 0 0 0.0 0 0.0
DAPF: discarded 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in this display, see the
Performance Monitor help.

4.1.1.5 Performance Monitor Asynchronous IO Statistics Screen
The Asynchronous IO Statistics screen provides information concerning
asynchronous reads and writes to the database files. The stall times are
displayed in hundredths of a second.

This screen shows the number of requests for asynchronous read and write
operations, as well as the number of asynchronous read and write operations
actually done.

You access the Asynchronous IO Statistics screen from the IO Statistics
submenu. The following is an example of the Asynchronous IO Statistics
screen:

Adjusting Parameters 4–11

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 10:13:22
Rate: 3.00 Seconds Asynchronous IO Statistics Elapsed: 00:11:13.90
Page: 1 of 1 SQL_DISK1:[USER]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

data read request 67 0 6.3 2976 1488.0
data read IO 14 0 2.1 988 494.0

spam read request 67 0 2.5 1161 580.5
spam read IO 0 0 0.0 4 2.0

read stall count 1 0 0.1 51 25.5
read stall time 4 0 0.3 153 76.5

write IO 8 0 1.7 812 406.0
write stall count 3 0 0.1 51 25.5
write stall time 24 0 0.5 223 111.5

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in this display, see the
Performance Monitor help.

4.1.1.6 Performance Monitor Process Accounting Screen

OpenVMS
VAX

OpenVMS
Alpha

The Process Accounting screen provides continuously updated accounting
information about local processes. This screen is an alternative to the
OpenVMS SHOW PROCESS/CONTINUOUS utility. The screen provides
equivalent information, except that all active database processes on a specific
node can be monitored at the same time.

This screen shows direct operating system accounting information, thereby
enabling a database administrator to evaluate the system resources used
by database processes. The values in the Process Accounting screen are for
all process activity, not just the activity that occurs while in the database.
Therefore, this screen is useful for monitoring the complete application
behavior.

You access the Process Accounting screen from the Process Information
submenu.

This screen shows dynamically changing process information only. That
is, quotas and other information that are fixed for each process are not
displayed because that information can be obtained in other ways. The
Process Accounting screen has brief and full modes that control the amount of
information displayed for each active database process.

4–12 Adjusting Parameters

You select brief mode by typing B. In brief mode, one line per process is
displayed, providing the following information: process ID, process name,
CPU time, remaining lock quota count, page fault count, number of direct I/O
operations, working set size, and virtual memory size. The following is an
example of the Process Accounting screen in brief mode:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 10:22:20
Rate: 3.00 Seconds Process Accounting Elapsed: 00:20:11.30
Page: 1 of 1 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Process.name... CPUtime.... EnqCnt. PGflts. NumDio. WSsize. VMsize.
6E2012D3:1 RICK 00:00:15.46 17809 20775 808 4471 15082
6E201887:1 SMITH 00:00:11.23 17882 17383 444 3606 14426

--
Exit Full Help Menu >next_page <prev_page Set_rate Write Zoom !

You select full mode by typing F. In full mode, a second line per process is
displayed that provides the following additional information: user name, image
name, process state, page file quota count, direct I/O quota count, number of
buffered I/O operations, and buffered I/O quota count. The following is an
example of the Process Accounting screen in full mode:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 10:24:48
Rate: 3.00 Seconds Process Accounting Elapsed: 00:22:39.16
Page: 1 of 1 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Process.name... CPUtime.... EnqCnt. PGflts. NumDio. WSsize. VMsize.
User.name... Image.name............... State.. PGfCnt. DioCnt. NumBio. BioCnt.
6E2012D3:1 RICK 00:00:15.55 17796 20776 808 4472 15082
RICK SQL$601 LEF 124448 200 1464 199
6E201887:1 SMITH 00:00:11.92 17858 18378 516 5000 14954
SMITH SQL$601 LEF 124576 200 515 199

--
Brief Exit Help Menu >next_page <prev_page Set_rate Write Zoom !

Adjusting Parameters 4–13

Note that information on the Process Accounting screen cannot be reset.
Because the information is gathered in real time, it cannot be written to the
output file (the Output qualifier will not work with this screen) and, therefore,
cannot be displayed during input file replay.

For information about each of the fields in the Process Accounting screen, see
the Performance Monitor help. ♦

4.1.1.7 Performance Monitor Record Statistics Screen
The Record Statistics screen shows a summary of data row activity (rows
marked, fetched, stored, or erased) for storage areas in the database. The
following is an example of a Record Statistics screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 13:21:49
Rate: 3.00 Seconds Record Statistics Elapsed: 03:19:40.61
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

record marked 12 11 4.7 3784 2.1

record fetched 41 36 16.0 12730 7.1
fragmented 0 0 0.0 0 0.0

record stored 6 5 2.3 1815 1.0
fragmented 0 0 0.0 0 0.0

pages checked 6 5 2.3 1815 1.0
saved IO 0 0 0.0 0 0.0

discarded 0 0 0.0 0 0.0

record erased 0 0 0.0 0 0.0
fragmented 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in this display, see the
Performance Monitor help.

4.1.1.8 Performance Monitor AIJ Statistics Screen
The AIJ Statistics screen monitors both logical and physical after-image
journaling activity. The following is an example of an AIJ Statistics screen:

4–14 Adjusting Parameters

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 13:29:50
Rate: 3.00 Seconds AIJ Statistics Elapsed: 03:27:41.92
Page: 1 of 1 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

AIJ file writes 0 0 0.0 0 0.0
data 0 0 0.0 0 0.0
control 0 0 0.0 0 0.0
file extend 0 0 0.0 0 0.0
switch over 0 0 0.0 0 0.0

records written 0 0 0.0 1 0.3
blocks written 0 0 0.0 0 0.0

filler bytes 0 0 0.0 0 0.0

lock rebuilds 0 0 0.0 0 0.0
AIJ file reads 0 0 0.0 1 0.3

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in this display, see the
Performance Monitor help.

4.1.1.9 Performance Monitor AIJ Journal Information Screen
The AIJ Journal Information screen provides online information about all of a
database’s after-image journals on the current node. Most of the information
displayed on the screen is obtained in real time, which means that the screen
is automatically updated as AIJ database parameters are modified, or as AIJ
operations such as a backup or journal switch-over are performed.

Because the AIJ Journal Information screen provides real-time information,
the output is not recorded in the binary output file produced using the Output
qualifier. Consequently, this screen is not available when you replay a binary
file using the Input qualifier. You access the AIJ Journal Information screen
from the Journaling Information submenu. The following is an example of the
AIJ Journal Information screen:

Adjusting Parameters 4–15

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 13:40:22
Rate: 3.00 Seconds AIJ Journal Information Elapsed: 03:38:13.55
Page: 1 of 3 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Journaling: Enabled Shutdown: 60 Notify: Disabled State: Accessible
ALS: Manual ABS: Disabled ACE: Disabled FC: Enabled CTJ: Enabled

After-Image.Journal.Name....... SeqNum AIJsize CurrEOF Status. State.......
RICK1 Unused 512 Empty Latent Accessible
RICK2 Unused 512 Empty Latent Accessible
RICK3 Unused 512 Empty Latent Accessible
RICK4 19 513 2 Current Accessible
RICK5 Unused 512 Empty Latent Accessible
RICK6 18 *BACKUP NEEDED* Written Accessible
Available AIJ slot 1
Available AIJ slot 2
Available AIJ slot 3
Available AIJ slot 4
Available AIJ slot 5
Available AIJ slot 6
Available AIJ slot 7
Available AIJ slot 8
--
Bell Exit Help Menu >next_page <prev_page Refresh Set_rate Write Zoom !

The AIJ Journal Information screen contains information relating to AIJ
journaling in general and information on each individual journal, including
reserved AIJ journal slots.

Note that information on the AIJ Journal Information screen is for the current
node only. Because an after-image journal is accessed by all nodes modifying
the database, the information for one node could become stale. Therefore,
the Refresh option on the horizontal menu at the bottom of the AIJ Journal
Information screen is provided. The Refresh option causes the current node’s
information to be synchronized with all other nodes accessing the database.

For information about each of the fields shown in the AIJ Journal Information
screen, see the Performance Monitor help.

See the Oracle Rdb7 Guide to Database Maintenance for a complete description
of after-image journaling.

4.1.1.10 Performance Monitor Snapshot Statistics Screen
The Snapshot Statistics screen shows snapshot activity for both update and
read-only transactions. The following is an example of a Snapshot Statistics
screen:

4–16 Adjusting Parameters

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 13:46:51
Rate: 3.00 Seconds Snapshot Statistics Elapsed: 03:44:42.12
Page: 1 of 1 RDBVMS_USER1:[LOGAN.MF_SAMPLE]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

Total transactions 1 0 0.1 6 1.0
R/O transactions 0 0 0.1 4 0.7

retrieved record 7 0 2.9 210 35.0
fetched line 7 0 2.9 210 35.0

read snap page 0 0 0.0 0 0.0

stored snap record 0 0 0.0 0 0.0
page in use 0 0 0.0 0 0.0
page too full 0 0 0.0 0 0.0
page conflict 0 0 0.0 0 0.0
extended file 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in the Snapshot Statistics
screen, see the Performance Monitor help.

4.1.1.11 Performance Monitor Checkpoint Statistics Screen
The Checkpoint Statistics screen shows transaction and checkpoint activity.
Statistics are displayed for all processes on the node for a particular database.
The total number of checkpoints, with a breakdown of the reasons for
checkpointing, is displayed. The sum of all checkpoint intervals is also
displayed, using three different metrics. You can use this information to
compute the average interval between checkpoints, allowing you to decide if a
checkpointing interval should be adjusted, and by how much.

Some of the columns provided by the Checkpoint Statistics screen measure
events on a per second or per transaction basis. These columns are useful
for measuring frequently occurring events such as I/O operations. Because
checkpointing typically occurs at a slower rate, you will find the most
meaningful checkpointing information in the total count column of the
Checkpoint Statistics screen. Oracle Corporation recommends that you refer to
this column when you use checkpoint statistics to determine optimal checkpoint
intervals.

You access the Checkpoint Statistics screen from the Journaling Information
submenu. The following is an example of a Checkpoint Statistics screen:

Adjusting Parameters 4–17

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-MAY-1996 14:43:06
Rate: 3.00 Seconds Checkpoint Statistics Elapsed: 04:40:57.33
Page: 1 of 1 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

transactions 6 4 2.8 373 1.0
checkpoints 1 0 0.1 16 0.0

AIJ growth 1 0 0.1 16 0.0
txn limit 0 0 0.0 0 0.0
time limit 0 0 0.0 0 0.0
rollback 0 0 0.0 0 0.0
AIJ backup 0 0 0.0 0 0.0
global 0 0 0.0 0 0.0

interval: AIJ blks 28 0 3.2 423 1.1
interval: tx count 24 0 2.7 362 1.0
interval: seconds 11 0 0.6 87 0.2

checkpoint stall 0 0 0.0 0 0.0
flushed buffers 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in the Checkpoint Statistics
screen, see the Performance Monitor help.

Keep in mind that checkpointing influences recovery time. The main reason
to consult checkpoint statistics is to find the average interval per checkpoint.
You can use the information in the total count column to compute this average.
For each category of checkpoint reason, use the average interval per checkpoint
to help you decide if a checkpointing interval should be adjusted, and by how
much.

You can set checkpoint limits for:

• .aij file growth

You specify the .aij file growth limit by using the CHECKPOINT
INTERVAL IS n BLOCKS clause of the ALTER DATABASE statement.
If CHECKPOINT INTERVAL IS 1000 BLOCKS is specified, each process
checkpoints when the .aij file has grown at least 1000 blocks since the
process’ last checkpoint.

• time

You specify the time limit by using the CHECKPOINT TIMED EVERY n
SECONDS clause of the ALTER DATABASE statement. If CHECKPOINT
TIMED EVERY 600 SECONDS is specified, each process checkpoints when
at least 10 minutes have elapsed since the process’ last checkpoint.

• transactions

4–18 Adjusting Parameters

You specify the transactions limit by using the RDM$BIND_CKPT_
TRANS_INTERVAL logical name or the RDB_BIND_CKPT_TRANS_
INTERVAL configuration parameter. If RDM$BIND_CKPT_TRANS_
INTERVAL is defined as a system logical set to 10, each process
checkpoints after 10 transactions unless a user redefines the RDM$BIND_
CKPT_TRANS_INTERVAL logical name to a different value. That is, if a
user defines RDM$BIND_CKPT_TRANS_INTERVAL as a process logical
name and sets a value of 5, that user checkpoints after 5 transactions.

In the previous example, all of the checkpoints are triggered by the .aij file
growth limit. This may mean that the transaction limit and time limit are set
too high, or it may mean that .aij file growth limit is set too low. The rest of
this section explains how to determine the average interval per checkpoint for
each type of checkpoint limit. After you have determined the average interval
per checkpoint for each type of checkpoint limit, you can reset the limits so
that each type of checkpoint limit triggers approximately the same number of
checkpoints, which results in optimal performance.

To find the average interval for a checkpoint, divide each of the interval
categories by the total number of checkpoints. In the example, the seconds
interval count is 87 and the total number of checkpoints is 16, so the average
number of seconds between each time-triggered checkpoint is approximately 5.

Likewise, the transactions interval is 362 and the total number of checkpoints
is 16, so the average number of transactions between checkpoints is
approximately 23.

However, when computing the average interval in AIJ blocks, you must divide
the AIJ block interval by the total number of checkpoints minus the number
caused by AIJ backups. Although checkpoints caused by AIJ backups are
counted in the total number of checkpoints, they are not counted in the total of
AIJ block intervals. The following calculation shows that the .aij file grows by
an average of approximately 26 blocks between each checkpoint.

Avg AIJ Blk Int = 423=(16� 0) = 26:4375

Note that there may be more reasons for checkpoints than there are total
checkpoints. This can occur because a single checkpoint may be triggered by
more than one event. For example, a checkpoint may occur because of time
and .aij file growth. Although both columns will increment by one, the total
checkpoint column only increments by one.

Adjusting Parameters 4–19

4.1.1.12 Performance Monitor Checkpoint Information Screen
The Checkpoint Information screen displays process checkpoint information.
One line of information is displayed for each process attached to the database
on the current node. There may be blank lines in the display as processes
detach from the database; in this way, once a process has attached to the
database, it maintains the same location in the screen until it detaches from
the database.

You access the Checkpoint Information screen from the Process Information
submenu. The following is an example of a Checkpoint Information screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 9-NOV-1995 10:08:36
Rate: 1.00 Second Checkpoint Information (Unsorted) Elapsed: 00:16:06.99
Page: 1 of 1 KODD_TEST:[R_ANDERSON.OE_MASTER]OE_RDB.RDB;1 Mode: Online
--
Process.ID Ckpt.Vno:Ckpt.Vbn QuietVno Tx.Start.Time AIJ: 2:8148
2083CE80:1s 2 7261
20819292:1s
20814D51:1 2 6251 2 10:07:29.76
20821752:1 2 6322 2 10:07:28.57
2082D156:1 2 7618 2 10:08:06.90
20822D57:1 2 6677 2 10:07:12.16
2081875B:1 2 7258 2 10:07:37.89

--
Config Exit Help Menu >next_page <prev_page Refresh Set_rate Write Zoom !

For information on each of the fields shown in the Checkpoint Information
screen, and the various configuration options, see the Performance Monitor
help.

4.1.2 Managing Buffers
A buffer is an internal memory area used for temporary storage of database
pages during read and update operations. When you request data from the
database, Oracle Rdb reads into memory enough database pages to fill a buffer.

When you create or modify a database, you can set up buffers for database
pages in either of two ways:

• You can choose user-private buffers (local buffers). This is the default.

• You can choose a common buffer pool for each node (global buffers).

With local buffering, Oracle Rdb maintains a local buffer pool for each user
process. For more than one process to use the same page, each process must
read the page from disk into its local buffer pool, even if the processes are
running on the same node.

4–20 Adjusting Parameters

With global buffering, Oracle Rdb maintains one global buffer pool for each
database. In a multinode system, each node maintains its own global buffer
pool for each database in the multinode system, and the pools on different
nodes are coordinated. A page in the global buffer pool can be used by more
than one process at the same time, although only one process reads the page
from disk into the global buffer pool.

In general, you should base your choice of local or global buffering on the
extent to which data is shared in your database.

• If many processes frequently access the same pages, enabling global
buffers can improve performance by reducing I/O and enhancing memory
utilization.

• If a process repeatedly accesses the same group of pages, enabling global
buffers can improve performance.

• If each process accesses its own small group of pages, enabling global
buffers does not improve performance.

In this section and throughout this manual, the term user or process means
a single attach to a database. Oracle Rdb considers multiple attaches from
one process to be multiple users. This means that if a single user process or
application attaches 10 times to a database, the database resources consumed
will be 10 times what the single user process or application would consume
in a single attach. In Example 4–1, user process SMITH with a process ID of
2080F11A attaches to the database once, and the RMU Show Users command
shows that process 2080F11A is allocated 20 global buffers. User process RICK
with a process ID of 20808D50 attaches to the database twice, and the RMU
Show Users command shows that each attach is allocated the 20 buffers that
are allocated to a single process. If database resources are consumed more
quickly than you expect, use the RMU Show Users command to see whether
one or more processes is attaching to the database multiple times.

Example 4–1 Each Database Attach by a Process Receives the Resources
Allocated to a Single Process

SQL> -- User SMITH attaches to the database:
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Show that the user process SMITH is allocated 20 global
SQL> -- buffers when attached to the database:

(continued on next page)

Adjusting Parameters 4–21

Example 4–1 (Cont.) Each Database Attach by a Process Receives the
Resources Allocated to a Single Process

Oracle Rdb V7.0-00 on node TRIXIE 28-MAY-1996 09:22:18.51

database _111DUA176:[LOGAN.V70]MF_PERSONNEL.RDB;1
- First opened 28-MAY-1996 09:21:53.86
- current after-image journal file is

_111DUA176:[LOGAN.V70]RICK1.AIJ
;1

- global buffer count is 1000
- maximum global buffer count per user is 40
- 980 global buffers free
- 1 active database user
- 2080F11A:1 - SMITH - non-utility, SMITH - active user

- image 111DUA600:[SQL_X07001.VAX.][CODE]SQL$701.EXE;1
- 20 global buffers allocated

SQL> --
SQL> -- User process RICK from the same node attaches to the database
SQL> -- twice and each attach is allocated 20 global buffers:
SQL> ATTACH ’ALIAS MF_PERS1 FILENAME mf_personnel’;
SQL> CONNECT TO ’ALIAS MF_PERS1 FILENAME mf_personnel’ AS ’TEST’;
SQL> $ RMU/SHOW USERS mf_personnel
Oracle Rdb V7.0-00 on node TRIXIE 28-MAY-1996 09:27:38.59

database _111DUA176:[LOGAN.V70]MF_PERSONNEL.RDB;1
- First opened 28-MAY-1996 09:21:53.86
- current after-image journal file is

_111DUA176:[LOGAN.V70]RICK1.AIJ
;1

- global buffer count is 1000
- maximum global buffer count per user is 40
- 940 global buffers free
- 3 active database users
- 2080F11A:1 - SMITH - non-utility, SMITH - active user

- image 111DUA600:[SQL_X07001.VAX.][CODE]SQL$701.EXE;1
- 20 global buffers allocated

- 20808D50:1 - _RTA7: - non-utility, RICK - active user
- image 111DUA600:[SQL_X07001.VAX.][CODE]SQL$701.EXE;1
- 20 global buffers allocated

- 20808D50:2 - _RTA4: - non-utility, RICK - active user
- image 111DUA600:[SQL_X07001.VAX.][CODE]SQL$701.EXE;1
- 20 global buffers allocated

SQL>

The Performance Monitor Buffer Information screen and the SQL SHOW
DATABASE output in Example 4–2 show the Oracle Rdb local and global
buffer parameters.

4–22 Adjusting Parameters

Example 4–2 Local and Global Buffer Parameters

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 21-JUN-1996 11:59:07
Rate: 3.00 Seconds Buffer Information Elapsed: 00:00:07.47
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Default user buffer count is 20 !
Default recovery buffer count is 20
Buffer size is 6 blocks "
Global Buffers are disabled #
- Global buffer count is 250 $
- Maximum global buffer count per user is 5 %
- Page transfer via memory is disabled
Global section size with global buffers disabled is 87600 bytes
- With global buffers enabled is 997430 bytes
Asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 5 buffers
Detected asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 4 buffers
- Pre-fetch threshold is 4 pages
Asynchronous batch-write is enabled
- Clean buffer count is 5
- Maximum batch size is 4 buffers
--
Exit Help Menu Options Refresh Set_rate Write !

.

.

.
$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SHOW DATABASE *
Default alias:

Oracle Rdb database in file MF_PERSONNEL
Multischema mode is disabled
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6 "
Number of Buffers: 20 !
Number of Recovery Buffers: 20
Snapshots are Enabled Immediate
Carry over locks are enabled
Lock timeout interval is 0 seconds

Adjusting Parameters 4–23

Adjustable lock granularity is enabled
Global buffers are disabled # (number is 250, $ user limit is 5 %

.

.

.
SQL>

The following callouts identify the buffer parameters in Example 4–2:

! The NUMBER OF BUFFERS parameter

The root file value for the NUMBER OF BUFFERS parameter specifies the
default number of buffers to be allocated to each process that attaches to
the database. Depending on whether local or global buffers are enabled
and the setting of other buffer parameters, the number of buffers specified
by this parameter may or may not be allocated to the process when it
attaches to the database. See Section 4.1.2.2 for more information on the
NUMBER OF BUFFERS parameter.

" The BUFFER SIZE parameter

This statement specifies the number of blocks per buffer. The value
specified for the BUFFER SIZE parameter is valid for both local and global
buffers. The value is stored in the database root file. See Section 4.1.2.1
for more information on the BUFFER SIZE parameter.

The global buffers are disabled or enabled parameter

Local buffers are enabled by default (global buffers are disabled by
default). When local buffers are enabled for a database, the values
specified for the NUMBER IS parameter (callout $) and the USER LIMIT
parameter (callout %) are not in effect for the database; these values are
meaningful only when global buffers are enabled. See Section 4.1.2.6 for
more information on enabling global buffers.

$ The NUMBER IS parameter

The active value specified for the NUMBER IS parameter determines the
total number of global buffers per node for a database. See Section 4.1.2.7
for more information on the NUMBER IS parameter.

% The USER LIMIT parameter

The active value specified for the USER LIMIT parameter determines
the maximum number of global buffers that can be allocated to a process
attached to the database.

4–24 Adjusting Parameters

In Example 4–2, the value for the USER LIMIT parameter in the mf_
personnel database is less than the value for the NUMBER OF BUFFERS
parameter. Normally, when global buffers are enabled for a database,
the USER LIMIT parameter should be increased to a value greater than
the NUMBER OF BUFFERS parameter. See Section 4.1.2.8 for more
information on the USER LIMIT parameter.

The parameter values displayed in Example 4–2 are the values stored in the
database root file. The RMU Open command can be used to specify different
values for the NUMBER IS and USER LIMIT parameters than those stored
in the root file. See Section 4.1.2.7 and Section 4.1.2.8 for more information
on using the RMU Open command to specify values for the NUMBER IS and
USER LIMIT parameters, respectively.

4.1.2.1 Specifying Buffer Size
The value you assign to the BUFFER SIZE parameter of the SQL CREATE
DATABASE or ALTER DATABASE statement determines the number of
database pages each buffer can contain. This value is valid for both local
and global buffering. The default is three times the value of the page size.
If the default page size is used, the default buffer size is 6 blocks (three
times the default page size of 2 blocks), or 3072 bytes. Figure 4–1 shows the
relationships among BLOCK SIZE, PAGE SIZE, and BUFFER SIZE defaults.

The buffer size you select can affect performance and depends upon the general
type of database operations. If you specify a large buffer size, it may reduce
I/O operations for sequential retrievals because the system reads a buffer’s
worth of contiguous pages, and provides some read-ahead capability.

Random data retrieval, however, can benefit from a smaller buffer size. When
the required page is not in a buffer, Oracle Rdb must read in a buffer’s worth of
pages from disk. The larger the buffer size, the more blocks Oracle Rdb must
read to fill one buffer.

Buffer size is a database-wide parameter. The number of blocks for each
page and buffer is restricted to less than 64 blocks. However, page size can
vary by storage area for multifile databases, and the page size should be
determined by the sizes of the records that will be stored in each storage area.
You can change the buffer size after a database is created by using the SQL
EXPORT and IMPORT statements or by using the BUFFER SIZE IS clause of
the ALTER DATABASE statement. Refer to the Oracle Rdb7 SQL Reference
Manual for more information on these SQL statements.

Adjusting Parameters 4–25

Figure 4–1 Buffer Pool: Database Parameter Defaults

1024 bytes 1024 bytes 1024 bytes

Buffer Size (3 pages)

Number of Buffers = 20
Buffer Pool = (20 * 3K) or 60K of virtual memory

NU−2407A−RA

Block (512 bytes)

512 bytes

1024 bytes

Page Size (2 blocks)

When you assign a value to the BUFFER SIZE parameter, choose a number
that is evenly divisible by all page sizes for all storage areas in your multifile
database. This avoids wasted memory. For example, if you have three storage
areas with page sizes of 16, 24, and 32 blocks respectively, choose a buffer size
of 96 blocks to ensure optimal buffer utilization. Choosing a buffer size of 64
blocks would be inefficient because, for the storage area with a page size of
24 blocks, you waste 16 blocks (25 percent) of each buffer. Oracle Rdb reads
as many pages as can fit into the buffer, and in this instance, it reads two
24-block pages into the buffer, leaving 16 wasted blocks.

If you define or modify a page size and specify a size larger than the buffer
size, Oracle Rdb returns the following error message:

RDMS-F-BUFSMLPAG, buffer size is less than page size.

4–26 Adjusting Parameters

4.1.2.2 Specifying the Default Number of User Buffers
The value you specify for the NUMBER OF BUFFERS parameter determines
the default number of buffers Oracle Rdb allocates to each user process that
attaches to the database. Depending on whether local or global buffers are
enabled and the setting of other buffer parameters (including the number of
buffers specified by the RDM$BIND_BUFFERS logical name or the RDB_
BIND_BUFFERS configuration parameter), the number of buffers specified by
the NUMBER OF BUFFERS parameter may or may not be allocated to the
process when it attaches to the database.

Note

Do not confuse the NUMBER OF BUFFERS parameter with the global
buffer parameter NUMBER IS. The NUMBER IS parameter specifies
the total number of buffers in the global buffer pool and has meaning
only within the context of global buffering. Refer to Section 4.1.2.6 for
information on enabling global buffers.

You can specify the NUMBER OF BUFFERS parameter for a database by
using the NUMBER OF BUFFERS clause of the SQL ALTER DATABASE and
CREATE DATABASE statements:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> NUMBER OF BUFFERS IS m;

You can also specify the NUMBER OF BUFFERS parameter for a database by
using the Local_Buffers=(Number=m) qualifier of the RMU Restore command:

$ RMU/RESTORE/LOCAL_BUFFERS=(NUMBER=m)/NOCDD mf_pers_backup
$ rmu -restore -local_buffers=\(number=m\) mf_pers_backup

When you use the ALTER DATABASE and CREATE DATABASE statements or
the RMU Restore command to specify a value for the NUMBER OF BUFFERS
parameter, the value is stored in the database root file, regardless of whether
the database has local buffers or global buffers enabled.

You can also use the logical name RDM$BIND_BUFFERS or the configuration
parameter RDB_BIND_BUFFERS to specify the number of buffers a process
can be allocated when it attaches to a database (that is, to specify a different
value than the value specified for the NUMBER OF BUFFERS parameter).
A positive integer value must be assigned with the RDM$BIND_BUFFERS
logical name or the RDB_BIND_BUFFERS configuration parameter for it to
have any effect. For example, the process issuing the following command is
requesting that 35 buffers be allocated to it when it attaches to a database:

Adjusting Parameters 4–27

$ DEFINE RDM$BIND_BUFFERS 35

The following text describes how Oracle Rdb determines the number of buffers
a user process is allocated when it attaches to a database, based on the local
and global buffer parameters in effect for the database:

• When local buffers are enabled for a database, Oracle Rdb allocates each
process that attaches to the database the number of buffers specified by
the NUMBER OF BUFFERS parameter (stored in the root file) unless the
process specifies a different value with the RDM$BIND_BUFFERS logical
name or the RDB_BIND_BUFFERS configuration parameter. In that
case, Oracle Rdb allocates the process the number of buffers specified with
the RDM$BIND_BUFFERS logical name or the RDB_BIND_BUFFERS
configuration parameter.

• When global buffers are enabled for a database, Oracle Rdb determines
how many buffers to allocate to a process based on the values of the
following parameters:

The USER LIMIT parameter

The active USER LIMIT parameter for a database determines the
maximum number of global buffers that Oracle Rdb can allocate to
a process using the database. There are two ways to set the value
for the USER LIMIT parameter for a database. One way is to set
the value using either the SQL CREATE DATABASE or ALTER
DATABASE statements or the RMU Restore Global_Buffers=(User_
Limit=t) command, which stores the value in the database root file.
The other way is to use the RMU Open Global_Buffers=(User_Limit=t)
command, which opens a database and specifies the maximum number
of buffers that processes can be allocated while the database is open.
The value specified for the USER LIMIT parameter with the RMU
Open Global_Buffers command overrides the USER LIMIT value stored
in the database root file until the database is closed. Use the RMU
Show Users database-name command to display the active value for
the USER LIMIT parameter (the value currently in effect for the
database on the current node).

See Section 4.1.2.8 for more information and examples on setting the
USER LIMIT parameter.

The RDM$BIND_BUFFERS logical name or the RDB_BIND_
BUFFERS configuration parameter

4–28 Adjusting Parameters

When the RDM$BIND_BUFFERS logical name or the RDB_BIND_
BUFFERS configuration parameter is defined for a process, Oracle Rdb
allocates that process the number of buffers specified by RDM$BIND_
BUFFERS or RDB_BIND_BUFFERS if this number specifies fewer
buffers than the active USER LIMIT value. If RDM$BIND_BUFFERS
or RDB_BIND_BUFFERS specifies more buffers than the active USER
LIMIT value, the process receives the number of buffers specified by
the active USER LIMIT value.

The NUMBER OF BUFFERS parameter

When a process does not define the RDM$BIND_BUFFERS logical
name or the RDB_BIND_BUFFERS configuration parameter, Oracle
Rdb allocates the process the number of buffers specified by the
NUMBER OF BUFFERS parameter if the NUMBER OF BUFFERS
value specifies fewer buffers than the active USER LIMIT value. If the
NUMBER OF BUFFERS parameter specifies more buffers than the
active USER LIMIT value, the process receives the number of buffers
specified by the active USER LIMIT value.

You can use the RDM$BIND_BUFFERS logical name or the RDB_BIND_
BUFFERS configuration parameter to tailor the buffer requirements of
individual processes. For example, a large batch job running at night may need
more buffers than interactive processes running during the day. By defining
RDM$BIND_BUFFERS or RDB_BIND_BUFFERS for the batch job process,
you can grant extra buffers to the batch job (unless a database has global
buffers enabled and the active value for the USER LIMIT parameter for the
database is smaller than the value specified by the logical name RDM$BIND_
BUFFERS or the configuration parameter RDB_BIND_BUFFERS) and
maintain the default number of buffers for other processes that access the
database. Note that, by default, the value specified by the RDM$BIND_
BUFFERS logical name or the RDB_BIND_BUFFERS configuration parameter
is specific to the defining process and applies to all databases used by the
process.

OpenVMS
VAX

OpenVMS
Alpha

If you have the required privileges, you can define RDM$BIND_BUFFERS as a
group or system logical name to affect a larger group of processes. ♦

One of the greatest benefits of increasing the number of buffers is that more
index nodes stay in the buffer pool. Consequently, I/O operations may be
reduced. Also, response time can improve because more output is deferred
until commit time, which uses asynchronous I/O operation. This is especially
beneficial for a multiuser database.

Adjusting Parameters 4–29

If you do not specify a value for the NUMBER OF BUFFERS parameter, the
default value is 20 buffers. When a user process requests data not contained in
the current buffer pool, Oracle Rdb reuses the buffers, writing updated buffers
to the database to make room for new pages.

4.1.2.3 Tuning Local Buffers
The values you supply for the database parameters BUFFER SIZE and
NUMBER OF BUFFERS determine the amount of virtual memory reserved
for the buffer pool for each database user when local buffers are enabled.
Using the default parameter values (shown in Figure 4–1), yields the following
calculation:

Buffer Pool = Number of Buffers �Buffer Size

Buffer Pool = 20 � (6 � 512) = 61440 Bytes

Thus, by default, each user has a buffer pool of 61,440 bytes or 120 blocks.
Along with the actual memory consumed by the buffers, some overhead is
associated with buffer management, so the actual size of the buffer pool needs
to be a little more than 120 blocks.

In some rare cases, if the buffer pool is too large relative to available physical
memory and quotas, the operating system may be forced to perform virtual
paging of the buffer pool in addition to reading a database page. This may
degrade performance. To avoid paging, you should make sure that the sum
memory requirements for all users active at the same time on a node is smaller
than the amount of physical memory.

If the buffer pool is too small, Oracle Rdb may have to perform more I/O
operations to bring the database pages into memory.

You can determine buffer size and the number of buffers required for your
database by analyzing row sizes in the database and the types of database
operations users perform.

• If you specify a high BUFFER SIZE value, Oracle Rdb can read in more
data, or find related rows when they are stored near each other, with each
I/O operation. This works well for sequential data retrieval.

• If you specify a NUMBER OF BUFFERS parameter greater than the
default (20), Oracle Rdb is more likely to retain previously used rows in
the user’s buffer pool. This works well for applications that refer to the
same data multiple times. Indexes are a good example of applications that
refer to the same data multiple times. If you use sorted indexes for range
retrievals, you may want to specify a larger number of buffers. You may
also want to enable global buffers if your application refers to the same
data multiple times.

4–30 Adjusting Parameters

Generally, these defaults are adequate for workloads with mixed transaction
types. However, if you have a transaction type that occurs more frequently
than others, you may want to adjust the values of these database parameters.
Having many small buffers is generally better than having a few large buffers
because it reduces I/O operations and avoids virtual paging of the buffer
pool. Refer to Section 8.1.3 for more information on local buffers and memory
consumption.

If queries retrieve rows based on indexed columns, Oracle Rdb uses the
database key stored in the index to find the rows directly. However, Oracle
Rdb reads the entire page that contains the row as well as enough database
pages to fill a buffer in the user’s buffer pool. Oracle Rdb always reads a full
buffer of data from the database to the user’s buffer pool.

During sequential retrieval of data in the database, Oracle Rdb reads
successive pages from the database file to the user’s buffer pool. The buffer size
and number of buffers, therefore, determine how much data is read and made
immediately available to the user without further I/O operation. The next row
required by the user, and not already in the buffer pool, requires Oracle Rdb to
flush those user buffers that contain data that has not been used recently. If
the user has modified any rows, the buffers that contain those rows must first
be written back to the database file before they can be used again. If the data
has not been modified, the buffers can be reused immediately.

Use the Performance Monitor’s PIO Statistics–Data Fetches and PIO
Statistics–SPAM Fetches screens to see the effects of the number of buffers and
to determine what adjustment you may need to make to improve performance
(see Example 8–8 and Example 8–9).

4.1.2.4 Locking Local Buffers into Physical Memory

OpenVMS
Alpha

Oracle Rdb includes a performance enhancement for databases accessed from
OpenVMS Alpha systems. This feature uses the OpenVMS buffer object
feature to lock Oracle Rdb local buffers into physical memory. Locking
Oracle Rdb local buffers into memory increases symmetric multiprocessing
(SMP) parallelism and scaling and improves I/O performance by eliminating
OpenVMS overhead.

To utilize this feature you must:

• Run Oracle Rdb along with OpenVMS Alpha Version 6.1 or higher on an
Alpha uniprocessor or an SMP system.

• Define the logical name RDM$BIND_BUFOBJ_ENABLED to be any value.

Adjusting Parameters 4–31

• Increase the OpenVMS user quota BYTLM by the number of bytes in your
local buffer pool. For example, if the number of local buffers is 1000, and
the buffer size is 8 blocks, determine the value of the BYTLM parameter
using the following formula:

1000 � (8 � 512) = 4; 096; 000 bytes

Do not use this feature on systems that are memory constrained. OpenVMS
pages that are defined as a buffer object can be paged and swapped, but
must remain resident in physical memory. This physical memory becomes
unavailable for use by any other process until the image is terminated.

Note

The Oracle Rdb utilization of OpenVMS buffer objects is not available
on databases with global buffers enabled.

♦

4.1.2.5 Global Buffer Pools
When a database has local buffers enabled, Oracle Rdb manages a separate
buffer pool for each user process. When a database has global buffers enabled,
Oracle Rdb manages a global buffer pool for the database on each node from
which user processes are accessing the database. All the users accessing a
database from a node use the global buffer pool for the database on that node.
So, when global buffers are enabled for a database, the global buffer pool for
the database is comprised of the global buffer pools for the database from the
individual nodes from which users are accessing the database.

You can enable global buffering with the GLOBAL BUFFERS ARE ENABLED
qualifier to the SQL ALTER or CREATE DATABASE statements, or with the
RMU Restore Global_Buffers=Enabled command. See Section 4.1.2.6 for more
information on enabling global buffers.

Figure 4–2 shows an example of global buffer management for two processes.
In this discussion, a user or process is considered a single attach. Oracle
Rdb considers multiple attaches from one process to be multiple users. This
means that if a single user process attaches 10 times to a database, the
database resources consumed will be 10 times what the single user process
would consume in a single attach. Each attach makes calls to Oracle Rdb for
database pages. In turn, Oracle Rdb calls the operating system to retrieve the
pages from the storage devices into the global buffer pool.

4–32 Adjusting Parameters

Figure 4–2 Global Buffer Management

NU−2377A−RA

Application

Database

Node

Global Buffer Pool

n n n nn n

Process 1

Application

Process 2

Memory

or
Shared Memory

Partition

Global Section

Oracle Rdb sets up a global buffer pool (an in-memory cache of buffers) in a
global section on OpenVMS and in a shared memory partition on Digital UNIX
to receive buffers of pages. User processes then map the global section or
shared memory partition to their virtual memory. This increases the virtual
memory requirements for users (compared to using local buffers), but physical
memory is better utilized. Only one copy of each page resides in the global
buffer pool but each attached process running on the node can simultaneously
read the same page. When global buffers are enabled for a database, the
system may require additional global section or shared memory partition
resources. You can also use the Performance Monitor Buffer Information screen
to estimate the size of the global section or shared memory partition before you
enable global buffers for the database, as explained in Section 4.1.2.12.

While each process can access any buffer in the pool, the number of buffers a
process can use at a given time is restricted and referred to as an allocate set.
The number of buffers in a user’s allocate set is determined by which of the
following values is in effect when the user attaches to the database:

• The NUMBER OF BUFFERS value

• The RDM$BIND_BUFFERS or RDB_BIND_BUFFERS value

Adjusting Parameters 4–33

• The USER LIMIT IS value

Section 4.1.2.2 describes how Oracle Rdb determines the number of buffers a
user process is allocated when it attaches to a database, based on the local and
global buffer parameters in effect for the database.

If the global buffer pool is full and a process requests a page not contained in
the pool, Oracle Rdb must first free an existing global buffer. To free a global
buffer, Oracle Rdb uses a modified version of the least-recently used (LRU)
replacement policy and reads new pages into the emptied global buffer.

The remainder of this section uses a simple example to illustrate how global
buffering works.

The example makes the following assumptions:

• Two processes are attached to the database; each process has an allocate
set of 3 buffers.

• All the pages are read from a uniform format storage area. The first page
in the storage area is a SPAM page. SPAM pages and data pages are not
read together (that is, Oracle Rdb does not read SPAM and data pages in
the same buffer).

• The buffer size is 6 blocks and page size is 2 blocks, so the size of each
clump is 3 pages. A clump of pages that is read will always be the same
pages, regardless of which page in the clump is requested. If a user
requests page 2 or 3 or 4, the same three pages (2–4) will be read.

• Global buffering is enabled; 6 buffers are in the global buffer pool.

Therefore, the global buffer pool contains a total of 36 disk blocks (18 database
pages) for the database. All 18 pages in the buffer pool are available to each
process, but a process can look at only 9 pages (the 3 buffers in its allocate set)
at any given time.

Figures 4–3 through 4–8 show the pages read into global buffers by two
processes, J and T. Process J executes a query that causes three pages to be
read into the first global buffer. Because a page can be referenced by multiple
processes, Oracle Rdb associates a counter with each buffer that notes how
many processes are referencing the buffer. In Figure 4–3, the counter is set to
1, which indicates a single process is accessing the buffer.

4–34 Adjusting Parameters

Figure 4–3 Global Buffer Pool: Buffer 1

NU−2378A−RA

5−7

1

J

0 0 0 0 0

Pages

1Buffer

Process

Process T now begins processing, and Oracle Rdb reads six more pages into the
global buffer pool, which fills two buffers, as shown in Figure 4–4.

Figure 4–4 Global Buffer Pool: Buffers 1–3

J T

0

T

NU−2379A−RA

1 1 1 0 0 0

5−7

1

J

Pages

1Buffer

8−10

2

11−13

3

Process

Process J now asks Oracle Rdb to read six more pages into the global buffer
pool, as shown in Figure 4–5.

Figure 4–5 Global Buffer Pool: Buffers 1–5

T T

NU−2380A−RA

1 0

J J J

1 1 1 1

17−19 29−31

J

1

5−7

1

J

Pages

1Buffer

8−10

2

11−13

3 4 5

Process

A subsequent call by process T reads in three more pages, thus filling up the
remaining global buffer in the global buffer pool, as shown in Figure 4–6.

Adjusting Parameters 4–35

Figure 4–6 Global Buffer Pool: Buffers 1–6

T

NU−2381A−RA

1

J J J

1 1 1

17−19 29−31

T

1

80−82

T

1

J

1

5−7

1

J

Pages

1Buffer

8−10

2

11−13

3 4 5 6

Process

Process J now wants to read page 77, which is not in the buffer pool. Because
process J has reached its maximum allotment of three buffers, it must give up
a global buffer before page 77 can be read into the buffer pool. Applying the
LRU policy to the buffers in process J’s allocate set, the first global buffer is
flushed and filled with three more pages, one of which is the required page, as
shown in Figure 4–7.

Figure 4–7 Global Buffer 1 Changes

J

11

J

Pages

1Buffer

8−10 11−13

2 3 4 5 6

77−79

T

NU−2382A−RA

1

J J J

1 1 1

17−19 29−31

T

1

80−82

T

1

Process

Process T now wants to read page 17. Because process T has reached its
maximum allotment of three buffers, process T must first give up a global
buffer. Applying the LRU policy to process T’s allocate set, process T releases
global buffer number 2, thus setting the counter to 0. Although no processes
are reading pages 8–10, the pages remain in the global buffer (refer to
Figure 4–8). If process T had modified a page in the second global buffer,
the modified page would have been written to disk before the buffer was
de-allocated.

Because process J read pages 17–19 into global buffer 4, process T can read
page 17 without performing any I/O. The counter for global buffer 4 now
reflects two users accessing this range of pages. See Figure 4–8.

4–36 Adjusting Parameters

Figure 4–8 Global Buffers 2 and 4 Change

77−79

NU−2383A−RA

1

J J

2 1

17−20 29−31

T

1

80−82

T

10

J+TJ

11

J

Pages

1Buffer

8−10

2

11−13

3 4 5 6

Process

Any process can read pages 8–10 without executing an I/O. However, if a
process requires pages not currently in the global buffer pool, pages 8–10 are
replaced with new pages.

4.1.2.6 Enabling Global Buffers
When global buffers are enabled for a database in a multinode system, each
node has a global buffer pool for each database. You can enable global buffers
for a database by using the GLOBAL BUFFERS ARE ENABLED clause of the
SQL ALTER DATABASE and CREATE DATABASE statements:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> GLOBAL BUFFERS ARE ENABLED;

There must not be any users attached to the database when you enable global
buffering.

You can disable global buffers for a database by using the GLOBAL BUFFERS
ARE DISABLED clause of the SQL ALTER DATABASE and CREATE
DATABASE statements:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> GLOBAL BUFFERS ARE DISABLED;

There must not be any users attached to the database when you disable global
buffering.

You can also enable global buffers for a database by using the Global_
Buffers=Enabled qualifier of the RMU Restore command:

$ RMU/RESTORE/GLOBAL_BUFFERS=ENABLED/NOCDD mf_pers_backup
$ rmu -restore -global_buffers=enabled mf_pers_backup

You can disable global buffers for a database by using the
Global_Buffers=Disabled qualifier of the RMU Restore command:

$ RMU/RESTORE/GLOBAL_BUFFERS=DISABLED/NOCDD mf_pers_backup
$ rmu -restore -global_buffers=disabled mf_pers_backup

Adjusting Parameters 4–37

When you use the ALTER DATABASE and CREATE DATABASE statements or
the RMU Restore command to enable or disable global buffers for a database,
the setting is stored in the database root file.

When a database has local buffers enabled, the values specified for the
NUMBER IS and USER LIMIT parameters are not in effect for the database;
the values for these global buffer parameters are meaningful only when global
buffers are enabled. Other buffer parameter values, such as NUMBER OF
BUFFERS and BUFFER SIZE, are valid for both local and global buffers.

OpenVMS
VAX

OpenVMS
Alpha

Because the OpenVMS operating system does not allow a global section
size change, more buffers cannot be added to the global buffer pool as more
users attach to the database. It is important, therefore, to select the right
combination of values for the default buffer count per user (the NUMBER
OF BUFFERS parameter), the number of global buffers (the NUMBER IS
parameter), and the maximum number of buffers per user (the USER LIMIT
parameter). ♦

Global buffers can require additional global section or shared memory partition
resources. For more information, see Section 4.1.2.12.

4.1.2.7 NUMBER IS Parameter
The NUMBER IS parameter specifies the total number of global buffers per
node for a database. You can specify the NUMBER IS parameter for a database
by using the NUMBER IS clause of the SQL ALTER DATABASE and CREATE
DATABASE statements:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> GLOBAL BUFFERS ARE ENABLED
cont> (NUMBER IS n);

You can also specify the NUMBER IS parameter for a database by using the
Global_Buffers=Total=n qualifier of the RMU Restore command:

$ RMU/RESTORE/GLOBAL_BUFFERS=(TOTAL=n)/NOCDD mf_pers_backup
$ rmu -restore -global_buffers=\(total=n\) mf_pers_backup

When you use the ALTER DATABASE and CREATE DATABASE statements or
the RMU Restore command to specify a value for the NUMBER IS parameter,
the value is stored in the database root file. The value stored with these
statements or commands should be appropriate for the node in the cluster with
the least physical memory.

You can also specify the NUMBER IS parameter for a database by using the
Global_Buffers=Total=n qualifier of the RMU Open command:

$ RMU/OPEN/GLOBAL_BUFFERS=(TOTAL=n) mf_personnel
$ rmu -open -global_buffers=\(total=n\) mf_personnel

4–38 Adjusting Parameters

The RMU Open Global_Buffers=(Total=n) command specifies the total number
of global buffers for the database on the node from which the command is
issued. You might want to increase the number of global buffers for a node
with a large amount of physical memory when it is clustered with a node
that has less physical memory. By having more global buffers for the larger
memory, you can improve performance on that node. On the node from which
the RMU Open Global_Buffers=(Total=n) command is issued, the global buffer
pool contains the number of global buffers specified by n while the database is
open.

One benefit of using the RMU Open Global_Buffers=(Total=n) command is that
Oracle Rdb does not have to remap the buffer pool every time the database is
opened. Refer to the Oracle RMU Reference Manual for more information on
the RMU Open command.

The Performance Monitor Buffer Information screen and the SQL SHOW
DATABASE output display the global buffer parameters stored in a database
root file, and the RMU Show Users command displays the active values for the
global buffer parameters (the active parameters may be different than the root
file if the RMU Open Global_Buffers command was used to open the database
on the node). In Example 4–3, the Buffer Information screen shows that the
value for the NUMBER IS parameter in the root file is 250 global buffers,
while the RMU Show Users command in Example 4–4 shows that the active
value for the NUMBER IS parameter for the database on the current node is
350 global buffers.

Adjusting Parameters 4–39

Example 4–3 Using the Buffer Information Screen to Display the Number of
Global Buffers

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 21-JUN-1996 11:59:07
Rate: 3.00 Seconds Buffer Information Elapsed: 00:00:07.47
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Default user buffer count is 20
Default recovery buffer count is 20
Buffer size is 6 blocks
Global Buffers are disabled
- Global buffer count is 250 <------------ Notice
- Maximum global buffer count per user is 5
- Page transfer via memory is disabled
Global section size with global buffers disabled is 87600 bytes
- With global buffers enabled is 997430 bytes
Asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 5 buffers
Detected asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 4 buffers
- Pre-fetch threshold is 4 pages
Asynchronous batch-write is enabled
- Clean buffer count is 5
- Maximum batch size is 4 buffers
--
Exit Help Menu Options Refresh Set_rate Write !

Example 4–4 Using the RMU Show Users Command to Display the Active
Value for the NUMBER IS Parameter

$ RMU/OPEN/GLOBAL_BUFFERS=(TOTAL=350) mf_personnel
$ RMU/SHOW USERS mf_personnel
Oracle Rdb V7.0-00 on node TRIXIE 28-MAY-1996 10:08:21.49

database _111DUA176:[LOGAN.V70]MF_PERSONNEL.RDB;1
- First opened 28-MAY-1996 10:02:47.44
* database is opened by an operator
- current after-image journal file is

_111DUA176:[LOGAN.V70]RICK1.AIJ;1
- global buffer count is 350 <------------ Notice
- maximum global buffer count per user is 25
- 325 global buffers free
- 1 active database user

4–40 Adjusting Parameters

- 2080932F:1 - RICK - non-utility, RICK - active user
- image 111DUA600:[SQL_X07001.VAX.][CODE]SQL$701.EXE;1
- 25 global buffers allocated

$

The default for the NUMBER IS parameter is five times the maximum number
of users. You should base this value on the number of users, the needs of the
database, and available physical memory. Section 4.1.2.9 suggests a method
for determining the number of global buffers.

Do not define more global buffers than there is memory available for on your
system or the system will experience page faults. In a multinode system,
the memory capacity of the smallest node is the limiting factor, although the
NUMBER IS and USER LIMIT parameters can be tailored to the resources
available on different nodes of a multinode system by using the RMU Open
command.

The sum of the buffers allocated to all users cannot be greater than the total
number of global buffers specified by the NUMBER IS parameter. This ensures
that free buffers are available when a user needs to read a new buffer into the
buffer pool. If the combined user buffer demand exceeds the size of the global
buffer pool (resulting in attaches being denied to the database), increase the
value of the NUMBER IS parameter. If the demand exceeds the size of physical
memory, you need more memory on your system or you need to distribute users
among different nodes of a multinode system. In this situation, you can also
allow page faulting by defining NUMBER IS to be more than the capacity of
the physical memory. Page faulting degrades performance, but this situation is
permitted.

4.1.2.8 USER LIMIT Parameter
The USER LIMIT parameter specifies the maximum number of global buffers
that can be allocated to a process. If global buffers are disabled for a database,
the value specified for the USER LIMIT parameter is meaningless because
global buffers are not used.

When you enable global buffers for a database, you will usually want the
value for the USER LIMIT parameter to be greater than the value for the
NUMBER OF BUFFERS parameter. If the USER LIMIT value is less than
the NUMBER OF BUFFERS value, users will receive fewer buffers with global
buffers enabled than they did when the database had local buffers enabled.

You can set a value for the USER LIMIT parameter by specifying the USER
LIMIT IS clause of the SQL ALTER DATABASE and CREATE DATABASE
statements:

Adjusting Parameters 4–41

SQL> ALTER DATABASE FILENAME mf_personnel
cont> GLOBAL BUFFERS ARE ENABLED
cont> (USER LIMIT IS t);

You can also specify the USER LIMIT parameter for a database by using the
Global_Buffers=(User_Limit=t) qualifier of the RMU Restore command:

$ RMU/RESTORE/GLOBAL_BUFFERS=(USER_LIMIT=t)/NOCDD mf_pers_backup
$ rmu -restore -global_buffers=\(user_limit=t\) mf_pers_backup

When you use the ALTER DATABASE and CREATE DATABASE statements or
the RMU Restore command to specify a value for the USER LIMIT parameter,
the value is stored in the database root file. The value you store with these
statements or commands should be appropriate for the node in the cluster with
the least physical memory.

You can also specify the USER LIMIT parameter for a database by using the
Global_Buffers=(User_Limit=t) qualifier of the RMU Open command:

$ RMU/OPEN/GLOBAL_BUFFERS=(USER_LIMIT=t) mf_personnel
$ rmu -open -global_buffers=\(user_limit=t\) mf_personnel

The RMU Open Global_Buffers=(User_Limit=t) command specifies the
maximum number of global buffers that can be allocated to a process attached
to the database on the node from which the command is issued. You might
want to increase the number of global buffers per process for a node with
a large amount of physical memory when it is clustered with a node that
has less physical memory. By having more global buffers per process for the
larger memory, you can improve performance on that node. On the node from
which the RMU Open Global_Buffers=(User_Limit=t) command is issued, the
maximum number of global buffers that can be allocated to a process while the
database is open is the value specified by t (the USER LIMIT value specified
with the RMU Open Global_Buffers command overrides the USER LIMIT
value stored in the database root file until the database is closed. The RMU
Open Global_Buffers=(User_Limit=t) command fails if the database is already
open. Refer to the Oracle RMU Reference Manual for more information on the
RMU Open command.

The Buffer Information screen and the SQL SHOW DATABASE output display
the global buffer parameters stored in a database root file, and the RMU Show
Users command displays the active values for the global buffer parameters
(the active parameters may be different than the root file if the RMU Open
Global_Buffers command was used to open the database on the node). In
Example 4–5, the Buffer Information screen shows that the value for the
USER LIMIT parameter in the root file is 25 global buffers, while the RMU
Show Users command in Example 4–6 shows that the active value for the

4–42 Adjusting Parameters

USER LIMIT parameter for the database on the current node is 50 global
buffers.

Example 4–5 Using the Performance Monitor Buffer Information Screen to
Display the Active Value for the USER LIMIT Parameter

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 21-JUN-1996 11:59:07
Rate: 3.00 Seconds Buffer Information Elapsed: 00:00:07.47
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Default user buffer count is 20
Default recovery buffer count is 20
Buffer size is 6 blocks
Global Buffers are disabled
- Global buffer count is 250
- Maximum global buffer count per user is 25 <------------ Notice
- Page transfer via memory is disabled
Global section size with global buffers disabled is 87600 bytes
- With global buffers enabled is 997430 bytes
Asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 5 buffers
Detected asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 4 buffers
- Pre-fetch threshold is 4 pages
Asynchronous batch-write is enabled
- Clean buffer count is 5
- Maximum batch size is 4 buffers
--
Exit Help Menu Options Refresh Set_rate Write !

Example 4–6 Using the RMU Show Users Command to Display the Active
Value for the USER LIMIT Parameter

$ RMU/OPEN/GLOBAL_BUFFERS=(USER_LIMIT=50) mf_personnel
Oracle Rdb V7.0-00 on node TRIXIE 28-MAY-1996 10:21:08.13

database _111DUA176:[LOGAN.V70]MF_PERSONNEL.RDB;1
- First opened 28-MAY-1996 10:20:53.50
* database is opened by an operator
- current after-image journal file is

_111DUA176:[LOGAN.V70]RICK1.AIJ;1
- global buffer count is 250
- maximum global buffer count per user is 50 <------------ Notice
- 200 global buffers free
- 1 active database user
- 2080932F:1 - RICK - non-utility, RICK - active user

- image 111DUA600:[SQL_X07001.VAX.][CODE]SQL$701.EXE;1
- 50 global buffers allocated

Adjusting Parameters 4–43

When global buffers are enabled for a database, a process can define a value
with the RDM$BIND_BUFFERS logical name or the RDB_BIND_BUFFERS
configuration parameter that specifies the number of global buffers to be
allocated to the process when it attaches to a database. You must assign a
positive integer value with RDM$BIND_BUFFERS or RDB_BIND_BUFFERS
for it to have any effect. The process receives the number of global buffers
specified by RDM$BIND_BUFFERS or RDB_BIND_BUFFERS when that
value is lower than the active value for the USER LIMIT parameter for the
database, as shown in Example 4–7.

Example 4–7 Using the RDM$BIND_BUFFERS Logical Name to Specify
Fewer Global Buffers Than the Value Specified by the Active
USER LIMIT Parameter

$! A user executes the following commands:
$ DEFINE RDM$BIND_BUFFERS 8
$!
$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;

.

.

.
$!
$! Another user on the same node as the first user executes
$! the following command:
$ RMU/SHOW USERS mf_personnel
Oracle Rdb V7.0-00 on node TRIXIE 28-MAY-1996 10:27:59.10

database _111DUA176:[LOGAN.V70]MF_PERSONNEL.RDB;1
- First opened 28-MAY-1996 10:20:53.50
* database is opened by an operator
- current after-image journal file is

_111DUA176:[LOGAN.V70]RICK1.AIJ;1
- global buffer count is 250
- maximum global buffer count per user is 25
- 242 global buffers free
- 1 active database user
- 2080F11A:1 - RICK - non-utility, RICK - active user

- image 111DUA600:[SQL_X07001.VAX.][CODE]SQL$701.EXE;1
- 8 global buffers allocated

$

If the value specified by the RDM$BIND_BUFFERS logical name or the RDB_
BIND_BUFFERS configuration parameter is higher than the active value for
the USER LIMIT parameter for the database, the process receives the number
of global buffers specified by the active USER LIMIT parameter, as shown in
Example 4–8.

4–44 Adjusting Parameters

Example 4–8 Using the RDM$BIND_BUFFERS Logical Name to Specify More
Global Buffers Than the Value Specified by the Active USER
LIMIT Parameter

$! A user executes the following commands:
$ DEFINE RDM$BIND_BUFFERS 50
$!
$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;

.

.

.
$!
$! Another user on the same node as the first user executes
$! the following command:
$ RMU/SHOW USERS mf_personnel
Oracle Rdb V7.0-00 on node TRIXIE 28-MAY-1996 10:39:00.12
database _111DUA176:[LOGAN.V70]MF_PERSONNEL.RDB;1

- First opened 28-MAY-1996 10:20:53.50
* database is opened by an operator
- current after-image journal file is

_111DUA176:[LOGAN.V70]RICK1.AIJ;1
- global buffer count is 250
- maximum global buffer count per user is 25
- 225 global buffers free
- 1 active database user
- 20808D50:1 - _RTA7: - non-utility, RICK - active user

- image 111DUA600:[SQL_X07001.VAX.][CODE]SQL$701.EXE;1
- 25 global buffers allocated

$

Note

All buffers in the global buffer pool are available to all users at any
given time. Buffer allocations and buffer limits indicate how many
buffers a process can use at one time. If, for example, 1000 buffers are
in the global buffer pool, and 100 users are each allocated 10 buffers,
each user can read any of the 1000 buffers without performing any disk
I/O, but each user can read or modify only 10 buffers at any one time.
The 10 buffers that a user can read or modify at any one time are the
user’s allocate set.

Decide the maximum number of global buffers a process can allocate by
dividing the total number of global buffers set by the NUMBER IS qualifier by
the total number of processes you want to have guaranteed database access.
For example, if the total number of global buffers is 200 and you want to

Adjusting Parameters 4–45

guarantee at least 10 users access to the database, set the maximum number
of global buffers for each process to 20 (USER LIMIT IS 20). Section 4.1.2.9
suggests a method for determining the maximum number of global buffers
a process should be allowed to allocate. Note that you can set the value of
NUMBER OF BUFFERS equal to 10, thus allowing 20 users to attach to the
database for normal processing. But, by setting USER LIMIT equal to 20, you
enable special applications that request more buffers than the default (through
use of the RDM$BIND_BUFFERS logical name or the RDB_BIND_BUFFERS
configuration parameter) to allocate up to 20 buffers.

The value specified by the USER LIMIT parameter cannot be greater than the
total number of global buffers. The default value is 5 buffers.

The USER LIMIT parameter is important to operations and system
performance. The larger the value, the fewer processes are guaranteed
access to the database. The value specified by the USER LIMIT parameter
determines the maximum number of buffers a process can allocate regardless
of the following values:

Default number of local buffers to be used by a process, set with the
NUMBER OF BUFFERS parameter to the SQL CREATE DATABASE
statement

Number of buffers defined by RDM$BIND_BUFFERS or RDB_BIND_
BUFFERS

4.1.2.9 Tuning Global Buffers
You can determine the amount of virtual memory reserved for a database
global buffer pool on a node by multiplying the values of the BUFFER SIZE
and NUMBER IS parameters.

The size of the buffer pool is critical to system performance.

• If the buffer pool is too large, the operating system is forced to perform
virtual paging. In this case, two I/Os might be needed to read a database
page into memory: one by the operating system to page fault the buffer
into the working set and one by Oracle Rdb to read the page into the buffer
pool.

4–46 Adjusting Parameters

OpenVMS
VAX

OpenVMS
Alpha

If you suspect that the buffer pool is too large, use the SHOW SYSTEM
command to see how much paging the system is experiencing. ♦

• If the buffer pool is too small, Oracle Rdb has to perform more database
I/O. Use the Performance Monitor’s PIO Statistics–Data Writes, PIO
Statistics–Data Fetches, and PIO Statistics–SPAM Fetches screens to check
for excessive I/O. See Section 4.1.1.2, Section 4.1.1.3, and Section 4.1.1.4,
respectively, for information on these displays.

The remainder of this section describes how to choose values for the NUMBER
IS, USER LIMIT, and NUMBER OF BUFFERS parameters. For maximum
performance in a multinode system, you should tune the NUMBER IS and
USER LIMIT global buffer parameters on each node in the cluster using the
RMU Open Global_Buffers=(Total=n,User_Limit=t) command.

Note

The default values for the global buffer parameters are unlikely to
provide the optimum performance for your database. It is not possible
to supply default values that suffice for the many possible database and
system configurations.

• NUMBER IS

The following factors affect the value you select for the total number of
global buffers:

Amount of physical memory available

Percentage of physical memory that can be allocated to Oracle Rdb for
the database

For example, if 128 megabytes of physical memory are available, and 10
percent of this memory can be allocated for your database, and buffer size
is 3 kilobytes, then:

NUMBER IS =
128 � :10

:003
=

12

:003
= 4000

This system can support a global buffer pool of 4000 buffers.

• USER LIMIT

The factor for this parameter is: how many users need guaranteed
database access? To continue the example, if you want to guarantee access
for 50 users, then:

USER LIMIT =
4000

50
= 80

Adjusting Parameters 4–47

This system guarantees database access for a minimum of 50 users, and
each user can allocate 80 buffers.

• NUMBER OF BUFFERS

The factor for this parameter in a system using global buffers is: how many
users need access during times of peak database activity? To continue the
example, if there are 200 users at peak time, then:

NUMBER OF BUFFERS =
4000

200
= 20

This system allows 200 users to allocate a default of 20 buffers apiece.

4.1.2.10 Benefits of Global Buffer Overflow Management
A major benefit of enabling global buffers in an environment where data is
shared among concurrent users is that a user has read access to all global
buffers defined database-wide on a particular node. If a user needs to read a
row from a new page, then a disk I/O can be avoided if the page already exists
in a global buffer in the pool for the database on that node, and the buffer is
shared. Because a particular page can be shared in the global buffer pool, disk
I/O is reduced. Less memory is used because fewer buffers are necessary.

A database process is allowed to write to and control the number of global
buffers in its allocate set. When a user reads a page, the global buffer that
contains the page becomes part of the user’s allocate set.

The maximum number of global buffers a user can write to and control is
specified by the active value for the USER LIMIT parameter. This parameter
specifies the maximum number of global buffers that can be allocated to
a database user at attach time by the Oracle Rdb monitor. The default
number of global buffers allocated to a user is specified by the NUMBER
OF BUFFERS parameter. The actual number of global buffers allocated to a
process is dynamic and can be set on a per-user basis with the RDM$BIND_
BUFFERS logical name or the RDB_BIND_BUFFERS configuration parameter.
If RDM$BIND_BUFFERS or RDB_BIND_BUFFERS is defined, then this value
overrides the default as long as the RDM$BIND_BUFFERS or RDB_BIND_
BUFFERS value is not higher than the active USER LIMIT value.

It is important to note that for a database attach to be successful, the
appropriate number of buffers to be allocated must be available from the
database global buffer pool at attach time. If there are insufficient global
buffers to allocate, then the attach will fail.

4–48 Adjusting Parameters

As stated previously, a database process is allowed to write to and control the
number of global buffers in its allocate set. However, if some global buffers
are not allocated to a user’s allocate set, a user may effectively buffer data in
global buffers in excess of the allocate set.

The reason for this behavior is due to a modified version of the least-recently
used (LRU) buffer replacement algorithm for choosing victim buffers in the
case of buffer overflow, as described in the following text. This situation is
possible when the total number of buffers allocated to users is less than the
total number of global buffers defined for the database.

For example, assume that the number of database-wide global buffers is
specified as 2,000 buffers with a USER LIMIT of 100 buffers (allowing a
maximum of 20 concurrent attaches with maximum allocate sets). If 10 users
are concurrently attached with maximum allocate sets, then only 50% or 1,000
global buffers are allocated to users, leaving 1,000 apparently ‘‘unused’’ global
buffers. However, the number of buffers that contain data accessible by these
users can easily exceed the 1,000 allocated buffers.

When a user’s buffer pool is full and a request is made to bring in another
page, Oracle Rdb uses a least-recently used (LRU) algorithm to choose a victim
buffer to make room for the new page. Pool overflow is handled differently
with global buffers and local buffers.

With local buffers, the data in the victim buffer is lost from the buffer pool and
is replaced by the new buffer. If the user needs to read the data that was in
the victim buffer again, the data must be read again from disk.

With global buffers, if the user’s allocation of global buffers is full and a new
page needs to be brought into the user’s allocate set, the benefit is that the
victim buffer may remain in memory after replacement. To make room in
the user’s allocate set for the new buffer that contains the desired page, a
victim buffer is chosen in the allocate set using the LRU buffer replacement
algorithm, but with global buffers, the victim buffer is not necessarily lost from
the global buffer pool.

An unallocated, empty buffer in the global buffer pool will always be chosen
first to receive a new buffer of data, followed by a least-recently used,
unallocated full buffer. Oracle Rdb uses a pseudo-LRU algorithm to choose the
receiving buffer in the global buffer pool. If an unallocated buffer is available
from the database global buffer pool, then it receives the new buffer. In this
case, the user’s internal global buffer control structures are updated to point
to the location of the new buffer in memory, but the victim buffer previously
pointed to by the user structures remains in global memory. If the user needs
to reread the data that was in the victim buffer (which is currently not part

Adjusting Parameters 4–49

of the user’s allocate set), then the data may not need to be read from disk
because it may still reside in the global buffer pool for the database.

However, if all global buffers are allocated to users, then the victim buffer is
overwritten with the new buffer, and the information in the victim buffer is
lost, not only from the user’s allocate set, but also from the global buffer pool.
If the user needs to read the data that was in the victim buffer again, then in
this case, the data would need to be read again from disk.

In a single-user environment, the user effectively writes to all global buffers
allocated to the database due to the way in which Oracle Rdb manages
the global buffer pool and handles user buffer overflow. In a multiuser
environment, because the user owns or controls only the buffers in the allocate
set, it is less likely that an unallocated buffer will be found to accommodate
the new buffer. However, it is more likely that the desired buffer is already in
memory (due to a read by another user).

If the whole database fits in the global buffer pool, but exceeds the size of the
user’s allocate set, then the entire database can be memory resident due to this
beneficial effect! Once the database is read into global buffers, all subsequent
reads take place from memory; in read/write environments, only writes to disk
need to take place. The benefits from an entirely memory-resident database
should be obvious; this is a significant feature of the Oracle Rdb global buffer
implementation. Similarly, this benefit can be experienced in an environment
where a subset of the database that is typically accessed fits in the global
buffer pool. Such an environment may be a manufacturing facility, where
historical data is kept on line, but where users typically access only current
data.

Example 4–9 shows how read operations can be saved in a database with global
buffers. In Example 4–9, assume that the page size is equal to the buffer size,
that both users are attached to the database simultaneously, and that no page
fetches have occurred prior to the example. For simplicity, metadata buffers
are excluded from the pool.

In Example 4–9, the following global buffer parameters are in effect for the
database:

• Global buffers are enabled.

• The global buffer count (NUMBER IS parameter) is 6.

• The max global buffer count per user (USER LIMIT parameter) is 3.

• The default buffers per user (NUMBER OF BUFFERS parameter) is 2.

• The two users, User 1 and User 2, are on the same node, N1.

4–50 Adjusting Parameters

• User 2 defines RDM$BIND_BUFFERS or RDB_BIND_BUFFERS to be 3.

• User 1 uses 2 buffers and User 2 uses 3 buffers.

The example shows seven steps that take place, along with comments that
describe what occurs with each step.

Example 4–9 Saving Read Operations in a Database with Global Buffers
Enabled

Step User 1 User 2 Global Buffer Page Walk-Through
Page Page Comments
Fetch Fetch

1 1 User 1 reads page 1.

2 2 User 1 reads page 2.

3 3 Page 1 is the victim, User 1 reads page 3
into a new, unallocated buffer. Page 1
stays in the global buffer pool.

4 1 Page 2 is the victim, User 1 finds page 1
in the global buffer pool, saving a read
operation. Page 2 stays in the global
buffer pool.

5 1 User 2 finds page 1 in the global buffer
pool, saving a read operation.

6 2 Page 3 is the victim and remains in the
global buffer pool. User 1 finds page 2
in the global buffer pool and saves a
read operation.

7 3 User 2 finds page 3 in the global buffer
pool and saves a read operation.

Example 4–9 shows how global buffers reduce I/O to disk in a multiuser
environment where users share data, and how global buffer management of
victim buffers results in additional disk I/O savings.

This example shows that Oracle Rdb buffers data in global buffers in excess of
the user’s allocate set due to the way in which victim buffers are handled. By
increasing the size of the database’s global buffer pool, a reduction in direct I/O
occurs, because more of the data requested is memory resident in the global
buffer pool. Until the entire database is memory resident in the global buffer
pool, some data is lost from the global buffer pool, resulting in additional direct
I/O to bring back needed pages.

Adjusting Parameters 4–51

The point of this discussion is not to recommend the use of smaller allocate
sets. The size of the user allocate set is critical to the performance of your
application and the effectiveness of your buffer cache, especially in multiuser
environments. In read-intensive environments, cache effectiveness reduces
the need to go to disk for the desired data. In update-intensive environments,
the frequency of disk writes is also influenced by the size of the user’s buffer
pool, because marked (or updated) buffers are flushed to disk in a batch-write
operation in the event of buffer overflow. Using an insufficient allocate set
would result in more frequent batch-write operations to disk, diminishing the
beneficial effects of the batch-write optimization.

4.1.2.11 Benefits of Data Persistence in Global Buffer Memory
If an Oracle Rdb database is explicitly opened (and left open) with the RMU
Open command, then data that exists in Oracle Rdb global buffers as a result
of database access will persist in memory across database attaches. This
results in significant I/O savings if data is accessed again between attaches
to the database. For example, after an application program is run initially, in
which the data is read and buffers loaded, many (if not all) of the desired
database pages reside in memory. This means fewer data file reads are
reported by the Performance Monitor for each iteration after the initial run,
because more of the data needed by the application already exists in global
buffers.

To take advantage of this benefit, you must explicitly open the database (and
keep it open) with the RMU Open command. The persistence of data in global
buffer memory across database attaches can also mean faster application
startup and response time.

4.1.2.12 Modifying Parameters When Global Buffers Are Enabled
When local buffers are enabled for a database, the Oracle Rdb monitor creates
a global section or shared memory partition to maintain the database root
data structures with the first attach to the database. When global buffers
are enabled for a database, the global section or shared memory partition is
extended to include the global buffer pool and the data structures required to
maintain the integrity of its resident data. These data structures are used to
maintain the following information:

• Global buffer control blocks

• Allocate set block counted lists

• Process local lock for system-owned database and storage area locks

4–52 Adjusting Parameters

Because of these extra data structures used with global buffers, you may
need to modify some existing system parameters if you decide to enable
global buffers for a database. You can use the Performance Monitor Buffer
Information screen to display the size of the global section or shared memory
partition when global buffers are disabled and when global buffers are enabled
for a database. When you know the size of a database’s global section or shared
memory partition, you can use that information to help you determine whether
or not you need to modify existing system parameters.

The Buffer Information screen displays values that provide an estimated size of
the global section or shared memory partition. Example 4–10 shows a Buffer
Information screen.

Example 4–10 Using the Buffer Information Screen to Determine the Size of
a Global Section for a Database

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 21-JUN-1996 10:36:06
Rate: 3.00 Seconds Buffer Information Elapsed: 01:32:15.48
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Default user buffer count is 20
Default recovery buffer count is 20
Buffer size is 6 blocks
Global Buffers are enabled
- Global buffer count is 1000
- Maximum global buffer count per user is 40
- Page transfer via memory is disabled
Global section size with global buffers disabled is 548934 bytes <----- Notice
- With global buffers enabled is 4078056 bytes <-----
Asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 10 buffers
Detected asynchronous pre-fetch is enabled
- Maximum pre-fetch depth is 4 buffers
- Pre-fetch threshold is 4 pages
Asynchronous batch-write is enabled
- Clean buffer count is 4
- Maximum batch size is 4 buffers
--
Exit Help Menu Options Refresh Set_rate Write !

The first value (with global buffers disabled) indicates the size of the database’s
global section when global buffers are disabled for the database. The second
value (with global buffers enabled) indicates the size of the global section when
global buffers are enabled for the database. These two values are not stored
in the database root file, but instead are calculated from information that is
stored in the root file. You can use the Buffer Information screen to determine
the size of the global section that will be required when global buffers are
enabled for your database before you actually enable global buffers.

Adjusting Parameters 4–53

With global buffers disabled for a database, set the BUFFER SIZE, NUMBER
IS, USER LIMIT, and NUMBER OF BUFFERS parameters to what you will
use when global buffers are enabled for the database. Also, set the other
database parameters to what you plan to use for the database when global
buffers are enabled. Then use the Buffer Information screen. The global
section size values will help you to determine whether the increased size of
the global section when global buffers are enabled means that you need to
increase system parameters and process quotas before you actually enable
global buffers.

In Example 4–10, the Buffer Information screen is used to determine the
number of bytes required for the global section of a database with 1000 global
buffers, a limit of 40 global buffers per user, and a buffer size of 6 blocks.

The global section size values show that for this database the global section
will be more than seven times larger when global buffers are enabled than
when global buffers are disabled.

The size of the global section is provided in bytes instead of pages, because the
page size can differ from operating system to operating system (for example,
512 bytes per page for OpenVMS, and possibly a different number of bytes per
page for other operating systems). To determine the number of pages for the
global section of your database, use this calculation:

derived number of bytes / bytes per page = number of pages for global section

The following example shows how to use the global section size values to
compute the number of pages for the global section when global buffers are
enabled for the mf_personnel database in Example 4–10:

4078056 / 512 = 7964.9

The calculated value for the number of pages for the global section or shared
memory partition should be rounded up to the next integer value; for the
database in this example, the estimated size of the global section when global
buffers are enabled is 7965 pages. You should also add 10 to 15 pages to the
estimated value to ensure that there are enough pages for the global section.
For this example, assume that a global section of 7980 pages will be needed
when global buffers are enabled for the database.

Note that you must take the database off line if you decide to enable global
buffers.

4–54 Adjusting Parameters

OpenVMS
VAX

OpenVMS
Alpha

You must shut down and reboot the system to change the OpenVMS SYSGEN
parameters. Oracle Corporation recommends that any modifications to the
SYSGEN parameters be made through the MODPARAMS.DAT file and the
OpenVMS AUTOGEN facility. It is possible to hang a system on reboot due to
hard-coded parameters.

Also, note that these modifications may require you to change the Oracle Rdb
monitor process account quotas to ensure the paging file quota is adequate.
See the explanation of the GBLPAGFIL parameter later in this section for
more information.

The rest of this section explains how to determine appropriate settings for
the GBLSECTIONS, GBLPAGES, GBLPAGFIL, VIRTUALPAGECNT, and
PGFLQUOTA parameters when global buffers are enabled for a database.

The GBLSECTIONS Parameter
The GBLSECTIONS parameter determines the total number of global sections
that can be created on the system. One global section is allocated for the
database root on your system when the database is first opened, whether
global buffers are enabled for the database or not. Because a database uses
one global section whether global buffers are enabled or not, you do not need to
modify the GBLSECTIONS parameter when you enable global buffers.

The GBLPAGES Parameter
The GBLPAGES parameter determines the total number of global pages that
can be created on the system. This and VIRTUALPAGECNT are probably
the most critical parameters. See the explanation of the VIRTUALPAGECNT
parameter later in this section for more information.

The GBLSECTIONS, GBLPAGES, GBLPAGFIL, and VIRTUALPAGECNT
parameters are modifiable; however, because of their nondynamic nature, any
change requires a system reboot.

You can verify the use of the GBLPAGES and GBLSECTIONS parameters
using the OpenVMS System Generation utility (SYSGEN), the OpenVMS
Install utility (INSTALL), and lexical functions. Issuing the SYSGEN SHOW
GBLPAGES and SHOW GBLSECTIONS commands provides the current
number of GBLPAGES and GBLSECTIONS entries on the system.

$ MCR SYSGEN
SYSGEN> SHOW GBLPAGES
Parameter Name Current Default Min. Max. Unit Dynamic
-------------- ------- ------- ------- ------- ---- -------
GBLPAGES 350000 10000 512 -1 Pages
SYSGEN> SHOW GBLSECTIONS
Parameter Name Current Default Min. Max. Unit Dynamic
-------------- ------- ------- ------- ------- ---- -------
GBLSECTIONS 2500 250 60 4095 Sections

Adjusting Parameters 4–55

The current number of GBLSECTIONS entries is 2500 and the current number
of GBLPAGES entries is 350000.

Issuing the LIST/GLOBAL/SUMMARY command at the INSTALL prompt
determines the number of global sections and global pages used.

$ INSTALL
INSTALL> LIST/GLOBAL/SUMMARY

Summary of Local Memory Global Sections
1022 Global Sections Used, 132790/217210 Global Pages Used/Unused

This display shows that 1022 global sections are used out of the total of 2500
that SYSGEN has on the system, leaving 1478 global sections available. Out
of the total of 350000 global pages that SYSGEN has on the system, 132790
global pages are used, leaving 217210 global pages available.

You can also use the lexical function F$GETSYI to get the number of available
GBLPAGES and GBLSECTIONS entries. Define the following symbols and
invoke them at the DCL level or in interactive SQL to display the number of
available GBLPAGES and GBLSECTIONS entries.

$ GBLPAGES :== "write sys$output f$getsyi("""free_gblpages""")
$ GBLSECTIONS :== "write sys$output f$getsyi("""free_gblsects""")

With these symbols defined, you can check how many GBLPAGES and
GBLSECTIONS are available on your system:

$ GBLPAGES
217210
$ GBLSECTIONS
1478

Note that the values returned using the lexical function F$GETSYI are the
same values for available global pages and global sections that were displayed
with the INSTALL/LIST/GLOBAL/SUMMARY command.

Before altering your database to enable global buffering, perform a simple
database attach with local buffers enabled. This shows that you have allocated
a global section and a number of global page entries to the database root
structures:

$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SHOW DATABASE *

.

.

.
Number of users: 50
Number of nodes: 16

4–56 Adjusting Parameters

Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Enabled Immediate
Carry over locks are enabled
Lock timeout interval is 0 seconds
Adjustable lock granularity is enabled
Global buffers are disabled (number is 250, user limit is 5)

.

.

.
SQL> $ GBLPAGES
217122
SQL> $ GBLSECTIONS
1477

The "$ GBLPAGES" shows that the number of available global page entries
dropped from 217210 to 217122 (88 entries have been allocated). The "$
GBLSECTIONS" shows that the number of available global sections entries
dropped from 1478 to 1477 (one global section has been allocated). One global
section is allocated when a database is opened.

In the next example, global buffers are enabled for the database and 1000
global buffers with a buffer size of 6 blocks are allocated:

$ SQL
SQL> ALTER DATABASE FILENAME mf_personnel
cont> GLOBAL BUFFERS ARE ENABLED
cont> (NUMBER IS 1000, USER LIMIT 40);
SQL> --
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> SHOW DATABASE *

.

.

.
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Enabled Immediate
Carry over locks are enabled

Lock timeout interval is 0 seconds
Adjustable lock granularity is enabled
Global buffers are enabled (number is 1000, user limit is 40)

.

.

.

Adjusting Parameters 4–57

SQL> --
SQL> $ GBLPAGES
210262
SQL> $ GBLSECTIONS
1477

Before attaching to the database, the number of global page entries stood at
217210 (before global buffers were enabled for the database). After attaching
to the database, the number of GBLPAGES dropped from 217210 to 210262
available entries; 6948 global pages are allocated now for the global section.

Finally, increase the maximum number of users to 75 and enable after-image
journaling for the database:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> NUMBER OF USERS IS 75
cont> JOURNAL FILENAME SQL_DISK1:[RICK]MF_PERS_JOURNAL
cont> JOURNAL ALLOCATION IS 500 BLOCKS
cont> JOURNAL EXTENT IS 100 BLOCKS;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
SQL> --
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SHOW DATABASE *

.

.

.
Number of users: 75
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Enabled Immediate
Carry over locks are enabled

Lock timeout interval is 0 seconds
Adjustable lock granularity is enabled
Global buffers are enabled (number is 1000, user limit is 40)

.

.

.
AIJ File Allocation: 500
AIJ File Extent: 100

.

.

.
SQL> --
SQL> $ GBLPAGES
209242
SQL> $ GBLSECTIONS
1477

4–58 Adjusting Parameters

The number of GBLPAGES dropped from 217210 to 209242 available
entries; 7968 global pages are allocated now for the global section. Note
that the database in this example has the same global buffer and database
characteristics as the database in Example 4–10. The global section size values
from the Buffer Information screen estimated a global section size of 7965
global pages for the database in Example 4–10 with global buffers enabled.
This example shows that when global buffers are enabled for this database, the
actual size of the global section is 7968 global pages.

It is difficult to provide a simple formula that will specify how many
GBLPAGES entries you need. As you can see from the examples in this
section, the size of the global page pool allocated when global buffers are active
depends on many factors, such as the number of global buffers, the maximum
number of global buffers per user, the number of users, the number of storage
areas in the database, whether after-image journaling is enabled, and so forth.
These factors and others make it difficult to provide a simple formula that
you can use. Using the global section size values from the Buffer Information
screen is the best way to estimate the number of global pages that will be
required for the global section (remember to add 10 to 15 global pages to the
estimate to ensure enough pages for the global section).

The number of users is one database parameter the database administrator
(DBA) has control over. Often, the DBA leaves certain database parameters
set as default values because these values may be acceptable and have had no
real impact on system resources or performance. When a database is created
with no explicit total number of users parameter specified, the default is set to
160. Most applications do not require that high a value, especially applications
running on a single node, or applications running with a transaction processing
monitor.

For systems where memory is a critical resource, the DBA may want to
manually adjust the total number of users to a more realistic value and
conserve memory.

The following table shows how the number of global pages allocated increases
as the number of users increases:

Adjusting Parameters 4–59

Request made for 500 buffers at 6 blocks each

Number of users Global pages allocated.

20 3488
60 3580
80 3626

100 3674
200 3904
300 4136
400 4366
500 4598

After setting the appropriate global buffer and database parameters with
global buffers disabled, use the global section size values from the Performance
Monitor Buffer Information screen to estimate the number of global pages
that will be required for your database’s global section. Also, it is important
to remember that the Buffer Information screen estimates the size of a global
section based on information stored in the database root file. If you use the
RMU Open command with the Global qualifier to specify different global
buffer parameters than those stored in the database’s root file, the size of the
database’s global section is likely to decrease or increase.

Note that on each node from which a database is opened, Oracle Rdb maps a
global section for that database. Therefore, you need to check the requirements
for the GBLSECTIONS, GBLPAGES, GBLPAGFIL, VIRTUALPAGECNT, and
PGFLQUOTA parameters on each node from which a database will be opened.

The GBLPAGFIL Parameter
The SYSGEN GBLPAGFIL parameter defines the maximum number of
global pages with page file backing store that can be created on a system.
Determining a value for GBLPAGFIL depends on many factors, including the
number of databases, the number of run units, the number and size of each
global buffer, and the overhead.

The best way to determine the number of GBLPAGFIL entries that you need
for a database is to use the Performance Monitor Buffer Information screen to
find the number of global pages required for the database’s global section. The
number of GBLPAGFIL entries that you need for the database will be the same
as the number of global pages required for the database.

If you use more than one database at a time, calculate the requirement for
each database. If you change the GBLPAGFIL parameter, you must reboot
your system for the change to take effect.

4–60 Adjusting Parameters

If the value for the GBLPAGFIL parameter is too low, Oracle Rdb does not
allow you to open a database with global buffers. In this situation, you will
encounter the following errors:

%RDMS-F-CANTOPENDB, database could not be opened as requested
-RDMS-F-CANTCREGBL, error creating and mapping database global section
-SYSTEM-F-EXGBLPAGFIL, exceeded global page file limit
%RMU-W-FATALERR, fatal error on <db-name>

Because the global section created by Oracle Rdb will form a global page file
section, the number of global pages used by the section will be decremented
from the GBLPAGFIL system value. Therefore, enough GBLPAGFIL must
remain to accommodate the number of global pages required by the database
global section.

You can use the System Dump Analyzer (SDA) utility to determine how many
GBLPAGFIL entries are available. You must have the OpenVMS CMKRNL
privilege to use SDA. The CMKRNL privilege is powerful; it should not be
given to users who do not need it. The following example shows how to use
SDA to determine how many GBLPAGFIL entries are available:

$ ANALYZE/SYSTEM
SDA> !
SDA> ! Examine the original SYSGEN setting
SDA> !
SDA> EVALUATE @SGN$GL_GBLPAGFIL
Hex = 00002FA8 Decimal = 12200 UCB$M_TEMPLATE+00FA8
SDA> !
SDA> ! Examine the available GBLPAGFIL
SDA> !
SDA> EVALUATE @MMG$GL_GBLPAGFIL
Hex = 000015A1 Decimal = 5537 UCB$M_UNLOAD+005A1

In this case, any database that required more than 5537 global pages could not
be opened, and would result in the errors detailed previously.

You can use the RMU Open command to reduce the number of global buffers to
a reasonable amount:

$ RMU/OPEN/GLOBAL=(TOTAL=10,USER_LIMIT=5) <db-name>

You can then use the SQL ALTER DATABASE statement to specify a smaller
number of global buffers for the global buffer pool. The value specified is stored
in the database root file:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> GLOBAL BUFFERS ARE ENABLED
cont> (NUMBER IS 10);

Adjusting Parameters 4–61

The ALTER DATABASE statement also allows you to disable global buffers:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> GLOBAL BUFFERS ARE DISABLED;

If you need to increase the number of GBLPAGFIL entries, you may also need
to increase the size of your page file or add a page file. You can make these
changes using the OpenVMS System Generation utility (SYSGEN). You must
then follow up with the necessary changes to the system parameters using the
MODPARAMS.DAT file and the AUTOGEN command procedure.

The VIRTUALPAGECNT Parameter
The VIRTUALPAGECNT parameter sets the total number of virtual pages
that your process is allowed to map. Because your process maps to the global
section, as the global section grows, so should the number of virtual pages
that processes are allowed to map. Therefore, if you increase the GBLPAGES
parameter, you should increase the VIRTUALPAGECNT parameter by about
the same amount.

If you change the VIRTUALPAGECNT parameter, you must reboot your
system for the change to take effect.

Oracle Rdb users who have global buffers enabled on the database sometimes
encounter the -LIB-F-INSVIRMEM, insufficient virtual memory error. This
error message indicates that the VIRTUALPAGECNT or PGFLQUOTA quotas
for a process are not large enough.

When global buffers are enabled, the monitor process’ virtual memory
consumption is proportional to the number of global buffers.

In addition, the more global buffers that are defined for the database, the
higher the virtual memory requirements are for each user. Each user needs
virtual memory to map the buffer pool.

Note

Although this section discusses the virtual memory consumed by the
Oracle Rdb monitor, keep in mind that virtual memory and page file
quota limits also apply to user processes. This section discusses the
monitor because it is the less obvious place to look for a quota problem.

The monitor does not completely release all virtual memory when a database
with global buffers enabled is closed, and this appears to contribute to the
frequency of virtual memory errors.

4–62 Adjusting Parameters

Use the following steps to diagnose insufficient virtual memory problems:

1. Get the process identifier (PID) of the Oracle Rdb monitor.

If you are experiencing insufficient virtual memory errors, first get the PID
of the RDMS_MONITOR process:

$ SHOW SYSTEM
VAX/VMS V5.5-2 on node GNPIKE 28-MAY-1996 11:17:18.88 Uptime 8 04:32:17

Pid Process Name State Pri I/O CPU Page flts Ph.Mem
20800201 SWAPPER HIB 16 0 0 00:09:20.18 0 0
20800206 CONFIGURE HIB 10 204 0 00:00:03.39 123 320
20800219 RDMS_MONITOR70 LEF 15 143 0 00:00:05.40 18238 195

2. Get accounting information for the monitor.

Use the SHOW PROCESS/ACCOUNTING command to see how long the
process has been connected, the user information, and the peak virtual
size.

$ SHOW PROCESS /ACCOUNTING /ID=20800219

28-MAY-1996 11:21:14.87 User: SYSTEM Process ID: 20800219
Node: GNPIKE Process name: "RDMS_MONITOR70"

Accounting information:
Buffered I/O count: 44 Peak working set size: 1501
Direct I/O count: 99 Peak virtual size: 139072
Page faults: 18261 Mounted volumes: 0
Images activated: 0
Elapsed CPU time: 0 00:00:05.41
Connect time: 8 04:18:51.37

3. Use the information to diagnose the problem.

The problem could be one of the following:

• Virtual page size is too small

If the peak virtual size is at or near the limit for VIRTUALPAGECNT
in SYSGEN, you will probably need to increase VIRTUALPAGECNT
using AUTOGEN and reboot the system.

$ MCR SYSGEN
SYSGEN> SHO VIRTUAL
Parameter Name Current Default Min. Max. Unit Dynamic
-------------- ------- ------- ------- ------- ---- -------
VIRTUALPAGECNT 139072 9216 512 1200000 Pages

VIRTUALPAGECNT determines the maximum number of pages that
can be mapped for a process. The peak virtual size returned by the
SHOW PROCESS/ACCOUNTING command displayed how many pages
are currently mapped for the process.

Adjusting Parameters 4–63

In this example, the Current VIRTUALPAGECNT setting in SYSGEN
is 139072. The peak virtual size is 139072. The monitor is hitting the
virtual memory limit set through VIRTUALPAGECNT.

The Current column in the SYSGEN display determines the values
in use by the system. Default, Min., and Max. provide information
on the valid range of values for the parameter. SYSGEN values are
not dynamic like working sets. The value for the Current column is
fixed until it is manually changed. Dynamic SYSGEN parameters take
effect right away. Nondynamic parameters take effect the next time the
system is rebooted.

• The monitor’s page file quota is too small

The most common cause of the insufficient virtual memory problem
occurs when the PGFLQUOTA value is too small on the account from
which the monitor was started. By default, the monitor is started
from the SYSTEM account. The SYSTEM account normally has
PGFLQUOTA values that are much too small for more than a few
thousand global buffers. PGFLQUOTA determines the maximum
number of pages that the process can use in the system paging file to
manage the process’ virtual memory. When PGFLQUOTA is exhausted,
the system has no place to put any additional mapped pages, so
an error occurs. The monitor log file reports errors where database
attaches were disallowed because of quota problems with the monitor
process.

If your SYSGEN VIRTUALPAGECNT is much bigger than the
peak virtual size shown for the monitor with the SHOW PROCESS
/ACCOUNTING command, you are probably hitting this limit. The
following example shows how to increase the PGFLQUOTA parameter
for the monitor account:

$ SET DEF SYS$SYSTEM
$ MCR AUTHORIZE
UAF> MODIFY SYSTEM/PGFLQUO=400000
%UAF-I-MDFYMSG, user record(s) updated
UAF>

Another method to ensure that the monitor process has the appropriate
quotas is by using the RDM$MON_USERNAME logical name. The
logical name RDM$MON_USERNAME designates the name of the
user whose quotas the monitor process, upon startup, is to inherit. See
Section A.78 for more information on the RDM$MON_USERNAME
logical name.

4–64 Adjusting Parameters

Make sure your page files are big enough to support the new size. Then
restart the monitor (either from the system account or after defining
the RDM$MON_USERNAME logical name to be an account with the
appropriate quotas for the monitor). This causes the new page file
quota to be used.

You will also run into problems if your user process exceeds the virtual
memory quota or has an insufficient page file quota.

Sometimes, correcting the virtual memory problem allows other
resource limitation problems to be reported:

$ RMU/OPEN SQL$DATABASE/GLOBAL=(TOTAL=25000,USER=10)
%RDMS-F-CANTOPENDB, database could not be opened as requested
-RDMS-F-CANTCREGBL, error creating and mapping database global section
-SYSTEM-F-EXGBLPAGFIL, exceeded global page file limit

This error message indicates that you need to increase the GBLPAGFIL
parameter in SYSGEN. See the explanation of the GBLPAGFIL
parameter earlier in this section for more information on adjusting
the GBLPAGFIL value.

The PGFLQUOTA Parameter
The PGFLQUOTA parameter determines the maximum number of pages that
the process can use in the system paging file to manage the process’ virtual
memory. When PGFLQUOTA is exhausted, the system has no place to put any
additional mapped pages, so an insufficient virtual memory error occurs. The
most common cause of the insufficient virtual memory problem occurs when
the PGFLQUOTA value is too small on the account from which the monitor
was started. By default, the monitor is started from the SYSTEM account,
which normally has PGFLQUOTA values that are much too small for more
than a few thousand global buffers.

See the explanation of the VIRTUALPAGECNT parameter earlier in this
section for more information on the PGFLQUOTA parameter and analyzing
insufficient virtual memory errors. ♦

4.1.2.13 Analyzing Global Buffer Performance
In general, a database with local buffers enabled uses approximately 10% more
CPU resources after global buffers are enabled. If CPU is already a limited
resource, this additional CPU usage should be considered before you enable
global buffers for the database.

When global buffers are enabled, more page faults occur than with local
buffers. A higher number of GLOBAL VALID page faults indicates that the
page that caused the fault is in the global buffer pool. These are soft faults and
are usually harmless.

Adjusting Parameters 4–65

OpenVMS
VAX

OpenVMS
Alpha

If you decide, however, that the number of GLOBAL VALID page faults should
be decreased, you can increase the working set quotas for the processes using
the database, as described in Section 8.2. The OpenVMS MONITOR PAGE
command gives a breakdown of page faults by category.

More lock operations occur with global buffers than with local buffers. Some
of the additional lock operations are system-owned locks, which can be costly,
while others are local locks. The system-owned page locks maintain page
version numbers among nodes in a VMScluster. Each page in a global buffer
has a lock associated with it. These system-owned locks do not consume any
ENQLM, but for each page that a user has in his or her allocate set, there
is a lock charged against ENQLM. The system-owned locks use LOCKIDTBL
entries, so LOCKIDTBL (as well as LOCKIDTBL_MAX, SRPCOUNT, and
SPRCOUNTV) can be impacted if you have many pages in global buffers.
Local inexpensive locks synchronize access to the global buffer data structures.
The increase in locks is mostly page locks and some record locks. The
database administrator should ensure that LOCKIDTBL, LOCKIDTBL_MAX,
SRPCOUNT, and SPRCOUNTV have enough entries to accommodate the extra
locking associated with global buffers. Use the OpenVMS MONITOR LOCK
command to show the total locks on the system, then verify this total against
the LOCKIDTBL entries on the system. ♦

If you want to test the performance of global buffers and local buffers, you
should keep the equivalence case in mind. That is, a special case of the
settings is when the local and global buffers settings are equivalent. The
basis of this equivalence is memory usage, and this can be expanded into the
following two rules:

• The total number of buffers used by all the users must be equal for local
and global buffers.

• The number of buffers used by each user must be equal for local and global
buffers.

One way to set up buffering parameters is as follows:

1. Set up the NUMBER OF BUFFERS parameter (the default number of
buffers) to be B.

2. Set up the USER LIMIT parameter (the maximum number of global buffers
per user) to be B, also.

3. If you are going to have N users for the performance test, set up the
NUMBER IS parameter (the total number of global buffers) to be B times
N.

4–66 Adjusting Parameters

Do not use any buffering logical names or configuration parameters to keep it
simple. Following these guidelines permits you to enable and disable global
buffers and run performance tests.

4.1.3 Row Caching
A row cache is a section of globally accessible memory that contains copies
of rows. Row caching provides the ability to store frequently accessed rows
in memory, reducing disk I/O. The rows remain in memory even when the
associated page has been flushed back to disk. Row caching has the following
advantages:

• Reduced database page reads and writes

• Improved response time

• Much lower overhead to access a row in a row cache than for a page in a
global or local buffer

• Shorter code path when a row is found in the row cache

• Efficient use of system resources (memory) for shared data

A row cache can contain index structures as well as table data. A row cache is
shared by all processes attached to the database as the following shows:

NU−3621A−RA

Row Cache

Process 1 Process 2 Process 3

Node

Memory

When you request a row from the database, Oracle Rdb first checks to see
if the requested row is mapped to an existing row cache. If a row cache is
mapped, Oracle Rdb checks to see if the requested row is in the row cache. If
the row is in the row cache, the row is retrieved. If the row is not in the cache,
Oracle Rdb checks the page buffer pool. If the row is not in the page buffer
pool, Oracle Rdb performs a disk I/O to retrieve the row. The requested row is
then inserted into the row cache if it can fit. The code path is shorter when the
row is retrieved from a row cache as compared to a page buffer pool or disk.

Adjusting Parameters 4–67

You can improve performance, for example, by caching the following:

• Heavily accessed data that is shared by multiple users

• Nonleaf nodes of a B-tree index

Caching the nonleaf nodes effectively pins the index in memory.

• The RDB$SYSTEM storage area

Caching part or all of the RDB$SYSTEM storage area can improve the
performance of metadata queries.

The task of deciding what to cache is easier when the storage areas in your
database are already partitioned effectively. The more you know about your
data, the more effectively you can determine what table rows and indexes to
cache.

There are two types of row caches:

• Physical area

Physical area caches are defined for a storage area. A physical area cache
can contain data from one or more storage areas. You explicitly assign a
physical area cache to a storage area with the CACHE USING clause of
the CREATE STORAGE AREA or ADD STORAGE AREA clause of the
CREATE DATABASE or ALTER DATABASE statement.

A physical area cache provides a way to cache system records. In addition,
when a physical area cache is defined, all rows of different sizes in the
specified storage area are candidates for the row cache.

• Logical area

Logical area caches are defined for a specific table or index. Oracle Rdb
automatically assigns a logical area cache to a table or index based on the
name.

The name of a logical area cache must match the name of a table or index
that you want to cache.

You can save a considerable amount of space with a logical area cache by
caching rows that are similar in size in one cache.

4–68 Adjusting Parameters

4.1.3.1 Requirements for Using Row Caches
The following conditions must be true in order to use row caches:

• The number of cluster nodes is one

• After-image journaling is enabled

• Fast commit is enabled

• One or more cache slots are reserved

• Row caching is enabled

Use the RMU Dump Header command to check if you have met the
requirements for using row caches. The following command output displays a
warning for every requirement that is not met:

.

.

.
Row Caches...

- Active row cache count is 0
- Reserved row cache count is 1
- Sweep interval is 1 second
- Default cache file directory is ""
- WARNING: Maximum node count is 16 instead of 1
- WARNING: After-image journaling is disabled
- WARNING: Fast commit is disabled

.

.

.

4.1.3.2 Enabling Row Caching
You can enable row caching for a database by using the ROW CACHE IS
ENABLED clause of the SQL ALTER DATABASE and CREATE DATABASE
statements:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ROW CACHE IS ENABLED;

You can disable row caching for a database by using the ROW CACHE IS
DISABLED clause of the SQL ALTER DATABASE and CREATE DATABASE
statements:

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ROW CACHE IS DISABLED;

Row caching is also disabled if one of the conditions described in Section 4.1.3.1
becomes false.

Adjusting Parameters 4–69

When row caching is disabled, all previously created and assigned row caches
remain in existence for future use when row caching is enabled again.

There must not be any users attached to the database when you enable or
disable row caching.

You can verify that row caching is enabled by invoking the Performance
Monitor and viewing the main menu. The following example shows a main
menu where row caching is enabled:

Select Display

A. Summary IO Statistics O. IO Statistics (by file) [->
B. Summary Locking Statistics P. Locking (one lock type) [->
C. Summary Object Statistics Q. Locking (one stat field) [->
D. Summary Cache Statistics R. Lock Statistics (by file)[->
E. Summary Cache Unmark Statistics S. Database Parameter Info [->
F. Record Statistics T. Row Cache (One Cache) [->
G. Transaction Duration (Total) U. Row Cache (One Field) [->
H. Custom Statistics V. Row Cache Information [->
I. Snapshot Statistics W. Index Information [->
J. Process Information [-> X. General Information [->
K. Journaling Information [-> Y. Objects (one stat type) [->
L. Hot Standby Information [-> Z. Objects (one stat field) [->
M. IO Statistics [-> 0. Database Dashboard [->
N. Global Buffer Information[-> 1. Online Analysis & Info. [->

The row caching screens do not appear in the main menu if one or more of the
requirements described in Section 4.1.3.1 have not been met.

4.1.4 Gathering Row Cache Information
Use the RMU Dump Header command to display information about row caches,
as shown in Example 4–11.

Example 4–11 Row Cache Parameters

$ RMU/DUMP/HEADER mf_personnel
.
.
.

Row Caches... !
- Active row cache count is 23
- Reserved row cache count is 54
- Sweep interval is 1 second
- Default cache file directory is ""

.

.

.

(continued on next page)

4–70 Adjusting Parameters

Example 4–11 (Cont.) Row Cache Parameters

Storage area "EMPIDS_LOW"
.
.
.

Row Caching... "
- Row caching is enabled
- Row cache ID is 1

.

.

.

Row cache "EMPIDS_LOW"
Cache ID number is 1 #
Allocation... $

- Row slot count is 1000
- Maximum row size allowed in cache is 200 bytes
- Working set count is 10
- Maximum slot reservation count is 20
- Row replacement is enabled

Files... %
- No file directory has been specified
- File allocation is 100 blocks
- File extension is 100 blocks

Shared Memory... &
- System space memory is disabled
- Large memory is disabled
- Large memory window count is 100

Hashing... '
- Hash value for logical area DBIDs is 211
- Hash value for page numbers is 11

Checkpointing... (
- Last checkpoint is 0:2
- Checkpoint sequence is 2

.

.

.

The following callouts identify the parameters in Example 4–11:

! Summary information

Active row cache count is 23

This specifies the number of row caches currently defined in this
database.

Reserved row cache count is 54

This specifies the number of slots that are available in the database.
The cache slots are reserved with the RESERVE n CACHE SLOTS
parameter of the ALTER or CREATE DATABASE statements.

Adjusting Parameters 4–71

Sweep interval is 1 second

The sweep interval is specified with the SWEEP INTERVAL parameter
of the ROW CACHE clause. A sweep is one full pass through all active
row caches, attempting to write modified rows back to their respective
storage areas.

Default cache file directory is ""

The default cache file directory is the directory where Oracle Rdb
places the cache backing store files if you do not explicitly include a
directory specification. You can specify a directory location with the
following SQL syntax:

• The LOCATION parameter of the CREATE or ADD CACHE clause

• The LOCATION parameter with the ROW CACHE clause of the
CREATE or ALTER DATABASE statement

If you do not specify a location, Oracle Rdb places the cache backing
store files in the directory of the database root file.

The backing store files contain information about the contents of the
row cache global sections on OpenVMS and shared memory partitions
on Digital UNIX.

" Storage area information

Row caching is enabled

This is specified with the ROW CACHE parameter. Enabling a row
cache has no effect unless a row cache is defined and assigned to one or
more storage areas. Row caching is disabled by default.

Row cache ID is 1

Oracle Rdb assigns an ID to each defined row cache in the database.

Cache ID number is 1

Oracle Rdb assigns an ID to each defined row cache in the database.

$ Allocation . . .

Row slot count is 1000

This is specified with the CACHE SIZE is n ROWS parameter.

Maximum row size allowed in cache is 200 bytes

This is specified with the ROW LENGTH is n BYTES parameter.

Working set count is 10

4–72 Adjusting Parameters

This is the number of ‘‘in use’’ rows that are not eligible for row
replacement.

Maximum slot reservation count is 20

This is specified with the NUMBER OF RESERVED ROWS parameter.
The default value is 20 rows.

The number of reserved rows indicates how many slots in the cache
Oracle Rdb will reserve for each process. Reserving many rows
minimizes row cache locking while rows are inserted into the cache.

Row replacement is enabled

This is specified with the ROW REPLACEMENT parameter. Row
replacement is enabled by default.

% Files . . .

No file directory has been specified

The LOCATION parameter specifies a directory specification for the
cache backing store file. Oracle Rdb writes to the cache backing store
file when the row cache server (RCS) process checkpoints. Oracle Rdb
automatically generates a file name with a file extension of .rdc. The
default location for the cache backing store file is the directory where
the database root file is located.

The LOCATION parameter can be specified at the database level
or at the row cache level. If you include the LOCATION parameter
in the ROW CACHE clause, the directory you specify becomes the
default directory location for all the row caches that are defined for the
database. You can, however, override the default directory location for
individual row caches by specifying the LOCATION parameter in the
row cache definition.

File allocation is 100 blocks

The ALLOCATION parameter specifies the initial size of the .rdc file.
The default allocation is 40 percent of the cache size. The cache size is
determined by multiplying the number of rows in the cache by the row
length.

File extension is 100 blocks

The EXTENT parameter specifies the number of pages by which the
cache backing store file (.rdc) can be extended after the initial allocation
has been reached. The default extent is 127 multiplied by the number
of rows in the cache.

& Shared Memory . . .

Adjusting Parameters 4–73

OpenVMS
Alpha

System space memory is disabled

This is specified with the SHARED MEMORY parameter. This specifies
whether Oracle Rdb creates the row cache in shared memory. The row
cache is created in a process global section by default. ♦

OpenVMS
Alpha

Large memory is disabled

This is specified with the LARGE MEMORY parameter. This specifies
whether Oracle Rdb creates the row cache in physical memory. Large
memory is disabled by default. ♦

Large memory window count is 100

This is specified with the WINDOW COUNT parameter. The default
value is 100 windows. The WINDOW COUNT specifies how many
locations of the physical memory are mapped to each user’s private
window in virtual address space.

' Hashing . . .

Hash value for logical area DBIDs is 211

Hash value for page numbers is 11

The hash values are used by Oracle Rdb to fine-tune the distribution of
hash table queues in the row cache.

(Checkpointing . . .

Last checkpoint is 0:2

This specifies the AIJ sequence number and the AIJ virtual block
number (VBN) of the last checkpoint.

Checkpoint sequence is 2

4.1.4.1 How to Create and Use a Row Cache
To use the row caching feature, you must perform the following steps (or accept
the Oracle Rdb default values):

1. Reserve slots in the database root file for pointers to row caches.

When you reserve slots for row caches, you make it possible to add row
caches while the database is on line. Note that reserving slots does not
enable row caching. See Section 4.1.4.1.1 for more information about
reserving row cache slots.

2. Create the row cache.

4–74 Adjusting Parameters

Use the CREATE CACHE clause of the SQL CREATE DATABASE
STATEMENT or the ADD CACHE clause of the SQL ALTER DATABASE
or IMPORT statements to create a row cache. You have the option of
specifying the number and size of the rows to be stored in the cache. See
Section 4.1.4.1.2 for more information about creating a row cache.

3. Choose memory.

Specify in what area of memory to store the cache. See Section 4.1.4.1.3 for
more information.

4. Assign a row cache to a storage area.

Use the CACHE USING clause of the CREATE STORAGE AREA or
ADD STORAGE AREA clauses of the CREATE DATABASE or ALTER
DATABASE statements to assign a row cache to a storage area. You only
need to assign physical area caches. Oracle Rdb automatically assigns
logical area caches. See Section 4.1.4.1.4 and Section 4.1.4.1.5 for more
information.

4.1.4.1.1 Reserving Slots for Row Caches When you create a database, you
should consider how many row caches your database may need in the future
and reserve slots for at least that number of row caches. When you reserve
slots, you reserve slots in the database root file for pointers to row caches. If
you reserve a sufficient number of slots for row caches, you can add row caches
while the database is on line without interrupting database activity.

Use the RESERVE n CACHE SLOTS clause of the ALTER DATABASE
statement to reserve slots for row caches, as shown in the following example:

SQL> ALTER DATABASE
cont> FILENAME ’mf_personnel’
cont> RESERVE 20 CACHE SLOTS;

If you do not specify a RESERVE n CACHE SLOTS clause, Oracle Rdb reserves
one slot.

4.1.4.1.2 Specifying the Size of a Row Cache When you create a row
cache or modify a row cache definition, you have the option of specifying the
following:

• Slot size

The slot size is the size of the largest row that can be stored in the row
cache. Oracle Rdb will not cache a row if it is too large to fit in the cache.
Use the ROW LENGTH IS parameter of the ADD, ALTER, or CREATE
CACHE clause to specify the size of the largest row in the cache.

• Slot count

Adjusting Parameters 4–75

The slot count is the number of rows that can be stored in the cache. Use
the CACHE SIZE IS parameter of the ADD, ALTER, or CREATE CACHE
clause to specify the number of rows that can be stored in the cache.

The following example shows a row cache definition:

SQL> ADD CACHE RCACHE_1
cont> ROW LENGTH IS 200 BYTES
cont> CACHE SIZE IS 3000 ROWS;
SQL> --
SQL> -- In this example, the slot size is 200
SQL> -- and the slot count is 3000.
SQL> --

If you do not specify the ROW LENGTH clause, Oracle Rdb creates a cache
with rows that can hold up to 256 bytes and if you do not specify the CACHE
SIZE clause, Oracle Rdb creates a cache that can contain up to 1000 rows.

Oracle Rdb automatically rounds up the row length to the next 4-byte
boundary, if the value specified is not divisible by four. This is done because
longword aligned data structures are optimal for performance.

It is extremely important to select a proper size for the row cache. As stated
previously, if a row is too large, Oracle Rdb will not cache the row. System
performance is adversely affected because Oracle Rdb always checks the cache
for the row before retrieving the row from disk. Use the RMU Dump Areas
command to determine the sizes of the data rows, hash buckets, and B-tree
nodes. Keep in mind that row sizes within a table can vary greatly. If, for
example, the largest row stored in a table is 100 bytes, but the majority of the
rows range between 40 and 50 bytes, you may not necessarily want to choose
100 bytes for the slot size. However, you should account for most of the rows,
including overhead. If you automatically select the largest row size without
comparing it to the sizes of the other rows in the table, you could waste a lot of
memory.

The following example dumps a few pages from the MY_AREA storage area:

$ RMU/DUMP/AREA=MY_AREA/START=5/END=10 test_db/OUT=rmu_dump_area.out

Search the rmu_dump_area.out file for the occurrence of "total hash bucket"
and "static data" as follows:

4–76 Adjusting Parameters

$ SEARCH rmu_dump_area.out "total hash bucket"

.... total hash bucket size: 97

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.

.

.
$ SEARCH rmu_dump_area.out "static data"

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data
.
.
.

The hash bucket size is 118 bytes and the data row size is 311 bytes. Other
rows in this table may require more or less space. It is important to scan a
representative sample of pages randomly to determine the appropriate row
size. Oracle Rdb rounds row sizes up to the next longword.

The Performance Monitor row caching screens provide statistics on inserting
rows into a cache. One of the statistics, ‘‘row too big’’, indicates that a row is
too large to fit into the specified cache. See Section 4.1.4.6 for more information
on the Performance Monitor screens related to row caching.

The slot count multiplied by the slot size specifies the approximate size, in
bytes, of the row cache. You should also take into account additional overhead.

Adjusting Parameters 4–77

4.1.4.1.3 Allocating Memory When you create a row cache or modify a row
cache definition, you have the option of specifying where, in memory, you want
Oracle Rdb to create the cache. Row caches can reside in the following memory
locations:

• Process global section on OpenVMS or shared memory partition on
Digital UNIX

When you use global sections created in the process space, you and other
users share physical memory and the OpenVMS operating system maps a
cache to a private address space for each user.

Use the SHARED MEMORY IS PROCESS parameter to specify that the
cache be created in a process global section or shared memory partition as
shown in the following example:

SQL>
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ADD CACHE EMPIDS_LOW_RCACHE
cont> SHARED MEMORY IS PROCESS;

This is the default.

OpenVMS
Alpha

• System space buffer

The system space global section is located in the OpenVMS Alpha system
space, which means that a system space global section is fully resident, or
pinned, in memory and does not affect the quotas of the working set of a
process.

System space is critical to the overall system. System space buffers are
not paged; therefore, they use physical memory, reducing the amount of
physical memory available for other system tasks. This may be an issue
if your system is constrained by memory. You should be careful when you
allocate system space. Nonpaged dynamic pool (NPAGEDYN) and the
VAXcluster cache (VCC) are some examples of system parameters that use
system space.

Use the SHARED MEMORY IS SYSTEM parameter to specify that the
cache be created in a system space buffer, as shown in the following
example:

SQL>
SQL> ALTER DATABASE FILENAME ’mf_personnel’
cont> ADD CACHE EMPIDS_MID_RCACHE
cont> SHARED MEMORY IS SYSTEM;

4–78 Adjusting Parameters

Consider allocating small caches that contain heavily accessed data in
system space buffers. When a row cache is stored in a system space buffer,
there is no process overhead and data access is very fast because the data
does not need to be mapped to user windows. The Hot Row Information
screen in the Performance Monitor displays a list of the most frequently
accessed rows for a specific row cache. ♦

OpenVMS
Alpha

• Very large memory

Very large memory (VLM) allows Oracle Rdb to use as much physical
memory as is available on your system and to dynamically map it to the
virtual address space of database users. VLM provides access to a large
amount of physical memory through small virtual address windows. Even
though VLM is defined in physical memory, the virtual address windows
are defined and maintained in each user’s private virtual address space.

Use the LARGE MEMORY parameter to specify that the cache be created
in large memory.

SQL>
SQL> ALTER DATABASE FILENAME ’mf_personnel’
cont> ADD CACHE EMPIDS_OVER_RCACHE
cont> LARGE MEMORY IS ENABLED;
SQL>
♦

VLM is useful for large tables with high access rates. The only limiting
factor with VLM is the amount of available physical memory on your
system.

You view the physical memory through windows. You can specify the number
of window panes with the WINDOW COUNT parameter. By default, Oracle
Rdb allocates 100 window panes to a process.

Table 4–5 summarizes the location in memory of each row cache object and
whether process private virtual address windows are needed to access the
data.

Adjusting Parameters 4–79

Table 4–5 Memory Locations of Row Cache Objects

SHARED LARGE Control Structures Data Rows Windows

PROCESS1 DISABLED3 Process global section
or shared memory
partition

Process global section
or shared memory
partition

No

PROCESS1 ENABLED4 Process global section
or shared memory
partition

Physical memory Yes

SYSTEM2 DISABLED3 System space System space No

SYSTEM2 ENABLED4 System space Physical memory Yes

1SHARED MEMORY IS PROCESS

• The row cache control structures are located in a process global section or shared memory
partition.

• The storage of the data rows depends on whether large memory is enabled or disabled.
If large memory is enabled, data is stored in physical memory and windows from each user’s
process virtual address space are needed to access the data.
If large memory is disabled, data is stored in a process global section or shared memory
partition and no windows are needed to access the data.

2SHARED MEMORY IS SYSTEM

• The row cache control structures are stored in system space.
• The storage of the data rows depends on whether large memory is enabled or disabled.

If large memory is enabled, data is stored in physical memory and windows from each user’s
process virtual address space are needed to access the data.
If large memory is disabled, data is stored in system space and no windows are needed to
access the data.

3LARGE MEMORY IS DISABLED

• The storage of the data rows and the row cache control structures depends on whether shared
memory is process or system.

If shared memory is process, the data and row cache control structures are stored in a process
global section or shared memory partition and no windows are needed to access the data.
If shared memory is system, the data and row cache control structures are stored in system
space and no windows are needed to access the data.

4LARGE MEMORY IS ENABLED

• The data rows are stored in physical memory and process private virtual address windows are
needed to access the data.

• The storage of the row cache control structures depends on whether shared memory is process
or system.

If shared memory is process, the control structures are stored in a process global section or
shared memory partition.
If shared memory is system, the control structures are stored in system space.

4–80 Adjusting Parameters

It is important that you consider the amount of memory available on your
system before you start creating and using row caches. However, there
are currently no tools available to determine the amount of system space
available on the system. Because VLM row caches can consume a certain
amount of system space for their virtual address windows, Oracle Corporation
recommends that you define and activate the VLM caches first, so that any
VLM system space requirements are satisfied before you activate system
space buffer row caches. After the VLM row caches are defined, you can
define system space buffer row caches for small tables that contain frequently
accessed data.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS systems, you can use the DCL command SHOW MEMORY
/PHYSICAL to check the availability and usage of physical memory. This
command displays information on how much memory is used and how much
is free. The free memory is available for VLM row caches in addition to user
applications.

The following example shows a system that has 1.5 gigabytes of memory or a
total of 196608 OpenVMS Alpha memory pages (an OpenVMS Alpha page is
8192 bytes):

$ SHOW MEMORY/PHYSICAL

System Memory Resources on 29-MAY-1996 21:39:35.40

Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 183605 12657 346

Of the 1.5 gigabytes, 183605 pages remain on the free list. Most of this free
memory is available for row cache allocation.

Assume a logical area cache has been defined for the MY_TABLE table. The
following SQL statement maps the logical area cache:

SQL> ATTACH ’FILE test_db’;
SQL> SELECT * FROM MY_TABLE WHERE MY_HASH_INDEX = 100;

By issuing this SQL statement, the logical area cache has allocated the
necessary memory accounting for 40462 OpenVMS Alpha pages, as shown
in the following SHOW MEMORY/PHYSICAL command output:

$ SHOW MEMORY/PHYSICAL

System Memory Resources on 29-MAY-1996 21:46:07.01

Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 143143 52766 699

Notice the drop in the amount of free memory.

Adjusting Parameters 4–81

The following SHOW MEMORY/PHYSICAL command was issued after users
attached to the database, allocated their working sets, and began to work:

System Memory Resources on 29-MAY-1996 23:48:06.67
Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 81046 112498 3064

In this example, only 81046 OpenVMS Alpha pages are left on the free list. ♦

4.1.4.1.4 Assigning Row Caches to Storage Areas A row cache is associated
with a particular storage area. One row cache can contain rows from one or
more storage areas, but one storage area can point to only one row cache. The
following example shows how to assign a row cache to a storage area:

SQL> ALTER STORAGE AREA
cont> EMPIDS_LOW CACHE USING EMPIDS_LOW_RCACHE;

You can also define a default row cache for all of the storage areas in the
database by using the CACHE USING clause of the ALTER DATABASE or
CREATE DATABASE statement.

4.1.4.1.5 Assigning Row Caches to Tables A logical area row cache is
associated with all partitions of a specific table or index. In the following
example, the PARTS table is partitioned across five storage areas:

SQL> CREATE STORAGE MAP INVENT_MAP FOR PARTS
cont> ! --
cont> ! -- Inventory table partitioned by stock number
cont> ! --
cont> STORE USING (STOCK_ID)
cont> IN STOCKID_A_E WITH LIMIT OF (’10000’)
cont> IN STOCKID_F_K WITH LIMIT OF (’20000’)
cont> IN STOCKID_L_P WITH LIMIT OF (’30000’)
cont> IN STOCKID_Q_U WITH LIMIT OF (’40000’)
cont> OTHERWISE IN STOCKID_V_Z
cont> PLACEMENT VIA INDEX STOCK_HASH;
SQL>

.

.

.

Suppose you want to store all of the PARTS table in a single row cache. Define
a row cache with the same name as the table:

SQL> ALTER DATABASE FILENAME ’INVENTORY’
cont> ADD CACHE PARTS
cont> ROW LENGTH IS 100 BYTES
cont> CACHE SIZE IS 5000 ROWS;

All rows from all partitions of the PARTS table are automatically cached
because the cache name is exactly the same as the table name.

4–82 Adjusting Parameters

4.1.4.2 Controlling What Gets Cached in Memory
The ROW REPLACEMENT parameter gives you some control over what
happens when a row cache becomes full. If row replacement is enabled for a
particular row cache, then new rows will replace the oldest, unused, unmarked
rows once the cache is full. If row replacement is disabled, then new rows are
not placed in the cache once the cache is full; they will always be retrieved
from disk.

The ROW REPLACEMENT parameter allows you to pin rows in memory. You
can increase performance by pinning the following:

• Nonleaf nodes of a B-tree index

Be sure to account for the nodes splitting when you specify the size for the
row cache. If a parent node splits and there is no room in the cache for the
new node, the new node will not be pinned in memory.

• Data that is primarily read-only

Data that is not subject to change very often, such as fact tables in a
data warehouse environment, is a good candidate for keeping resident in
memory.

• Data that is update-intensive, when the entire table can fit in the cache

Oracle Rdb optimizes access when the cache is defined to be no
replacement.

When you use the ROW REPLACEMENT IS DISABLED clause, the data
becomes memory resident and all subsequent reads occur from memory rather
than disk. This also improves performance because Oracle Rdb requires less
locking.

Enabling row replacement is beneficial when access patterns of a table are
random. This ensures that the most frequently accessed rows remain in
memory. Often, there may not be enough physical memory to cache an entire
table, so caching the most frequently used rows can improve performance.

4.1.4.2.1 Row Replacement Strategy Global and local buffers use the least-
recently used (LRU) replacement strategy for database pages. Row caching
uses a modified form of the LRU replacement strategy. Each database user
can protect the last 10 rows he or she accessed. This group of rows is referred
to as a working set. Rows that belong to a working set are considered to be
referenced and are not eligible for row replacement. Any row that is in a
cache and is not part of a working set is considered an unreferenced row.
The unreferenced rows are eligible for replacement.

Adjusting Parameters 4–83

4.1.4.3 Inserting Rows into a Cache
Each user process requests rows from the database. A user process, which
reads a row from a storage area, tries to insert the row into the cache (if it
is not already there). If a slot is available, the requested row is stored in the
cache, if it fits. If no more slots are available in the cache, one of the following
happens:

• If ROW REPLACEMENT IS ENABLED, and an unreferenced row can
be found, the unreferenced row is replaced by the new row. Oracle Rdb
chooses the unreferenced row randomly.

• If ROW REPLACEMENT IS DISABLED, the row is not stored in the cache.

If system usage is lighter at night, you may want to preload row caches at
night so that the data is available in memory during the day when database
activity is at its peak.

The remainder of this section illustrates how Oracle Rdb inserts rows into a
cache.

The example makes the following assumptions:

• Row caching is enabled.

• Row replacement is enabled.

• A row cache (RCACHE_1) has been created with 25 slots.

• Two processes (Jones and Smith) are attached to the database.

• The rows in the row cache are not modified.

The initial allocation is as follows:

4–84 Adjusting Parameters

Row

Slot

Counter

Slot

Working Set of Process Smith

Working Set of Process Jones

Row Cache RCACHE_1

Slot

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 252414

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

NU−3614A−RA

Row

Row

1. Process Jones executes a query that causes 5 rows to be read into the first
5 slots of the row cache.

Row

Slot

Counter

Slot

Working Set of Process Jones

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 252414

1 2 3 4 5 6 7 8 9 10

A B C D E

1 1 1 1 1

A B C D E

NU−3615A−RA

RowRow

Each row slot has a working set counter associated with it. The working
set counter indicates whether the row belongs to a working set. A positive
value indicates that the row belongs to a working set. If a row belongs to a
working set, it is not eligible for row replacement.

2. Process Smith requests 15 rows from the database. The first 10 rows
requested go into Smith’s working set as follows:

Adjusting Parameters 4–85

Working Set of Process Smith

Row

Slot 1 2 3 4 5 6 7 8 9 10

N OF G H I J K L M

NU−3616A−RA

Process Smith’s working set has exactly 10 slots, and all 10 are being
used. The least recently used row is replaced by the eleventh row that
Process Smith reads into the cache. Rows 12 through 15 also overwrite the
contents of slots 2 through 5 respectively.

After the 15 rows are read into the cache, the cache appears as follows:

Row

Slot

Counter

NU−3617A−RA

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 252414

A B C D E

1 1 1 1 1

N O P Q R S TF G H I J K L M

1 11 11 11 11 10 0 0 0 0

After the 15 rows are read into the cache, Process Smith’s working set
appears as follows:

Working Set of Process Smith

Row

Slot 1 2 3 4 5 6 7 8 9 10

N OK L M

NU−3618A−RA

P Q R S T

At this point, rows F, G, H, I, and J are unreferenced. They are in the
cache but they do not belong to the working set of any process. Oracle
Rdb sets the working set counter for an unreferenced row to zero. The
unreferenced rows are eligible for replacement if they have not been
modified and row replacement is enabled. Any process can read rows F,
G, H, I, or J without executing an I/O. However, if a process requires a
row that is not currently in the cache, one of the rows F, G, H, I, or J is
replaced with the new row.

Each slot in the row cache contains a modification flag. If the row has been
modified, but not flushed to disk yet, it is considered to be dirty. Dirty
rows are not candidates for row replacement either. Modified rows are
written to disk by the row cache server (RCS) process. See Section 4.1.4.4
for more information.

4–86 Adjusting Parameters

3. Process Jones requests 7 more rows: M, U, V, W, X, Y, and Z. Jones can
read row M without performing any I/O because M is already in the cache.
An additional slot does not get filled in the row cache, but row M is added
to Process Jones’ working set.

Process Jones’ working set now appears as follows:

Row

Slot

Working Set of Process Jones

NU−3619A−RA

1 2 3 4 5 6 7 8 9 10

Y B C D E M U V W X

Rows U, V, W, X, and Y go into the remaining slots in the row cache and
the row cache appears as follows:

Row

Slot

Counter

NU−3620A−RA

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 252414

A B C D E

1 1 1 1

N O P Q R S TF G H I J K L M

1 11 12 11 11 10 0 0 0 00

U V W X Y

1 1 1 1 1

Note that the working set counter for slot 13 indicates that row M is in two
working sets. This indicates that two processes are accessing the same row.
The number of processes sharing a particular slot is known as the share
count.

At this point, the cache is full. If row replacement were disabled for the
row cache, then row Z could not be inserted. However, in this example,
row replacement is enabled, and there is an unreferenced slot. Therefore,
Oracle Rdb will choose a victim from the unreferenced slots to make room
for the new row, Z. (In this example, the unreferenced slots are A, F, G, H,
I, and J.)

4.1.4.4 Row Cache Server (RCS) Process
When you enable row caching, Oracle Rdb delays writing committed updates to
storage area files until a user-specified threshold, called a sweep threshold, is
reached. All modified rows since the last sweep are written to their respective
storage areas. Sweeping of the rows in the row cache is done by the row
cache server (RCS) process.

The RCS process performs the following functions:

• Writes marked cold records from row caches to cache backing store (.rdc)
files

Adjusting Parameters 4–87

The RCS process writes to the cache backing store files when a checkpoint
interval is reached.

• Writes marked cold records from row caches to storage area (.rda) files

The RCS process writes to the storage area files when it sweeps the row
caches.

Oracle Rdb associates a modification flag for every row in a cache to indicate
which rows have been modified. The modification flag can accept the following
values:

Modification Flag Meaning

Marked Cold (MC) The row has been modified and is available to be written to
the .rda file during the next sweep.

Marked Hot (MH) The row has been modified. The row’s modification flag will
change to marked cold during the next sweep.

Unmarked Cold (UC) The row has not been modified.

The RCS is a detached server process. Oracle Rdb creates the RCS process
when row caching is enabled for the database.

4.1.4.4.1 Row Cache Checkpointing Oracle Rdb creates a cache backing
store file with an .rdc file extension for each row cache. The RCS process
writes to these files when the checkpoint interval is reached.

You can specify a checkpoint interval by using the following SQL syntax:

• CHECKPOINT INTERVAL IS n BLOCKS

Specifies a checkpoint interval that indicates the number of blocks the .aij
file is allowed to accumulate before the modified rows are written to the
cache backing store files.

• CHECKPOINT TIMED EVERY s SECONDS

Specifies a checkpoint interval that indicates the number of seconds that
can pass before the modified rows are written to the cache backing store
files.

You can use the RDM$BIND_RCS_CHECKPOINT logical name or the RDB_
BIND_RCS_CHECKPOINT configuration parameter to indicate whether the
RCS process performs a checkpoint. The value 1 indicates a checkpoint is
performed, and the value 0 indicates a checkpoint is not performed.

4–88 Adjusting Parameters

By default, the .rdc files are 40 percent of the row cache size. If you have
a read-only cache, you should specify 1 block for the size of the .rdc file as
follows:

SQL> ALTER DATABASE FILE mf_personnel
cont> ADD CACHE RCACHE_2
cont> LOCATION IS WORK$DISK1:[RCS]
cont> ALLOCATION IS 1 BLOCK;

If you do not specify a location for the .rdc files, the default location is the
database root file directory.

4.1.4.4.2 Row Cache Sweeping One purpose of the RCS process is to sweep
the row caches. A sweep is one full pass through all active row caches,
attempting to write modified rows back to their respective storage areas.
Ideally, the RCS should write rows to storage areas before a cache becomes
full. A database administrator (DBA) can specify the following:

• How full the cache should get before modified rows are written to the
storage area files

This is accomplished by setting a sweep threshold.

• How often the cache should be swept

This is accomplished by setting a sweep interval.

When the RCS process is sweeping and finds a row that has been modified, the
following occurs:

• If the modified row is marked cold, the modified row is written to the
storage area file and the modification flag is changed to unmarked cold.

When the modification flag is unmarked cold, the slot becomes a candidate
for row replacement.

• If the modified row is marked hot, the modification flag is changed to
marked cold. It will be written to the storage area file during the next
sweep.

• Flush counter is incremented by one

Oracle Rdb keeps track of the number of times a row in a cache has been
written to the storage area file.

The RCS process sweeps the row caches sequentially in the order in which they
were created.

Every row cache has two thresholds associated with it: a ‘‘start of sweep’’
threshold and an ‘‘end of sweep’’ threshold. When the number of modified
rows exceeds the ‘‘start of sweep’’ threshold, then a sweep is started until the
number of modified rows goes below the ‘‘end of sweep’’ threshold.

Adjusting Parameters 4–89

You can specify the sweep thresholds with the following logical names and
configuration parameters:

• RDM$BIND_RCS_MAX_COLD and RDB_BIND_RCS_MAX_COLD

This defines the ‘‘start of sweep’’ threshold.

• RDM$BIND_RCS_MIN_COLD and RDB_BIND_RCS_MIN_COLD

This defines the ‘‘end of sweep’’ threshold.

OpenVMS
VAX

OpenVMS
Alpha

The following example shows how to set the sweep thresholds to 20 and 50
percent respectively:

$ DEFINE/SYSTEM RDM$BIND_RCS_MIN_COLD 20
$ DEFINE/SYSTEM RDM$BIND_RCS_MAX_COLD 50
$!
$! When the number of modified rows in a row cache exceeds
$! 50%, Oracle Rdb writes the modified rows to the
$! storage area.
$!
$! This sweeping of modified rows occurs until the number of
$! modified rows goes below 20%.
$!

You must define these as system level logical names. ♦

You can specify a sweep interval for a row cache. The sweep interval
indicates the amount of time, in minutes, between each RCS sweep. Use
the RDM$BIND_RCS_SWEEP_INTERVAL logical name or the RDB_BIND_
RCS_SWEEP_INTERVAL configuration parameter to define the sweep interval.

OpenVMS
VAX

OpenVMS
Alpha

The following example shows how to set the sweep interval to two minutes:

$ DEFINE/SYSTEM RDM$BIND_RCS_SWEEP_INTERVAL 2
$!
$! The RCS process takes 2 minutes to write the modified
$! rows to the storage areas. The sweep interval allows
$! the DBA to balance the activity of the RCS process with
$! other users accessing the database.
$!

You must define RDM$BIND_RCS_SWEEP_INTERVAL as a system level
logical name. ♦

You can indicate that the RCS process initiate a sweep even when a threshold
has not been reached. Invoke the tools facility within the Performance Monitor
by entering the exclamation point (!), and select the Wake up RCS process
option.

4–90 Adjusting Parameters

If the sweep thresholds or sweep intervals are not set properly, it is possible for
a row cache to become full of modified rows, and Oracle Rdb will not be able to
insert a new row into the cache until the RCS process writes the modified rows
to the storage area files and clears the modification flag. You can determine if
caches are filling up with modified rows by looking at the ‘‘cache full’’ statistic
on the Row Cache (One Cache) screen in the Performance Monitor.

Row caches that are frequently filled with modified rows are an indication
that you should adjust the sweep thresholds and the sweep interval. You can
experiment with different sweep thresholds and sweep intervals by using the
RCS Dashboard in the Performance Monitor. When you determine acceptable
settings, make the settings persistent by defining the appropriate logical names
or configuration parameters.

The remainder of this section shows what happens when the RCS process
performs a sweep.

1. Process 1 executes a query that causes 6 rows to be stored in the cache:

Row

Slot

NU−3632A−RA

1 2 3 4 5 6 7 8 9 10

UC UC UC UC UC UC

A

Modification Flag

B C D E F

At this point, all the records in the cache are considered to be ‘‘unmarked
cold’’ because none of them have been modified yet.

2. Process 2 updates the rows in slots 1 and 3.

Row

Slot

NU−3633A−RA

1 2 3 4 5 6 7 8 9 10

UC UC UC UC

A

Modification Flag

B C D E F

MH MH

Slots 1 and 3 are now ‘‘marked hot’’.

3. The RCS process initiates a sweep doing the following:

For any ‘‘marked cold’’ slots, RCS writes the rows to the storage area
and changes the modification flag from ‘‘marked cold’’ to ‘‘unmarked
cold.’’

Adjusting Parameters 4–91

For any ‘‘marked hot’’ slots, RCS changes them to ‘‘marked cold.’’

Row

Slot

NU−3634A−RA

1 2 3 4 5 6 7 8 9 10

UC UC UC UC

A

Modification Flag

B C D E F

MC MC

The first time the RCS process sweeps the row cache, it does not write any
modified rows to the storage area. If a row has been modified, the RCS
changes the modification flag from ‘‘unmarked cold’’ to ‘‘marked hot.’’

4. Process 2 executes a query that causes rows in slots 5 and 6 to be updated.

Row

Slot

NU−3635A−RA

1 2 3 4 5 6 7 8 9 10

UC UC MH MH

A

Modification Flag

B C D E F

MC MC

5. The RCS process comes along and sweeps, doing the following:

• For any ‘‘marked cold’’ slots, RCS writes the rows to the storage area
and changes the modification flag from ‘‘marked cold’’ to ‘‘unmarked
cold.’’

• For any slots that are ‘‘marked hot,’’ the RCS process changes them to
‘‘marked cold.’’

After the sweep, the cache looks as follows:

Row

Slot

NU−3636A−RA

1 2 3 4 5 6 7 8 9 10

UC UC

A

Modification Flag

B C D E F

MCMCUC UC

During this sweep, the rows in slots 1 and 3 are written to the storage area
file, and the modification flags for slots 1 and 3 are changed from ‘‘marked
cold’’ to ‘‘unmarked cold.’’ Note that the RCS process will write the rows in
slots 5 and 6 to the storage area during the next sweep.

4–92 Adjusting Parameters

4.1.4.5 Using Physical and Logical Area Caches
You can have both physical and logical area caches. For example, assume the
following sizes for the records in a hashed index:

• system record—16 bytes (STOCK_SYS cache)

• hash bucket record —100 bytes (STOCK_HASH cache)

• data record —320 bytes (STOCK cache)

If you created one cache for all three record types, with a row size of 320 bytes,
you would waste a lot of memory when storing the system record and the hash
bucket record. It would be more efficient to have three caches, one for each
record type.

Example 4–12 shows the three row cache definitions.

Example 4–12 Row Cache Definition

SQL> --
SQL> -- The following cache definition is for the system records:
SQL> --
cont> ADD CACHE STOCK_SYS
cont> CACHE SIZE IS 5000 rows
cont> ROW LENGTH IS 16 bytes
cont> NUMBER OF RESERVED ROWS IS 1200
cont> SHARED MEMORY IS SYSTEM
cont> LARGE MEMORY IS ENABLED
cont> ROW REPLACEMENT IS ENABLED
cont> LOCATION IS ’1DKA400:[RCS]’
cont> ALLOCATION IS 1 BLOCK
cont> EXTENT IS 1 BLOCK
cont> NUMBER OF SWEEP ROWS IS 1000;

(continued on next page)

Adjusting Parameters 4–93

Example 4–12 (Cont.) Row Cache Definition

SQL> --
SQL> -- The following cache definition is for the hash bucket:
SQL> --
cont> ADD CACHE STOCK_HASH
cont> CACHE SIZE IS 5000 rows
cont> ROW LENGTH IS 100 BYTES
cont> NUMBER OF RESERVED ROWS IS 1200
cont> SHARED MEMORY IS SYSTEM
cont> LARGE MEMORY IS ENABLED
cont> ROW REPLACEMENT IS ENABLED
cont> LOCATION IS ’1DKA400:[RCS]’
cont> ALLOCATION IS 1 BLOCK
cont> EXTENT IS 1 BLOCK
cont> NUMBER OF SWEEP ROWS IS 1000;
SQL>
SQL> --
SQL> -- The following cache definition is for the data records:
SQL> --
cont> ADD CACHE STOCK
cont> CACHE SIZE IS 5000 rows
cont> ROW LENGTH IS 320 BYTES
cont> NUMBER OF RESERVED ROWS IS 2400
cont> SHARED MEMORY IS SYSTEM
cont> LARGE MEMORY IS ENABLED
cont> ROW REPLACEMENT IS ENABLED
cont> LOCATION IS ’1DKA400:[RCS]’
cont> ALLOCATION IS 1750000 BLOCKS
cont> EXTENT IS 1500000 BLOCK
cont> NUMBER OF SWEEP ROWS IS 1000;
SQL>

If one cache was used for all three record types, the row size would have to be
large enough to accommodate the largest row. In Example 4–12, the data row
is 320 bytes. If you add 10 bytes for overhead, the amount of memory utilized
with one row cache would be as follows:

Total
number = (# of rows in cache * row length of largest row)
of bytes

= (15000 * 330)

= 4950000 bytes

4–94 Adjusting Parameters

The amount of memory utilized with 3 row caches is computed as follows:

Total
number = (# of rows in cache * row length of system record) +
of bytes (# of rows in cache * row length of hash bucket) +

(# of rows in cache * row length of data record)

= (5000 * 16) +
(5000 * 100) +
(5000 * 330)

= 1735000 bytes

There is a considerable savings in memory.

4.1.4.6 Performance Monitor Screens and Row Caching
The Performance Monitor provides the following screens you can use to display
statistics about row caching performance and effectiveness.

• Summary Cache Statistics

• Summary Cache Unmark Statistics

• Row Cache (One Cache)

• Row Cache (One Field)

• Row Cache Utilization

• Hot Row Information

• Row Cache Status

• Row Cache Queue Length

• Row Length Distribution

• RCS Statistics

• Row Cache Dashboard

• RCS Dashboard

• Per-Process Row Cache Dashboard

For detailed information on each of these screens, see the Performance Monitor
help. The remainder of this section shows some examples of the row caching
screens.

Adjusting Parameters 4–95

4.1.4.6.1 Row Cache (One Cache) The following example shows that the
row length was not sized properly, and as a result, none of the rows fit into the
cache:

Node: BONZAI Oracle Rdb V7.0-00 Performance Monitor 11-APR-1996 16:24:57
Rate: 3.00 Seconds Row Cache (EMPIDS_LOW) Elapsed: 00:02:54.98
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
latch requests 0 0 0.0 0 0.0

retried 0 0 0.0 0 0.0
cache searches 536 530 507.5 27066 27066.0

found in workset 0 0 0.0 0 0.0
found in cache 0 0 0.0 0 0.0
found too big 0 0 0.0 0 0.0

insert cache 536 530 507.5 27066 27066.0
row too big 536 530 507.5 27066 27066.0
cache full 0 0 0.0 0 0.0
collision 0 0 0.0 0 0.0

VLM requests 0 0 0.0 0 0.0
window turns 0 0 0.0 0 0.0

skipped dirty slot 0 0 0.0 0 0.0
skipped inuse slot 0 0 0.0 0 0.0
hash misses 0 0 0.0 0 0.0
cache unmark 0 0 0.0 0 0.0
--
Exit Graph Help Menu Options Reset Set_rate Time_plot Unreset Write X_plot !

The following example shows that every requested row was found in the cache:

Node: BONZAI Oracle Rdb V7.0-00 Performance Monitor 11-APR-1996 16:28:03
Rate: 3.00 Seconds Row Cache (EMPIDS_MID) Elapsed: 00:02:58.81
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
latch requests 0 0 0.3 4763 297.6

retried 0 0 0.0 0 0.0
cache searches 2585 95 10.3 151297 9456.0

found in workset 0 0 0.0 0 0.0
found in cache 2585 95 3.4 51297 3206.0
found too big 0 0 0.0 0 0.0

insert cache 6 0 6.8 100000 6250.0
row too big 0 0 0.0 0 0.0
cache full 0 0 0.0 0 0.0
collision 0 0 0.0 0 0.0

VLM requests 0 0 0.0 0 0.0
window turns 0 0 0.0 0 0.0

skipped dirty slot 0 0 0.0 0 0.0
skipped inuse slot 0 0 0.0 0 0.0
hash misses 820 0 2.4 36237 2264.8
cache unmark 0 0 0.0 0 0.0
--
Exit Graph Help Menu Options Reset Set_rate Time_plot Unreset Write X_plot !

4–96 Adjusting Parameters

The "found in workset" and "found in cache" statistics indicate how efficient
the cache is. The closer these statistics are to 100%, the better the row cache
utilization.

The cache hit rate in the following example is around 75%:

Node: BONZAI Oracle Rdb V7.0-00 Performance Monitor 11-APR-1996 16:33:03
Rate: 3.00 Seconds Row Cache (EMPIDS_MID) Elapsed: 00:03:03.10
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
latch requests 18 16 0.3 11143 0.3

retried 0 0 0.0 0 0.0
cache searches 2914 1958 51.4 1501158 50.0

found in workset 355 225 5.2 154416 5.1
found in cache 1851 883 19.3 564795 18.8
found too big 0 0 0.0 0 0.0

insert cache 721 608 14.6 429294 14.3
row too big 0 0 0.0 0 0.0
cache full 58 58 0.7 22839 0.7
collision 0 0 0.0 3 0.0

VLM requests 1957 1041 18.2 533613 17.7
window turns 117 33 1.1 34495 1.1

skipped dirty slot 0 0 0.0 0 0.0
skipped inuse slot 3 0 3.8 112321 3.7
hash misses 391 391 5.5 162170 5.4
cache unmark 235 116 3.1 91713 3.0
--
Exit Graph Help Menu Options Reset Set_rate Time_plot Unreset Write X_plot !

The following example shows an RCS Dashboard screen:

Node: BONZAI Oracle Rdb V7.0-00 Performance Monitor 11-APR-1996 16:34:00
Rate: 3.00 Seconds RCS Dashboard Elapsed: 00:11:57.85
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Database.......... Current... Previous.. Lowest.... Highest... Original.. Chng
Attribute.Name.... Value..... Value..... Value..... Value..... Value..... Cnt.

Ckpt Buffer Count 15 15 15 15 15 0
Batch Count 10000 10000 10000 10000 10000 0
Checkpoint 1 1 1 1 1 0
Ckpt Time Interval 300 300 300 300 300 0

Sweep Interval 1 1 1 1 1 0
Low Cold Thshld 2899000 2899000 2899000 2899000 2899000 0
High Cold Thshld 2900000 2900000 2900000 2900000 2900000 0
Cold Record Count 0 0 0 0 0 0
Abort Sweep 1 1 1 1 1 0

--
Config Exit Help Menu Options Set_rate Write !

Adjusting Parameters 4–97

The row caching screens do not appear in the Performance Monitor main menu
if one or more of the requirements described in Section 4.1.3.1 have not been
met.

4.1.5 Fast Commit Transaction Processing
You can improve database performance in some environments if you specify
how and when Oracle Rdb writes updated pages from memory buffers to disk.

• By default, Oracle Rdb writes updated database pages to disk each time
a transaction executes the COMMIT statement. If a transaction fails
before committing, Oracle Rdb only needs to roll back the current failed
transaction; it never has to reprocess previous successful transactions.

• By enabling fast commit transaction processing, (see Section 4.1.5.4)
Oracle Rdb keeps updated pages in a buffer pool and does not write the
pages to disk when a transaction commits. The updated pages can remain
in the buffer pool until a user-specified threshold (called a checkpoint; see
Section 4.1.5.2) is reached, at which time all the updated pages for multiple
transactions are flushed to disk. If a transaction fails, Oracle Rdb must
roll back the current, failed transaction and reprocess all the committed
transactions since the last checkpoint.

Fast commit transaction processing applies only to data updates; that is, to
delete, update, and insert operations. Transactions that include data definition
statements, such as create logical area or create index operations, force a
checkpoint at the end of the transaction.

Note

You must have after-image journaling (AIJ) enabled to use fast commit
processing.

The remainder of this section describes default commit processing;
Section 4.1.5.1 describes fast commit processing.

With the default method of commit processing, Oracle Rdb executes the
following steps for an update transaction (referred to as T1):

1. Starts transaction T1.

2. Reads database pages into the user’s buffer.

3. Updates pages.

When an application or user issues the COMMIT statement:

4. Flushes RUJ buffers to the .ruj file.

4–98 Adjusting Parameters

5. Flushes updated database pages to disk.

6. Flushes AIJ buffers to the .aij file (if after-image journaling is enabled).

7. Writes commit information for T1 to the database root file.

8. Starts the next transaction, T2.

If transaction T2 fails, the previous, committed transaction T1 is not involved
in the recovery, because its updated pages and its commit information have
already been written to disk. Oracle Rdb must roll back the failed transaction
T2 with information in the .ruj file.

With default commit processing, recovery is very fast because only the effects of
failed transactions must be undone. This approach optimizes recovery time at
the expense of commit time I/O (flushing RUJ buffers to the .ruj file, flushing
updated pages to disk, and writing to the database root file).

You should consider using this default method of transaction processing when
some or all of the following conditions exist in your environment:

• Your system is subject to system failures or abnormally terminated
processes (for example, users pressing Ctrl/Y). The default commit
processing method optimizes recovery time.

• The transaction pattern includes:

Transactions that update a large number of pages causing buffer pool
overflow

Multiple update transactions that share a lot of pages, which result in
pages being swapped between transactions

Transactions that do not repeatedly update the same pages (either
within a single transaction, or between transactions)

With the first two patterns, updated pages must be written to disk
regardless of whether fast commit processing is enabled or not. In the last
pattern, because a page is updated only once, there is no reason to keep it
in the buffer pool.

Note that observance of these patterns does not mean the default method
of commit processing must be used. There are no hard rules; you should
make changes using these guidelines, but monitor before and after behavior
to determine optimum database performance.

Adjusting Parameters 4–99

4.1.5.1 Fast Commit Processing Method
When fast commit processing is enabled, Oracle Rdb executes the following
steps for an update transaction (referred to as T1):

1. Starts a transaction T1.

2. Reads database pages into the user’s buffer.

3. Updates pages, but when an application or user issues the COMMIT
statement, does not flush the RUJ buffer to the .ruj file, or flush updated
database pages to disk.

4. Flushes AIJ buffers to .aij file. After-image journaling must be enabled.

5. Writes commit information for T1 to the database root file. This step can
also be eliminated if you enable the JOURNAL OPTIMIZATION option
when you enable fast commit. See Section 4.1.5.3 for details.

6. Starts the next transaction, T2.

7. Flushes updated pages when the checkpoint is reached, the process
detaches from the database, or metadata changes are performed.

If a subsequent transaction fails, all the previous transactions back to the last
checkpoint must be redone because their updated pages have not been written
to disk. Oracle Rdb uses information written to the .aij file to reprocess these
transactions. Oracle Rdb must also roll back the failed transaction with the
information in the RUJ buffer or file if changes made by the transaction have
been written to the database file (due to buffer pool overflow).

Fast commit processing reduces transaction commit time but increases
recovery processing time; if multiple update transactions have committed
since the last checkpoint and a failure occurs, all those transactions must be
reprocessed. However, you can reduce potential recovery time by setting a
shorter checkpoint interval (see Section 4.1.5.2).

You should consider enabling fast commit transaction processing when you
have a stable transaction processing environment and the following conditions
exist:

• A process updates the same rows for multiple transactions.

For example, consider a parts database accessed by a user who repeatedly
adjusts the quantity on hand as orders are filled and inventory replenished.
With default commit processing, pages containing updated rows are flushed
to disk at the end of every transaction. This results in excessive disk
writes. With fast commit processing enabled, the pages containing the
updated rows remain in the buffer pool of the process and are written to
disk only at the checkpoint. Not only do you save page I/Os by keeping the

4–100 Adjusting Parameters

updated pages in memory, you also save RUJ I/Os because the RUJ buffer
does not get flushed to the .ruj file after each transaction.

• Transactions are short and do not update many pages.

Under these conditions, it is more efficient to keep the updated pages in
the buffer pool and flush them all at the checkpoint rather than flush them
at the end of each transaction. For example, issuing ten data I/Os at the
same time (at a checkpoint) provides better performance than issuing those
same ten I/Os separately (flushing at every commit). In addition you save
RUJ I/O operations.

Table 4–6 summarizes the guidelines for using fast commit transaction
processing.

Table 4–6 When to Enable or Disable Fast Commit Processing

Transaction Type
Stable
Environment

Unstable
Environment

Repeated updates to the same rows Enable Maybe1

Short transactions, few pages updated Enable Maybe1

Many pages updated with buffer pool overflow Disable Disable

Multiple transactions sharing the same pages Disable Disable

Infrequent updates to the same rows Disable Disable

1Enabling fast commit in an environment subject to abnormal failures results in more recovery
processing time than the default commit method. Examine the frequency of failure and how much
recovery time your system can accommodate when you consider fast commit processing.

The stability of your environment also influences whether or not you should
enable snapshot writing if you have fast commit enabled. If your database does
not have to recover from frequent system or process failures, you can enable
snapshots as either immediate or deferred. If your database does require
frequent recoveries, you may want to disable snapshot writing if fast commit is
enabled because, for each committed transaction since the last checkpoint, the
recovery process must write a record to the snapshot file as well as redo each
transaction. Thus recovery time is slower with snapshots enabled. However, if
you want to enable the journal optimization option, snapshots must be disabled
or deferred.

Adjusting Parameters 4–101

4.1.5.2 Checkpointing
When you enable fast commit processing, a process does not flush updated
pages each time a transaction commits. If the process fails (meaning that
changes to memory have been lost), the database recovery (DBR) process must
reprocess the process’ previous update transactions and roll back any changes
made by the aborted transaction. Reprocessing updates involves reading the
.aij file and reapplying the changes to the relevant data pages.

You can limit how many transactions the DBR must redo by setting a
checkpoint interval. Setting a checkpoint interval instructs Oracle Rdb to
periodically flush updated pages. This limits the number of transactions the
DBR must reprocess, thereby shortening recovery time. For example, if no
checkpoint interval is established and a process completes 1000 transactions
but fails during number 1001, the DBR must reprocess transactions 1 through
1000 and roll back number 1001.

Note

When the DBR must perform a recovery, the DBR acquires a freeze lock
on the entire database to deny other processes database access. This
happens even with default commit processing. However, if fast commit
is enabled, the DBR generally has more work to do because multiple
transactions may have to be redone. Consequently, the DBR holds
the freeze lock longer when fast commit processing is enabled. The
following list shows the extra steps required by fast commit processing:

Read .aij file since last checkpoint. Fast commit

Redo committed transactions not flushed to disk. Fast commit

Read .ruj file. Fast commit and
default commit

Roll back changes according to RUJ information. Fast commit and
default commit

Fast commit transaction processing has important implications for
the AIJ backup procedure. See the Oracle Rdb7 Guide to Database
Maintenance for information.

When you enable fast commit, you can specify a database-wide checkpoint
interval using either or both of the following methods:

• Assign a value that specifies the number of blocks the .aij file is allowed to
accumulate before updated pages are flushed. All processes contribute to
AIJ growth.

4–102 Adjusting Parameters

• Assign a value that specifies the elapsed time between checkpoints.

For example, if you set the checkpoint interval value equal to 100 blocks, all
processes flush updated pages to disk when 100 blocks have been written to
the .aij file since the last checkpoint. Or, if you set the checkpoint interval
value equal to 90 seconds, all processes flush updated pages to disk when 90
seconds have elapsed since the last checkpoint. Section 4.1.5.4 describes the
fast commit syntax in more detail.

When a process attaches to the database, it writes a checkpoint record to the
.aij file and notes the virtual block number (VBN) of the .aij file at which the
checkpoint record is located. If the checkpoint is located at VBN 120 and the
checkpoint interval is 100 blocks, the process will checkpoint again when VBN
220 is reached. See Figure 4–9. Note that because all processes contribute
to .aij file growth, a process may be able to commit many transactions before
checkpointing if update activity by other processes is low. Conversely, if a
process’ first transaction is long and if update activity by other processes
is high, the process may be forced to checkpoint when it commits its first
transaction. To sum up:

• A checkpoint interval is the number of blocks the .aij file is allowed to
increase by or the amount of elapsed time before pages modified by a
process are flushed to disk.

• A checkpoint interval applies to each process attached to the database.

• All processes contribute to .aij file growth.

• Checkpointing (updates flushed to disk) occurs at transaction boundaries; a
process never checkpoints in the middle of a transaction.

Adjusting Parameters 4–103

Figure 4–9 Checkpoint Processing

Checkpoint interval = 100 blocks

 attaches; writes ckpt record at VBN 120;

attaches; writes ckpt record at VBN 150;

 ckpts (105 blocks written to AIJ); P1 writes
new ckpt record; target VBN = 325; oldest
active ckpt now at VBN 150 (P2)

 ckpts (125 blocks written
to AIJ); P2 writes new
ckpt record; target VBN =
375; oldest active ckpt

When the system fails:

 − P1: transactions back to last ckpt (VBN 225) must be redone.

 − P2: no transactions to redo; DBR process must undo last, uncommitted transaction.

NU−2363A−RA

VBN
150

VBN
225

VBN
275

30 20 1010 1020 2015 2020

P1 P2P1P1 P1 P2P2P1 P1 P1 P2

VBN
120

System
Failure

Indicates number of blocks
written to .AIJ file

P1

P2

P1

P2

target VBN = 250

target VBN = 220

now at VBN 225 (P1)

When the database checkpoint interval value is reached, Oracle Rdb executes
the following steps:

1. Updated pages are flushed to disk.

2. A checkpoint record is written to the .aij file.

3. The database root file is updated for each process to indicate where the
checkpoint record is stored in the .aij file. The DBR uses checkpoint
information in the root file to determine where in the .aij file recovery must
begin.

4–104 Adjusting Parameters

Consider the following points when you choose a checkpointing interval for
your database:

• If the interval is set too small, Oracle Rdb will flush updates too soon and
you will not realize the benefits of enabling fast commit processing.

• The larger the interval, the longer the recovery time required to redo the
updates of a failed process.

• If you use the elapsed time checkpoint interval, you should know the
transaction rate and the number of blocks updated for each transaction on
your database. Otherwise, unlike the interval specifying .aij file growth,
you will not know how many blocks in the .aij file will need to be recovered
after a failure, and recovery time will be unknown.

You must decide how large an .aij file you are willing to let the DBR process
in the event of a failure. By inspecting the monitor log file, you can estimate
the total recovery time for a given AIJ checkpoint interval. Look for the two
log file entries that note when recovery started and when it completed for a
process. The difference between the two times is the estimated recovery time.
You can use this information to tune the AIJ checkpoint interval. If you want
faster recovery, reduce the interval; if you can afford a longer recovery time,
increase the checkpoint interval.

To understand how a database administrator (DBA) might decide which
checkpointing options to implement, consider the example of a company that
takes telephone orders 24 hours a day. Operators, or database users, enter
information into the company’s database as they take orders.

During the day, the phones are busy. As orders are taken, the .aij file grows
rapidly. The DBA knows that:

• One hundred operators work the day shift.

• Each operator takes an average of 10 orders per hour.

• Each order (equivalent to a database transaction) takes 6 minutes to enter.

• Each transaction contributes 1 block to the .aij file.

• The total system generates 1000 transactions per hour.

• The .aij file increases 1000 blocks per hour.

Because the .aij file is growing fairly rapidly at 1000 blocks per hour during
the day, the DBA does not want to let the .aij file grow too large before updated
pages are written to disk. Remember that if a process fails, DBR has to redo all
transactions for that process since it last checkpointed. The more transactions
that have occurred since the last checkpoint, the longer recovery will take. If

Adjusting Parameters 4–105

the checkpoint interval is set too small, Oracle Rdb writes updates too soon
and you will not realize all of the benefits of enabling fast commit. The larger
the interval, the longer the recovery time required to redo the updates of a
failed process.

The DBA decides to set a checkpoint interval of 1000 blocks, causing each
operator to checkpoint about once per hour.

At night, however, system usage is much lighter. The DBA knows that:

• Two operators work the night shift.

• Each operator takes an average of 10 orders per hour.

• Each order (equivalent to a database transaction) takes 6 minutes to enter.

• Each transaction writes 1 block to the .aij file.

• The system generates only 20 transactions per hour at night, compared to
1000 per hour during the day.

• The .aij file only increases 20 blocks per hour at night.

The DBA realizes that because the .aij file grows so slowly, it will never reach
the 1000-block checkpoint interval during the night shift. Of course, if a failure
occurs, recovery time will be short because the .aij file is small. The DBA
decides that to be safe, updated pages should be written to disk at least a few
times during the night. However, the DBA does not want to change the AIJ
block interval option, because it works well for the daytime hours. The DBA
decides to use the time interval option to force a checkpoint every 2 hours.

Setting a time interval checkpoint does not change the block interval
checkpoint, but does force an additional checkpoint every 2 hours for each
process to cover the night shift.

In general, AIJ block size is the best indicator of how long recovery will take,
and is, therefore, the most meaningful checkpointing option. However, using
the time interval option can be helpful if the DBA is unfamiliar with patterns
of system usage or the impact of AIJ block size on recovery time.

The checkpoint interval value is set by the DBA and applies to all processes
attached to a database. Users can implement an alternate, process-specific
method of checkpointing by defining the logical name RDM$BIND_CKPT_
TRANS_INTERVAL or the configuration parameter RDB_BIND_CKPT_
TRANS_INTERVAL. This mechanism uses transaction count as the checkpoint.
For example, if a user defines RDM$BIND_CKPT_TRANS_INTERVAL or
RDB_BIND_CKPT_TRANS_INTERVAL to be 10, updated pages are flushed
to disk after every tenth transaction if the transaction count limit is reached
before the checkpoint interval value is reached. Checkpointing is activated

4–106 Adjusting Parameters

by whichever of the three conditions is reached first (.aij file growth, elapsed
time, or number of transactions). When a checkpoint occurs, each condition is
reset. If fast commit processing is disabled, the RDM$BIND_CKPT_TRANS_
INTERVAL logical name and the RDB_BIND_CKPT_TRANS_INTERVAL
configuration parameter are ignored.

A user who wants to define RDM$BIND_CKPT_TRANS_INTERVAL or RDB_
BIND_CKPT_TRANS_INTERVAL should be very familiar with transaction
patterns. For example, if an operator knows that it takes five transactions to
process an order, and that some data is modified in each transaction, but that
the next order will rarely update data from the previous order, RDM$BIND_
CKPT_TRANS_INTERVAL or RDB_BIND_CKPT_TRANS_INTERVAL could be
set to 5.

If you want to force all the active processes for a database on all nodes to
immediately perform a checkpoint operation, you can do so with the RMU
Checkpoint command, as shown in Example 4–13.

Example 4–13 Forcing All Active Database Processes to Perform Immediate
Checkpoint Operations

$ RMU/CHECKPOINT mf_personnel
$ rmu -checkpoint mf_personnel

This command causes all of the modified database cache buffers to be flushed
to the disk. The checkpoint operation also improves the redo performance
of the DBR, although the per-process parameters should have already been
properly initialized with this goal in mind. When the command completes, all
active database processes have successfully performed a checkpoint operation.
See the Oracle RMU Reference Manual for more information on the RMU
Checkpoint command.

4.1.5.3 Journal Optimization Option
When you enable fast commit transaction processing, you can enable journal
optimization. This option can provide a significant increase in commit
processing speed by eliminating the majority of I/O to the database root.
This option enhances performance in database environments that are update-
intensive. Because of the prerequisites for enabling the journal optimization
option (described later in this section), general use databases or databases that
have many read-only transactions may not benefit from this feature.

Adjusting Parameters 4–107

By default, committing a single transaction includes writing to the .ruj file,
writing updated pages to disk, writing to the .aij file, and writing commit
information to the root file. Writing to the root file becomes a bottleneck for
high performance, high transaction throughput applications by restricting the
maximum transactions-per-second that an application can achieve.

Enabling fast commit recovery processing eliminates writing to the .ruj file
and to disk; enabling journal optimization eliminates most of the overhead
in writing to the root file. The combination of fast commit and journal
optimization can dramatically increase transaction processing speed.

Enabling journal optimization requires the following prerequisites:

• Fast commit processing must be enabled so that the database recovery
process can use checkpoint information if recovery is necessary.

• After-image journaling must be enabled so that commit information can
be written to the .aij file instead of the root file. After-image journaling is
required by fast commit processing.

• Snapshots must be disabled or enabled deferred.

If snapshots are disabled and journal optimization is enabled, no
information is written to the root file.

If snapshots are deferred and journal optimization is enabled, an active
read-only transaction causes the journal optimization option to be
disabled until the read-only transaction finishes.

The journal optimization option is intended for use on database systems that
are update-intensive. Oracle Corporation does not recommend enabling this
feature on systems that experience frequent read-only transactions for the
following reasons:

• If snapshots are disabled, read-only transactions may generate lock
contention, thereby slowing down transaction processing.

• If snapshots are deferred, read-only transactions may cause switching
between journal optimization (not writing to the database root file) and
the default (writing to the database root file). This switching results in
expensive overhead. Furthermore, read-only transactions stall until all
active read/write transactions commit.

Journal optimization conforms to the basic Oracle Rdb architecture, including
the assignment and use of transaction sequence numbers (TSNs) to ensure
database integrity and consistency. When the journal optimization option
is disabled, TSNs are assigned to users one at a time; when the journal
optimization option is enabled, each user is preassigned a range of TSNs.

4–108 Adjusting Parameters

Assigning a range of TSNs for each user avoids the single-threading problem
because commit information need not be written to the database root for each
transaction. All transaction information is written to the .aij file with the
exception of each user’s allocated TSN range. The allocated range is written
to the root file. If a user runs out of TSNs, a new TSN range is assigned. The
size of the TSN range is specified with the TRANSACTION INTERVAL IS n
qualifier when you enable the journal optimization option, where n equals the
number of TSNs. See Section 4.1.5.4 for syntax details.

The transaction interval value (the TSN range) must be a number between 8
and 1024. The default value is 256. You should consider the following points
as you determine a transaction interval value:

• A large transaction interval value requires less I/O to update the root file
(necessary when a user allocates a new TSN range) because a user runs
out of TSNs less frequently than with a small interval value. Conversely, a
low value requires more I/O to the root file. This I/O can degrade database
performance.

• A large transaction interval value can cause processes to use their allocated
TSNs inefficiently. Suppose the transaction interval is 512 and your
database has 512 active users each day. This means that your database
will use 262,144 TSNs each day, even though only a few of the 512 TSNs
may actually be used. Furthermore, if the 512 users open and close the
database four times each day, the database will use 1,048,576 TSNs each
day. Thus a database could run out of available TSNs, requiring the TSN
values to be reset.

Conversely, the smaller the transaction interval value, the longer the time
between TSN reset.

You need to decide which constraint has precedence on your database:
performance or running out of TSNs. As a general guideline, if your database
has few users or if all user sessions are long, select a high transaction interval.
If your database has many users or if user sessions are short, select a smaller
transaction interval.

You can determine if a transaction interval is optimum by selecting a value and
monitoring I/O to the root file. Then raise or lower the interval value, monitor
the rate for the new value, compare the results with the old value, and adjust
the current setting accordingly.

Adjusting Parameters 4–109

4.1.5.4 Enabling Fast Commit Transaction Processing
You can enable fast commit processing, and optionally journal optimization,
with the SQL ALTER DATABASE statement. The following example shows the
syntax:

SQL> ALTER DATABASE FILENAME test1
cont> JOURNAL FAST COMMIT {ENABLED | DISABLED}
cont> (CHECKPOINT INTERVAL IS n BLOCKS,
cont> CHECKPOINT TIMED EVERY s SECONDS
cont> [NO] COMMIT TO JOURNAL OPTIMIZATION,
cont> TRANSACTION INTERVAL IS m);

The value specified for n equals the number of blocks the .aij file can increase
by before checkpointing. The value specified for s equals the number of seconds
elapsed before checkpointing. The value specified for m equals the number
of TSNs you want to preassign to each user if you have enabled journal
optimization.

Note

The TRANSACTION INTERVAL IS parameter qualifies the journal
optimization option and is not a third way to specify a checkpoint
interval. Also, do not confuse the TRANSACTION INTERVAL IS
parameter with the value specified by the logical name RDM$BIND_
CKPT_TRANS_INTERVAL or the configuration parameter RDB_BIND_
CKPT_TRANS_INTERVAL. RDM$BIND_CKPT_TRANS_INTERVAL
and RDB_BIND_CKPT_TRANS_INTERVAL specify transaction count
as the checkpoint interval.

You can specify either or both checkpoint parameters. The following example
enables fast commit processing and specifies checkpoint intervals of 256
blocks, 120 seconds, and 20 transactions. The example also enables journal
optimization and specifies a range of 512 TSNs for each user:

$ DEFINE RDM$BIND_CKPT_TRANS_INTERVAL 20
$ SQL
SQL> ALTER DATABASE FILENAME test1
cont> SNAPSHOT IS DISABLED
cont> JOURNAL FILENAME DISK2:[USER]test2.aij
cont> JOURNAL FAST COMMIT ENABLED
cont> (CHECKPOINT INTERVAL IS 256 BLOCKS,
cont> CHECKPOINT TIMED EVERY 120 SECONDS
cont> COMMIT TO JOURNAL OPTIMIZATION,
cont> TRANSACTION INTERVAL IS 512);

4–110 Adjusting Parameters

Notice that, to enable fast commit processing, after-image journaling must
be enabled; to enable journal optimization, snapshots must be disabled (or
deferred). If AIJ is not enabled, fast commit and journal optimization are not
activated. If snapshots are not disabled or deferred, journal optimization is not
activated.

The following example enables fast commit, but not journal optimization:

SQL> ALTER DATABASE FILENAME test1
cont> JOURNAL FAST COMMIT ENABLED
cont> (CHECKPOINT INTERVAL IS 256 BLOCKS,
cont> CHECKPOINT TIMED EVERY 120 SECONDS
cont> NO COMMIT TO JOURNAL OPTIMIZATION);

You can disable fast commit processing or journal optimization but specify
checkpoint intervals or a TSN range that can be activated when you enable
fast commit and journal optimization at some other time. Note that you must
enable fast commit to activate the journal optimization option. Although
journal optimization appears to be enabled in the following example, it is
effectively disabled because fast commit is disabled.

SQL> ALTER DATABASE FILENAME test1
cont> JOURNAL FAST COMMIT DISABLED
cont> (CHECKPOINT INTERVAL IS 256 BLOCKS,
cont> CHECKPOINT TIMED EVERY 120 SECONDS
cont> COMMIT TO JOURNAL OPTIMIZATION,
cont> TRANSACTION INTERVAL IS 512);

You can enable both features and the parameters set in the last example if you
enter the following statement:

SQL> ALTER DATABASE FILENAME test1
cont> JOURNAL FAST COMMIT IS ENABLED
cont> (COMMIT TO JOURNAL OPTIMIZATION);

Refer to the Oracle Rdb7 SQL Reference Manual for a complete description of
fast commit processing syntax.

You can determine if fast commit processing is enabled by examining the
Fast Commit Information screen in the Performance Monitor. The following
example shows a Fast Commit Information screen:

Adjusting Parameters 4–111

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-JUN-1996 11:43:21
Rate: 3.00 Seconds Fast Commit Information Elapsed: 00:00:32.56
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

AIJ Fast Commit is enabled
- Checkpointing AIJ interval is 256 blocks
- Checkpointing time interval is 120 seconds
Commit to AIJ optimization is enabled
- Transaction interval is 512

--
Exit Help Menu Options Refresh Set_rate Write !

The Fast Commit Information screen is located in the Database Parameter
Information submenu.

You can also use the SHOW TRANSACTION statement to determine if fast
commit processing is enabled. If you enable fast commit processing and use
the SET TRANSACTION statement to start a read/write transaction reserving
the EMPLOYEES table for shared read, the SHOW TRANSACTION statement
displays the following information:

SQL> SHOW TRANSACTION

Transaction information:
Statement constraint evaluation is off

On the default alias
Transaction characteristics:

Read Write
Reserving table EMPLOYEES for shared read

Transaction information returned by base system:
a read-write transaction is in progress

- updates have not been performed
- fast commit is enabled
- aij commit is enabled
- transaction sequence number (TSN) is 137
- snapshot space for TSNs less than 137 can be reclaimed
- session ID number is 82

SQL>

You can examine checkpoint statistics by using the Performance Monitor
Checkpoint Statistics screen (refer to Section 4.1.1.11).

4–112 Adjusting Parameters

4.1.5.5 Memory Page Transfers
When the memory page transfers feature is enabled, a process does not need
to write a modified page to disk before another process accesses the page. In
other words, pages in a process’ allocate set can contain committed updates
from another process that have not been written to disk. If a database has
the required characteristics for using memory page transfers, the performance
gain of update-intensive applications can be significant. This is because of the
number of inputs/outputs (I/Os) saved by not writing updates to disk and the
ability to share pages among processes.

The memory page transfers feature is available for any database with the
following characteristics:

• Global buffers are enabled.

• After-image journaling is enabled.

• Fast commit processing is enabled.

• The database can only be accessed from a single node (the NUMBER OF
CLUSTER NODES value for the database is 1).

If a database has these characteristics, you can specify the PAGE TRANSFER
VIA MEMORY clause of the SQL CREATE DATABASE, ALTER DATABASE,
or IMPORT statement to enable memory page transfers for the database. If
you specify the PAGE TRANSFER VIA MEMORY clause for a database that
does not have the appropriate characteristics, the memory page transfers
feature is not enabled.

Until Version 6.1 of Oracle Rdb, page transfers between processes were always
performed via disk. The default for the PAGE TRANSFER clause is PAGE
TRANSFER VIA DISK, and applications that performed acceptably in the past
using this option can continue to do so.

In a database with fast commit processing enabled, Oracle Rdb writes
checkpoint records to the after-image journal (.aij) file. Then if a transaction
fails, Oracle Rdb rolls back the current, failed transaction and performs a redo
operation of all the committed transactions since the last checkpoint record in
the .aij file. When the memory page transfers feature is enabled for a database,
the recovery process is different because Oracle Rdb does not write checkpoint
records to the .aij file. Instead, internal data structures track the checkpoint
virtual block number (checkpoint VBN) for each process. If the database needs
to be recovered, Oracle Rdb starts the redo operation at the lowest checkpoint
VBN in the .aij file.

Adjusting Parameters 4–113

See the ALTER DATABASE, CREATE DATABASE, and IMPORT statements
in the Oracle Rdb7 SQL Reference Manual for more information on the PAGE
TRANSFER clause.

4.1.6 Row (or Record) Fragmentation
A row becomes fragmented when a modification extends a row’s physical length
and insufficient free space exists on the page to hold the new expanded row.
Fragmentation is particularly apparent when a text field in a row changes
frequently. For example, consider the instance when a row contains many
empty columns and the row is compressed, and the page size was determined
based on the compressed row length. When the page is filled with these
compressed rows and values are entered for these empty columns, these rows
can no longer fit on the page and Oracle Rdb must fragment the row to the
next available page in the logical area for the table. Pointers attached to
the row’s fragments indicate the location of other fragments. This structure
allows Oracle Rdb to fill database pages more efficiently. However, retrieving
fragmented rows expends more I/O time than retrieving whole rows because
Oracle Rdb must locate all the row fragments and assemble them into a
complete row.

For this reason, you should try to avoid row fragmentation. For example,
look at the biggest row in each storage area of your database in its nominal,
uncompressed form. If the row in one storage area is 1800 bytes, make your
page size for this storage area large enough to accommodate the data and
overhead; in this case, a 4-block page for this storage area should suffice.

You can use the RMU Analyze command to determine whether or not rows in
your database are fragmented. Row fragmentation can occur when rows are
changed in either of the following two ways:

• Storing a row

Newly stored rows may be too large to fit on a single database page. If
free space in an unused database page is not large enough to store the
entire row, the row will be fragmented. If you specified a value that is too
small for the storage area PAGE SIZE based on a previous row size, you
will need to create a new storage area with the SQL CREATE STORAGE
AREA statement, use the PAGE SIZE parameter to specify a new page
size, and use the SQL ALTER STORAGE MAP statement to map all rows
to the new storage area. This alternative is preferable to using the SQL
EXPORT and IMPORT statements in which all storage area rows would be
unloaded and reloaded.

4–114 Adjusting Parameters

When you create a new row, but supply data values for only a few columns
in that row, that row requires less space on the database page than if you
supply values for all columns. Later, when you retrieve that row and fill
those empty columns with actual values, the row requires more space on
the database page. Therefore, you should try to assign data values for the
majority of the columns in the row.

• Modifying a row

You can change data types and column sizes for any column in the database
and because you can add columns to a row, you risk creating a new version
of a row that is larger than all previous versions. When Oracle Rdb writes
this new, larger version of the row back into the database page, it may split
the row between two separate database pages if there is insufficient free
space.

When you delete a row from the database, Oracle Rdb changes the line index
entry on that page for that row. It marks the line index entry as empty, but
reserves it for the transaction that deleted the row. When the transaction is
terminated with a COMMIT statement, the empty space becomes permanent.
It is then available to other transactions as long as the dbkey scope is not
specified and therefore defaults to the SQL DBKEY SCOPE IS TRANSACTION
option. If the transaction is rolled back, Oracle Rdb uses that empty space to
insert the row again.

4.1.7 Specifying the Number of Recovery Buffers
The default number of recovery buffers is 20. Recovery-unit journaling occurs
for each active user of the database application and cannot be controlled by
the user. Therefore, there are as many .ruj files as active users of the database
application. When a user’s transaction is rolled back, that user’s .ruj file is
used to complete the rollback process. Similarly, but on a much broader scale,
when a system failure occurs and database access ceases, Oracle Rdb uses all
users’ .ruj files to complete rollback (recovery) after the system comes back up
for all update transactions not committed at the time of the failure.

The time that all of these database recovery processes (DBRs) take depends on
the number of active users (number of .ruj files), the lengths of transactions
(size of the .ruj files), and the number of recovery buffers (dedicated memory
for recovery). If your update transactions are all relatively short, the recovery
process will not take much time. If your update transactions are relatively
long, the recovery process may take a while to complete. By setting the
number of recovery buffers to as large a number as feasible, the entire recovery
procedure will run much faster as more information will be loaded into the
buffers with each I/O operation.

Adjusting Parameters 4–115

OpenVMS
VAX

OpenVMS
Alpha

You should select a value large enough to fill the working set of the DBR
process. Use the SQL ALTER DATABASE statement to adjust the buffer count
to be nearly equal to the WSEXTENT of the DBR process. That is, set the
WSQUOTA for the DBR process high enough so that a specified number of
physical pages is guaranteed to be available for the DBR process if database
recovery is necessary. Set the WSEXTENT for the DBR process as high as
possible to ensure that the maximum number of physical pages specified will
be available when needed. See Chapter 6 for information on database recovery
in a VMScluster environment. See the OpenVMS documentation set for a more
detailed discussion on guidelines for setting working set parameters and for
tuning automatic working set adjustment parameters. ♦

See the Oracle Rdb7 Guide to Database Maintenance for information on
changing the NUMBER OF RECOVERY BUFFERS option.

4.1.8 Allocation for the After-Image Journal File
The .aij files are disabled by default when you initially define a database with
the SQL CREATE DATABASE statement. You must use the SQL ALTER
DATABASE statement and specify a file name with the JOURNAL IS option.
The default allocation space for .aij files is 0 blocks. There are three important
considerations concerning .aij files:

• Space allocation

• Extending the space allocation

• Backing up an .aij file to keep from filling the AIJ disk

When you create the .aij file, you can specify an allocation and an extent. The
allocation defines the physical file size that is allocated on disk.

The extent parameter not only defines the physical extension that will occur
if the file needs to be physically extended, but also is used to define a logical
end-of-file (EOF) within the physical file allocation. For example, assume an
.aij file is created with allocation equal to 10,000 blocks and extent equal to
1000 blocks. The file will be managed in increments of 1000 blocks. That is,
the file will be logically extended and initialized 10 times before it is actually
physically extended. These logical extensions will show up in the Performance
Monitor even though the file may not have been physically extended. Hence,
the file is initialized only up to the logical EOF.

The key to prevent the AIJ disk from filling up is to specify that the RMU
Backup After_Journal command be executed before the file gets physically
extended. That is, if there is much AIJ activity, set the Threshold qualifier
value to a value large enough to ensure that the file does not extend, but not
so large as to fill the disk. For example, if you set the value using the RMU

4–116 Adjusting Parameters

Backup After_Journal command with the Threshold=7000 qualifier, the AIJ
backup threshold is 7000 blocks. That causes the backup process to start
backing up the .aij file in a catch up mode without blocking other transactions
when the end of the .aij file is less than the Threshold value. Only if the end of
the .aij file exceeds the Threshold value is a quiet-point lock requested. When
the quiet-point lock is granted, transactions are blocked until the .aij file is
completely backed up. The .aij file is backed up and truncated and the logical
EOF is reset to zero. Because the logical EOF never reaches the physical EOF,
the .aij file never gets physically extended and the disk never fills up. For more
information on backing up the .aij file, see the Oracle Rdb7 Guide to Database
Maintenance.

The backup process starts backing up the .aij file before the Threshold value
is reached and does so without blocking other transactions. Only when the
Threshold value is exceeded is a quiet-point lock immediately requested and
when granted, no active transactions are allowed. Therefore, it is possible that
a transaction could cause the .aij file to fill and furthermore, physically extend
this file before the transaction is done. This is where the extent parameter
comes in. If the extent parameter is too large, the physical allocation of the file
becomes too large. If the extent parameter is too small, the excessive extents
cause some performance degradation.

For applications with high transaction volumes, setting a large allocation size
to minimize extents can improve performance significantly. For applications
with a large number of updates and severe response time constraints,
preallocate the .aij file to prevent it from being extended during normal
processing. You can set the size large enough to handle processing for one day
and use the RMU Backup After_Journal command once a day to unload the
.aij file to tape. If you have one disk device dedicated to the .aij file, set the
allocation size to take up the entire disk.

4.1.9 Allocation for Snapshot Files
You can specify a database-wide size allocation for your snapshot files with the
SQL CREATE DATABASE statement or specify it individually for each storage
area with the SQL CREATE STORAGE AREA statement.

First determine if the default snapshot allocation of 100 pages to be applied
database-wide is large enough to handle the needs of your read-only users for
all storage areas without extending. Or you can determine the frequency with
which each storage area is being accessed by read-only users as opposed to
read/write users and determine if the default allocation of 100 pages should be
adjusted accordingly. Remember that update transactions write before-images
of each row they update to a snapshot file. So, if you determine the transaction
rate and update activity for the tables in a storage area, the results give you

Adjusting Parameters 4–117

an estimate of the relative growth and potential size of the snapshot file. Set
the allocation accordingly for these storage areas.

If the snapshot file grows too large, you can truncate it to a smaller size by
specifying a smaller allocation value using the SNAPSHOT ALLOCATION IS
option of the SQL ALTER DATABASE statement for the RDB$SYSTEM
storage area snapshot file. You can alternatively use the SNAPSHOT
ALLOCATION IS option of the SQL ALTER DATABASE ALTER STORAGE
AREA statement to modify snapshot allocation sizes for other storage
areas. Another way to control the growth of snapshot files is to set them
to deferred; use the SNAPSHOT IS ENABLED DEFERRED option of the
ALTER DATABASE statement. In this way, read/write transactions only write
before-images to the snapshot file when a read-only transaction is in progress.

4.1.10 Extents for After-Image Journal and Snapshot Files
For performance reasons, you should avoid extents by setting the allocation
for .aij and .snp files sufficiently large at the beginning. However, if extents
occur, you should select extent options to avoid multiple extents that further
degrade performance. You can accomplish this by specifying an extent value of
sufficient size so that one extent handles the maximum expansion of the file.

4.1.11 Accessing the Snapshot File
By including READ ONLY in your SQL SET TRANSACTION statement,
you have access to the snapshot file of the database. A read-only transaction
provides a consistent view of the database (a snapshot in time), as of the start
of the transaction. Because only shared or protected writers (not exclusive
writers) place before-images of anything they modify in the .snp file, a read-
only transaction can see those images without waiting for the writers to
release locks. Also, read-only transactions need not hold read locks on data to
maintain a consistent view. So the benefits of read-only transactions are:

• Consistent view of data at a single point in time

• Minimal lock conflict

To provide a read-only transaction with the correct version of the row (the
version that has been committed before the read-only transaction started),
Oracle Rdb uses TSNs. Oracle Rdb assigns a TSN to every transaction that
starts. If the transaction updates the database, the TSN of that transaction is
attached to the new version of the row.

4–118 Adjusting Parameters

Figure 4–10 shows a read-only transaction time line and how the read-only
transaction views various types of transactions.

Figure 4–10 Transactions Accessing the Database Snapshot File

1

2

3

4

5

Snapshot

6

7

8

Commit

Active

Snapper

Rollback

Active

Rollback

Rollback

Commit

Commit

Time

Read−Only Transaction
Starts Here

Transaction
Type

ZK−7537−GE

The snapshot file shows updates only for transactions that had already been
committed when the read-only transaction started. These include only type 1
transactions.

The transactions whose updates do not appear in the snapshot file can be
placed into one or more of the following categories:

• Transactions that were still active at the time the read-only transaction
started. These include types 3, 4, and 5.

• Transactions that started after the read-only transaction started. These
include types 6, 7, and 8.

• Transactions that were rolled back. This includes type 2.

4.1.12 Making the Snapshot File Optional for Oracle Rdb
When large database update programs or heavy multiuser update activity
occurs, all I/O operations necessary to complete the transactions may affect
general database performance. Oracle Rdb allows load or update programs
that perform many changes to rows in the database to take full advantage of
the I/O operation capabilities of a particular disk device. By disabling write
operations to the snapshot file, all I/O operations are concentrated on access to
the database itself.

Adjusting Parameters 4–119

Note

You should never delete a snapshot (.snp) file because it will corrupt
the database following a database backup and restore operation. If
you delete an .snp file, the pointers to the .snp file in the database root
(.rdb) file are not updated. Always disable snapshot files with an SQL
ALTER DATABASE statement if you do not want to use them.

When concurrent update access to the database is particularly heavy, Oracle
Rdb must write to the database, the .snp file, the .ruj file, and the .aij
file, if after-image journaling is enabled. You can eliminate writes to the
snapshot file by disabling snapshots, and reduce the I/O operations necessary
to complete each transaction. You can temporarily disable snapshots by using
the exclusive option when updating. Disabling snapshots should be a last
resort for improving performance for applications that are update-oriented. As
another option, you can place the .snp files on different disks from their storage
area (.rda) files. In almost all situations, the advantages of avoiding locking
and deadlock situations through the use of snapshot files far outweighs the I/O
overhead of snapshot files.

The following statements allow you to enable or disable user access and
database write operations to the .snp file when you specify the SNAPSHOT IS
DISABLED option:

• SQL CREATE DATABASE

• SQL ALTER DATABASE

• SQL IMPORT

When snapshot files are enabled, a read/write transaction that modifies data
records writes a before-image of the modified records to the snapshot files. If a
read-only transaction starts after the read/write transaction and tries to read
any of the records modified by the read/write transaction, Oracle Rdb instead
shows the read-only transaction the before-images of the modified records from
the snapshot file. The read-only transaction does not use any locks to read any
records.

When snapshot files are disabled, the behavior of both read-only and read/write
transactions is different than when snapshot files are enabled. When snapshot
files are disabled, read/write transactions do not write before-images of
modified records to the snapshot files; thus there are no before-images of
modified records for read-only transactions to read. Instead, a read-only
transaction must read actual data records as a read/write transaction does,
which requires that the read-only transaction use locks (as a read/write

4–120 Adjusting Parameters

transaction does) to get a consistent view of the data records. A read-only
transaction in a database with snapshot files disabled can be thought of as a
special type of read/write transaction; it locks data records like a read/write
transaction, but it still cannot update the database. Read-only transactions in
databases with snapshot files disabled get shared read locks to data records,
which enables all other users to read any records being read by the read-only
transactions.

When snapshots are disabled, actual read/write transactions can modify data
records and until the modifications are committed or rolled back, any other
transaction trying to access these data records will encounter a lock conflict.
Also, you may be prevented from accessing certain areas of the database
because an update transaction has locked index nodes that you require to
retrieve a set of rows from another table.

When other update transactions update rows in a table sequentially, Oracle
Rdb may place locks on the entire table for that transaction until that
transaction terminates. Therefore, retrieval operations that specify read-
only when snapshots are disabled may not execute in the same way as when
snapshots are enabled.

Remember, you disable snapshots to increase performance for certain classes of
database update operations where multiuser access by large numbers of users
retrieving rows is not critical. Such operations may be batch load, transaction
processing, or update programs that are scheduled to execute when interactive
access is not heavy. When these update operations complete and efficient
concurrent access is required again, you can enable snapshots. If no multiuser
access is required during the database update operation, then it is probably
better to use an exclusive transaction for the operation. Using an exclusive
transaction provides optimal performance for the update operation, and you
do not need to disable snapshot files using the SQL ALTER DATABASE or
IMPORT statement.

The SQL CREATE DATABASE statement in Example 4–14 creates a database
file, DR2:[RDB]mf_personnel.rdb, and, by default, creates and enables
the .snp file, DR2:[RDB]mf_pers_default.snp, for the defined storage area
RDB$SYSTEM.

Example 4–14 Creating a Snapshot File for the RDB$SYSTEM Storage Area

SQL> CREATE DATABASE FILENAME ’DR2:[RDB]mf_personnel’
cont> CREATE STORAGE AREA RDB$SYSTEM FILENAME ’DR2:[RDB]mf_pers_default.rda’;

Adjusting Parameters 4–121

The SQL CREATE DATABASE statement in Example 4–15 includes an explicit
qualifier that creates and enables the .snp file.

Example 4–15 Creating and Explicitly Enabling a Snapshot File for the
RDB$SYSTEM Storage Area

SQL> CREATE DATABASE FILENAME ’DR2:[RDB]mf_personnel’ SNAPSHOT IS ENABLED;

If you do not have sufficient space to contain all the possible database files or
if you do not need the .snp file, you may choose a small initial allocation size
for the .snp file, or you can set the snapshot allocation to 0 pages. Two cases
where setting the snapshot allocation to 0 is useful are:

• If you have disabled snapshots and you want to save some space

• If you have changed a read/write storage area to read-only, and you want
to save some additional space because the snapshot file is not used

Using the first option in the SQL CREATE DATABASE statement, you
can control the amount of disk space used by the .snp file as shown in
Example 4–16.

Example 4–16 Creating a Snapshot File for the RDB$SYSTEM Storage
Area—Limiting Size to 50 Pages

SQL> CREATE DATABASE FILENAME ’DR2:[RDB]mf_personnel’
cont> SNAPSHOT IS ENABLED
cont> CREATE STORAGE AREA RDB$SYSTEM FILENAME ’DR2:[RDB]mf_pers_default.rda’
cont> SNAPSHOT ALLOCATION IS 50 PAGES
cont> SNAPSHOT EXTENT IS 200 PAGES;

These SQL CREATE DATABASE and CREATE STORAGE AREA statements
do the following:

• Create a database file DR2:[RDB]mf_personnel.rdb

• Enable writing to the .snp file

• Create an .rda file DR2:[RDB]mf_pers_default.rda

• Create an .snp file for the mf_pers_default.rda storage area DR2:[RDB]mf_
pers_default.snp

• Set the allocation of the .snp file to 50 blocks

• Set the extent size for the .snp file to 200 pages

4–122 Adjusting Parameters

Example 4–17 uses the SQL ALTER DATABASE statement to modify two
database-wide parameters and do the following:

• Disable writing to .snp files

• Enable after-image journaling by specifying an .aij file name

The SQL ALTER DATABASE statement modifies the allocation and extent size
of the .snp file as shown in Example 4–17.

Example 4–17 Modifying Snapshot File Allocation and Extent Size

SQL> ALTER DATABASE FILENAME mf_personnel.rdb
cont> SNAPSHOT IS DISABLED
cont> JOURNAL FILE DR3:[RDB]newpers.aij
cont> SNAPSHOT ALLOCATION IS 3 PAGES
cont> SNAPSHOT EXTENT IS 200 PAGES;

This SQL ALTER DATABASE statement does the following:

• Disables snapshots

• Creates and enables a new .aij file, DR3:[RDB]newpers.aij

• Specifies a smaller .snp file allocation to truncate the .snp file

If the current .snp file allocation for the RDB$SYSTEM storage area
is larger than the size you requested, Oracle Rdb truncates the file.
Therefore, you can reclaim disk space by allocating a smaller allocation
size for the .snp file.

• Specifies the snapshot file extent size

Example 4–18 shows you how to specify snapshot extents for multivolume
databases using the SQL ALTER DATABASE statement.

Example 4–18 Specifying Snapshot Extents for a Multivolume Database

SQL> ALTER DATABASE FILENAME mf_personnel.rdb
cont> SNAPSHOT IS ENABLED
cont> JOURNAL FILE DR3:[RDB]newpers.aij
cont> SNAPSHOT ALLOCATION IS 200 PAGES
cont> SNAPSHOT EXTENT IS (MINIMUM OF 200 PAGES,
cont> MAXIMUM OF 1000 PAGES, PERCENT GROWTH IS 15);

Adjusting Parameters 4–123

4.1.13 Deferred Snapshots Capability
In general, enabling snapshots improves performance when a database
includes concurrent read-only and read/write transactions. The read-only
user can retrieve data without locking rows that other users want to access,
and can see a consistent version of the data. That is, the read-only user can
read rows that were updated by any transaction that committed before the
read-only transaction started but does not see any changes made to rows while
the read-only transaction is active. Performance improves because there is less
contention in a concurrent environment where read-only users would normally
encounter or generate record lock conflicts.

However, when snapshots are enabled, a shared or protected read/write
transaction must write a copy of the row to be updated to the .snp file. The
extra I/O operation overhead incurred by each read/write transaction is
worthwhile to a database application if read-only users are accessing the
database. If no read-only users are accessing the database (or if there are
very few read-only users and their transactions are short), you can reduce the
number of I/O operations to the snapshot file by enabling deferred snapshots.
When deferred snapshots are enabled, writing to the snapshot file is deferred
until a read-only transaction starts.

Note

The performance benefit of read-only transactions is that they do not
generally lock out, or get locked out by, read/write transactions (except
in SQL READ WRITE . . . RESERVING <table-name> EXCLUSIVE
transactions). In other words, if your performance problem is locking,
then enabling snapshots helps. If the bottleneck is disk I/O operations,
then enabled snapshots may hurt performance. By moving the .snp file
to a different disk, you may remove the disk I/O operation bottleneck.
You could also try enabling global buffers to reduce the disk I/O. If
these actions do not improve performance, then deferred snapshots may
be the answer. If disk I/O operation remains the problem, but locking
is not a problem, disabling snapshots might provide a solution. See
Section 8.1.3.6 for more information on snapshot files and performance.

The deferred snapshot feature is supported by the SNAPSHOT ENABLED
DEFERRED option in the SQL CREATE DATABASE, ALTER DATABASE,
and IMPORT statements. See the Oracle Rdb7 SQL Reference Manual or
online SQL help file for the syntax diagrams and reference information.

4–124 Adjusting Parameters

The default is SNAPSHOT ENABLED IMMEDIATE. When snapshots are
immediate, a read/write transaction always writes a before-image of the row it
is about to update to the .snp file. A read-only transaction (with the reserving
option or without it) always attempts to read a row in the data file first. But if
the row the read-only user wants to access is marked for update, the read-only
user reads the before-image of the row in the .snp file. When the read/write
user’s transaction ends, two things can happen:

• If the read/write user issues a COMMIT statement, the updated row is
written to the data file; however, active read-only users cannot see the
change because they continue to read the version of the row in the .snp file.

• If the read/write user enters a ROLLBACK statement, the before-image
copy of the row is retrieved from the read/write user’s .ruj file. Active
read-only transactions read the version of the row in the data file because
no changes have been applied.

If snapshots are deferred, then a read/write transaction needs to write to
the snapshot file only if read-only transactions are attached to the database
when the read/write transaction begins. If someone tries to start a read-only
transaction while read/write transactions are active, the read-only transaction
is forced to wait for the read/write to commit or roll back before it can begin.
The read-only transaction is forced to wait because the active read/write
transaction is not writing to the .snp file. If another read/write transaction
starts while the read-only transaction is waiting, this second read/write
transaction writes before-images to the .snp file.

Table 4–7 represents one possible SNAPSHOTS DEFERRED scenario.

Table 4–7 Transaction Behavior with Deferred Snapshots

Transaction
Write to
Snapshot? Comments

No users

Transaction A starts read/write No

Transaction B starts read/write No

Transaction C starts read-only Must wait

Transaction D starts read/write Yes

Transaction A commits

Transaction B commits

(continued on next page)

Adjusting Parameters 4–125

Table 4–7 (Cont.) Transaction Behavior with Deferred Snapshots

Transaction
Write to
Snapshot? Comments

Transaction C proceeds

Transaction E starts read/write Yes

Transaction C commits

Transaction F starts read/write No

The three snapshot modes can be summarized as follows:

• SNAPSHOT DISABLED

Transactions do not write to an .snp file. Read-only transactions are
converted to read/write. This results in lower I/O overhead for heavy
update environments but can lead to lower concurrency and more lock
contention because converted read-only transactions generate locks just
like read/write transactions.

• SNAPSHOT ENABLED IMMEDIATE

Shared and protected read/write transactions write before-images to the
snapshot file regardless of whether or not read-only transactions are
accessing the database. Read-only transactions never encounter locks
because old versions of updated rows are kept in the .snp file. This results
in higher concurrency but also more I/O.

Note that exclusive and batch-update transactions never write to an .snp
file because, by definition, they do not allow concurrency. See Section 3.8.3
and Section 3.8.3.5 for more information.

• SNAPSHOT ENABLED DEFERRED

When only read/write users are active, SNAPSHOT ENABLED
DEFERRED behaves like SNAPSHOT DISABLED; nothing is written
to the .snp file. Read-only transactions stall until all previously started
read/write transactions complete (they wait because the read/write
transactions did not write to the snapshot file). Once a read-only
transaction starts, the database behaves like the SNAPSHOT ENABLED
IMMEDIATE mode. When all read-only transactions have completed,
active read/write transactions continue writing to the .snp file but new
read/write transactions do not.

4–126 Adjusting Parameters

The SNAPSHOT ENABLED DEFERRED mode provides a balance between
having snapshots disabled and enabled immediate. This mode especially
benefits environments that fluctuate between update-intensive and read-
intensive. For example, a database may receive many updates during the
day (but few reads). Then during off hours, batch applications may read
the updates and generate reports.

To determine the current snapshot setting for a database, use the Performance
Monitor General Information screen. Example 4–19 shows an example of a
General Information screen. You can also use the SQL SHOW DATABASE
statement to display snapshot information.

Example 4–19 Determining the Current Setting for Snapshot Files

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-JUN-1996 13:20:16
Rate: 3.00 Seconds General Information Elapsed: 00:00:13.03
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Database created at 30-MAY-1996 14:20:42.77
Maximum user count is 50
Maximum node count is 16
Database open mode is Automatic
Database close mode is Automatic
Snapshot mode is Deferred
Statistics collection is enabled
Active storage area count is 10
Reserved storage area count is 0
Default recovery-unit journal filename is "Not Specified"
Date of last backup is 17-NOV-1858 00:00:00.00
Fast incremental backup is enabled

--
Exit Help Menu Options Refresh Set_rate Write !

The General Information screen is located in the Database Parameter
Information submenu.

4.2 Adjusting Storage Area Parameters
The following sections describe the storage area parameters and provide
information you can use to determine optimum values for your database
applications. Because you can often attain good performance with Oracle
Rdb using the default values for each storage area parameter, you should
use these sections as guidelines to adjust your database for applications with
unusual characteristics. For example, if your application relies heavily on
the segmented string data type, you may be able to improve performance

Adjusting Parameters 4–127

by placing the segmented strings in their own storage area with mixed page
format, specific SPAM thresholds and intervals, page size, and so forth.

Furthermore, if analysis of the database shows row fragmentation, you may
be able to reduce fragmentation by specifying certain database parameter
values using the SQL ALTER DATABASE, EXPORT, and IMPORT statements.
See Section 4.1.6 on row or record fragmentation for a complete discussion of
identifying and remedying a database with many fragmented records.

Table 4–8 summarizes the Oracle Rdb default values for storage area
parameters.

Table 4–8 Oracle Rdb Multifile Storage Area Parameter Values: Default,
Minimum, and Maximum

Storage Area Parameters
Default Values
(Minimum/Maximum)

Storage area name RDB$SYSTEM

Storage area file name Must be specified (.rda)

Allocation 400 pages (1/disk device size)

Page size 2 blocks (1 block/32 blocks)

Page format Uniform

SPAM thresholds (mixed format) 70%, 85%, 95%

SPAM thresholds (uniform format) 0%, 0%, 0%

SPAM interval 216 pages1

Storage area extent pages 100 pages (0/disk device size)

Storage area extent options Minimum 99 pages, maximum
9,999 pages, growth 20%

Snapshot file name Same as storage area file (.snp)

Snapshot file allocation 100 pages (0/disk device size)

Snapshot file extent pages 100 pages (0/disk device size)

Snapshot file extent options Minimum 99 pages, maximum
9,999 pages, growth 20%

1(Minimum: 216/Maximum: ((Blocks-per-page * 512)–22) * 4)

Use the SQL ALTER DATABASE statement and CREATE STORAGE AREA
clause to define new storage areas with new storage area and file names when
database changes are needed. The changes best implemented in this way are:
changing page size, SPAM intervals and thresholds, snapshot file name, and
page format. Once the new storage area is defined, modify the STORE clause

4–128 Adjusting Parameters

in the SQL ALTER STORAGE MAP statement to point to the new storage
area. Data is unloaded from the old storage area and loaded into the new
storage area. To complete the operation, delete the old storage areas with the
SQL DROP STORAGE AREA clause within the ALTER DATABASE statement.

Table 4–9 describes specific SQL statements and if each statement allows
you to specify storage area parameters, using the SQL CREATE DATABASE,
ALTER DATABASE, or IMPORT statement, respectively.

Table 4–9 SQL Statements Affecting Storage Area Parameters

Storage Area
Parameters

SQL CREATE
STORAGE
AREA

SQL ALTER
STORAGE
AREA

SQL IMPORT
or CREATE
STORAGE AREA

Specify storage area name Yes Yes Yes

Specify storage area
RDB$SYSTEM

Yes No Yes

Specify storage area file
name

Yes No Yes

Allocation Yes No Yes

Page size Yes No Yes

Page format Yes No Yes

Specify SPAM thresholds Yes No Yes

Specify SPAM interval Yes No Yes

Storage area extent pages Yes Yes Yes

Storage area extent
options

Yes Yes Yes

Snapshot file name Yes No Yes

Snapshot file allocation Yes Yes Yes

Snapshot file extent pages Yes Yes Yes

Snapshot file extent
options

Yes Yes Yes

Specify the read attribute No Yes No

Table 4–10 describes the specific Oracle RMU commands that allow you to
specify storage area parameters.

Adjusting Parameters 4–129

Table 4–10 Oracle RMU Commands Affecting Storage Area Parameters

Storage Area
Parameters

RMU
Restore

RMU
Copy_Database

RMU
Move_Area

Specify storage area name No No No

Specify storage area
RDB$SYSTEM

No No No

Specify storage area file
name

Yes Yes Yes

Allocation No No No

Page size Yes Yes Yes

Page format No No No

Specify SPAM thresholds Yes Yes Yes

Specify SPAM interval No No No

Storage area extent pages Yes Yes Yes

Storage area extent
options

No No No

Specify snapshot file name Yes Yes Yes

Snapshot file allocation Yes Yes Yes

Snapshot file extent pages No No No

Snapshot file extent
options

No No No

Specify the read attribute No No No

See the Oracle Rdb7 Guide to Database Maintenance and the Oracle RMU
Reference Manual for more information on using the RMU Restore, the RMU
Copy_Database, and the RMU Move_Area commands to modify specific storage
area parameters.

4.2.1 Gathering Storage Area Parameter Information
Sections 4.2.1.1 through 4.2.1.4 describe RMU Analyze commands and
Performance Monitor screens that you can use to gather storage area
information. For general information on using the RMU Analyze command,
refer to Section 2.1. For general information on using the Performance Monitor,
refer to Section 2.2.

4–130 Adjusting Parameters

4.2.1.1 RMU Analyze Areas Command
This section describes the format and content of the output when you use the
RMU Analyze command and specify the Areas [= storage-area-list] and the
Option [= Normal, Full, or Debug] qualifiers.

Using the RMU Analyze Areas Option=Normal Command
When you use the RMU Analyze Areas command and specify the Option=Normal
qualifier to gather information on the mf_personnel database, Oracle Rdb
displays a summary of important information for the storage area and each of
the logical areas defined for the storage area, as shown in Example 4–20.

Example 4–20 RMU Analyze Areas Command with the Option=Normal
Qualifier

$ RMU/ANALYZE/AREAS=EMPIDS_LOW/OPTION=NORMAL mf_personnel

--

Storage analysis for storage area: EMPIDS_LOW - file: $DUA0:[ORION]EMPIDS_LOW.RDA;1
Area_id: 2, Page length: 1024, Last page: 52

Bytes free: 35992 (68%), bytes overhead: 6111 (11%)
Spam count: 1, AIP count: 0, ABM count: 0
Data records: 222, bytes used: 11145 (21%)

average length: 50, compression ratio: .87
index records: 83, bytes used: 4768 (9%)

B-Tree: 0, Hash: 1978, Duplicate: 2790, Overflow: 0

Logical area: RDB$SYSTEM_RECORD for storage area : EMPIDS_LOW
Larea id: 57, Record type: 0, Record length: 215, Not Compressed

Data records: 0, bytes used: 593 (1%)

Logical area: EMPLOYEES_HASH for storage area : EMPIDS_LOW
Larea id: 58, Record type: 0, Record length: 215, Not Compressed

Data records: 26, bytes used: 989 (2%)
average length: 38

Logical area: EMPLOYEES for storage area : EMPIDS_LOW
Larea id: 63, Record type: 26, Record length: 121, Compressed

Data records: 37, bytes used: 2723 (5%)
average length: 74, compression ratio: .63

(continued on next page)

Adjusting Parameters 4–131

Example 4–20 (Cont.) RMU Analyze Areas Command with the Option=Normal
Qualifier

Logical area: JOB_HISTORY_HASH for storage area : EMPIDS_LOW
Larea id: 66, Record type: 0, Record length: 215, Not Compressed

Data records: 26, bytes used: 989 (2%)
average length: 38

Logical area: JOB_HISTORY for storage area : EMPIDS_LOW
Larea id: 69, Record type: 29, Record length: 42, Compressed

Data records: 102, bytes used: 3654 (7%)
average length: 36, compression ratio: .97

--

The EMPIDS_LOW storage area shown in Example 4–20 has four logical areas
as defined by the SQL CREATE INDEX and SQL CREATE STORAGE MAP
statements’ store clauses:

• EMPLOYEES_HASH hashed index

• EMPLOYEES table

• JOB_HISTORY_HASH hashed index

• JOB_HISTORY table

The summary information for the EMPIDS_LOW storage area is shown in
the following list. Entries in parentheses that follow each field description are
keyed to Example 4–20.

• Area_id

The storage area ID assigned when the storage area was created (2).

• Page length

The length of the page in bytes (1024).

• Last page

The last page number in the storage area (52).

• Bytes free

The total number of bytes available for storing data in the storage area and
the percentage of free space (35,992 bytes, (68%) free).

• Bytes overhead

4–132 Adjusting Parameters

The total number of bytes of overhead used in the storage area and the
percentage of space this value represents (6111 bytes, (11%) used).

• Spam count

The total number of SPAM pages in the storage area (1).

• AIP count

The total number of AIPs in the storage area (0).

• ABM count

The total number of ABM pages in the storage area (0).

• Data records

The total number of data rows in all logical areas (222). This number is
the sum of the following:

The total of the ‘‘Data records’’ counts from all the logical areas in the
storage area

The number of duplicate node records for all the hashed indexes from
all the logical areas in the storage area

The number of index nodes below the index root (including duplicate
nodes for non-ranked indexes and overflow nodes for ranked indexes)
for all the sorted indexes from all the logical areas in the storage area

• Bytes used

The total number of data bytes used in the storage area and the percentage
of space this value represents (11,145 bytes, (21%) used).

• Average length

The average row length for all records in the storage area (50).

• Compression ratio

The average compression ratio (compressed/uncompressed) for all rows in
the storage area (.87).

• Index records

The total number of index records for all indexes in the storage area (83).
For hashed indexes, this is the number of hash buckets and duplicate node
records. For sorted indexes, this is the number of index nodes (including
duplicate nodes for non-ranked indexes and overflow nodes for ranked
indexes) below the root node.

• Bytes used

Adjusting Parameters 4–133

The total number of bytes used by all index records and the space this
value represents for the storage area (4768 bytes, (9%) used).

• B-Tree, Hash, Duplicate, Overflow

The total number of bytes used for each of these types of records (B-tree is
0, Hash is 1978, Duplicates is 2790, Overflow is 0).

The information for the EMPLOYEES_HASH logical area is shown in the
following list. Entries in parentheses that follow each field description are
keyed to Example 4–20.

• Logical area name

The name of the logical area (EMPLOYEES_HASH).

• Storage analysis for storage area

The storage area name (EMPIDS_LOW).

• Larea id

The ID number assigned to the logical area when it is created (58).

• Record type

The table ID; indexes are always 0 (0).

• Record length

The maximum size of a record (uncompressed) plus overhead for this type
of record (215). This value is meaningless for logical areas that describe
indexes in mixed storage areas.

• Compression setting

Record compression—indicates whether records are compressed or not
compressed (Not compressed).

• Data records

The total number of data records in the logical area (26). This total
includes hash buckets for hashed indexes, root nodes for sorted indexes,
and data rows for tables. For hashed indexes, this total does not include
duplicate node records. For sorted indexes, this total does not include index
nodes below the index root (including duplicate nodes and overflow nodes).

• Bytes used

Total number of bytes of storage and percentage space used by all data
rows (hash buckets for hashed indexes; root nodes for sorted indexes;
data rows for tables) in the logical area. This value does not include any
overhead; it is the same as the SIZE column on a per record basis in the

4–134 Adjusting Parameters

output display when you specify the Option=Debug qualifier (989 bytes,
(2%) used).

• Average length

The average compressed or uncompressed length of all records (hash
buckets, root nodes, and table data rows) in the logical area (38).

• Compression ratio

The average compression ratio (compressed/uncompressed) for all records.
This statistic is for tables only; because hashed index records are not
compressed, no value is displayed.

In Example 4–20, the EMPIDS_LOW storage area, several statistics are
important and it is worthwhile to keep track of them:

• The bytes free and percent free space in the storage area

There are 35,992 bytes free; 68 percent of the storage area is available for
storing more records. Using the average record length value (50 bytes),
you can get a relative estimate of the number of records that can fit in the
storage area (719 more records). This is a quick relative estimate. To be
more precise, you can estimate the record number based on the average
record length for each record in the logical area.

When you are clustering rows, estimating available storage becomes more
complicated because you are storing both parent and child rows together on
the same page, making entries in the hash buckets, and perhaps creating
more hash buckets. If you know the number of duplicates for each parent
row and how many more parent rows you are storing, you can calculate
approximately how many more parent and child rows could be stored in the
table. You must also consider the hash structure and the amount of space
it uses. The Option=Debug qualifier described later in this section gives
you this information.

The set of histograms displayed with the Option=Full qualifier (described
later in this section) can help you to understand the way in which your
database is growing.

When you compare the percent bytes free to percent bytes used plus
percent overhead bytes from different runs of the analysis output during
the life of your database, you can determine how the database is growing
and changing.

• The data record bytes used and overhead bytes used, and the percent space
these values represent

Adjusting Parameters 4–135

The 222 total data rows in the storage area use 21 percent of the space in
the storage area. By inspecting each logical area and counting the number
of records, you can determine the following information:

Thirty-seven EMPLOYEES rows use 2723 bytes (5 percent) and
102 JOB_HISTORY rows use 3654 bytes (7 percent), for a total of
12 percent of the space in the storage area.

The 26 hash buckets in each hashed index logical area
(EMPLOYEES_HASH and JOB_HISTORY_HASH) total 52 hash
buckets that use 1978 bytes. There are 83 index records. The
difference, (83 – 52 = 31), is the number of duplicate node records
that use 2790 bytes. Both hash structures use 4768 bytes or 9 percent
of the storage area.

The 6111 bytes of overhead represent 11 percent of the space used in
the storage area. Together, data rows (12 percent), index records (9
percent), and overhead (11 percent) use 32 percent of the space in the
storage area.

From this information, an additional statistic, proportional space use, for
logical areas and overhead can be calculated for a storage area. This statistic
is a relative estimate of the proportional amount of space each logical area uses
within the storage area along with the overhead for the area. This statistic
can be used to project space use by logical areas in a storage area with the
assumption that the nature and distribution of the records remain nearly the
same. When this statistic is calculated on a regular basis with each analysis,
it can indicate changes in the nature and distribution of space used by records
for each logical area.

Proportional space use can be calculated for each logical area and overhead in
the following way: compare the percent space each logical area uses in addition
to the overhead; the ratio in this example is 5:2:7:2:11. This ratio represents
the ratio of space used by 37 EMPLOYEES data rows (5 percent) to 26
EMPLOYEES_HASH hashed index records (2 percent) to 102 JOB_HISTORY
data rows (7 percent) to 28 JOB_HISTORY_HASH hash index records (2
percent) to overhead (11 percent), respectively. From this comparison, the
proportional space use ratios are as follows:

• For EMPLOYEES data rows to EMPLOYEES_HASH hash buckets, 2.5:1

• For JOB_HISTORY data rows to JOB_HISTORY_HASH hash buckets and
duplicate node records, 3.5:1

• For EMPLOYEES and EMPLOYEES_HASH data rows to JOB_HISTORY
and JOB_HISTORY_HASH data rows, 0.78:1

4–136 Adjusting Parameters

• For all logical area records to overhead, 1.45:1

These ratios can be useful in estimating future space utilization in the
storage area if the nature and distribution of duplicate records do not change
significantly. For overhead space use, these are relative estimates in that for
small databases such as the mf_personnel database, the amount of overhead
seems large. As the database grows, the overhead space use does not increase
at the same rate as the database. You can regularly issue the RMU Analyze
command with the Areas qualifier to calculate this rate of increase for overhead
space use relative to the increasing space utilization by all logical areas within
storage areas in the database.

Using the RMU Analyze Areas Option=Full Command
When you use the RMU Analyze Areas command and specify the Option=Full
qualifier to gather information on the mf_personnel database, Oracle Rdb
displays the same information in format and content that displays for the
Option=Normal qualifier and, in addition, three types of histograms:

• Storage area page space use by page histogram

This histogram summarizes the percentage of page space used by data for
all logical areas compared with the total number of pages in the storage
area. Page use is categorized into deciles. Values in parentheses are the
total number of pages that fit within the decile category.

• Logical area page space use by page histogram

This histogram summarizes the percentage of page space used ((used
/used+free)*100) by data for a specific logical area compared with the
number of pages that contain data. Page use is categorized into deciles.
Values in parentheses are the total number of pages that fit within the
decile category.

• Logical area percent of maximum record length by record histogram

This logical area histogram summarizes each record’s percentage of
maximum size (uncompressed) for its record type. Percentage of maximum
record length is categorized into deciles. Values in parentheses are the
total number of records that fit within the decile category.

When you use the RMU Analyze Areas command with the Option=Full
qualifier to analyze the EMPIDS_LOW storage area, Oracle RMU displays
the following information:

• Summary information

• The storage area page space use by page histogram (labeled % used vs #
pages) for the EMPIDS_LOW storage area

Adjusting Parameters 4–137

• Logical area information

• Pair of logical area histograms (labeled used/used+free vs # pages and % of
max length vs # of records) for each of four logical areas, the EMPLOYEES_
HASH hashed index, the EMPLOYEES table, the JOB_HISTORY_HASH
hashed index, and the JOB_HISTORY table.

This information is shown in Example 4–21.

Example 4–21 RMU Analyze Areas Command with the Option=Full Qualifier

$ RMU/ANALYZE/AREAS=EMPIDS_LOW/OPTION=FULL mf_personnel

--

Storage analysis for storage area: EMPIDS_LOW - file: $DUA0:[ORION]EMPIDS_LOW.RDA;1
Area_id: 2, Page length: 1024, Last page: 52

Bytes free: 35992 (68%), bytes overhead: 6111 (11%)
Spam count: 1, AIP count: 0, ABM count: 0
Data records: 222, bytes used: 11145 (21%)

average length: 50, compression ratio: .87
index records: 83, bytes used: 4768 (9%)

B-Tree: 0, Hash: 1978, Duplicate: 2790, Overflow: 0

% used vs # pages

>90% | (0)
80-90% | (0)
70-80% |======== (4)
60-70% |== (1)
50-60% |====== (3)
40-50% |== (1)
30-40% |==================== (10)
20-30% |============ (6)
10-20% |== (1)

0-10% |== (26)

Logical area: RDB$SYSTEM_RECORD for storage area : EMPIDS_LOW
Larea id: 57, Record type: 0, Record length: 215, Not Compressed

Data records: 0, bytes used: 593 (1%)

(continued on next page)

4–138 Adjusting Parameters

Example 4–21 (Cont.) RMU Analyze Areas Command with the Option=Full Qualifier

used/used+free vs # pages

>90% | (0)
80-90% | (0)
70-80% | (0)
60-70% | (0)
50-60% |= (1)
40-50% | (0)
30-40% | (0)
20-30% |== (2)
10-20% |= (1)

0-10% |== (47)

% of max length vs # records

>90% | (0)
80-90% | (0)
70-80% | (0)
60-70% | (0)
50-60% | (0)
40-50% | (0)
30-40% | (0)
20-30% | (0)
10-20% | (0)

0-10% |== (51)

Logical area: EMPLOYEES_HASH for storage area : EMPIDS_LOW
Larea id: 58, Record type: 0, Record length: 215, Not Compressed

Data records: 26, bytes used: 989 (2%)
average length: 38

used/used+free vs # pages

>90% | (0)
80-90% |== (1)
70-80% | (0)
60-70% |== (1)
50-60% |== (1)
40-50% |== (1)
30-40% | (0)
20-30% | (0)
10-20% |===== (2)

0-10% |== (20)

(continued on next page)

Adjusting Parameters 4–139

Example 4–21 (Cont.) RMU Analyze Areas Command with the Option=Full Qualifier

% of max length vs # records

>90% | (0)
80-90% | (0)
70-80% | (0)
60-70% | (0)
50-60% | (0)
40-50% | (0)
30-40% |== (1)
20-30% |===== (2)
10-20% |=========== (4)

0-10% |== (19)

Logical area: EMPLOYEES for storage area : EMPIDS_LOW
Larea id: 63, Record type: 26, Record length: 121, Compressed

Data records: 37, bytes used: 2723 (5%)
average length: 74, compression ratio: .63

used/used+free vs # pages

>90% |=== (1)
80-90% |======= (2)
70-80% | (0)
60-70% |=== (1)
50-60% | (0)
40-50% | (0)
30-40% |=== (1)
20-30% |======= (2)
10-20% |============== (4)

0-10% |== (15)

% of max length vs # records

>90% | (0)
80-90% | (0)
70-80% | (0)
60-70% |========= (5)
50-60% |== (30)
40-50% |=== (2)
30-40% | (0)
20-30% | (0)
10-20% | (0)

0-10% | (0)

(continued on next page)

4–140 Adjusting Parameters

Example 4–21 (Cont.) RMU Analyze Areas Command with the Option=Full Qualifier

Logical area: JOB_HISTORY_HASH for storage area : EMPIDS_LOW
Larea id: 66, Record type: 0, Record length: 215, Not Compressed

Data records: 26, bytes used: 989 (2%)
average length: 38

used/used+free vs # pages

>90% | (0)
80-90% |== (1)
70-80% | (0)
60-70% |== (1)
50-60% |== (1)
40-50% |== (1)
30-40% | (0)
20-30% | (0)
10-20% |===== (2)

0-10% |== (20)

% of max length vs # records

>90% | (0)
80-90% | (0)
70-80% | (0)
60-70% | (0)
50-60% | (0)
40-50% | (0)
30-40% |== (1)
20-30% |===== (2)
10-20% |=========== (4)

0-10% |== (19)

Logical area: JOB_HISTORY for storage area : EMPIDS_LOW
Larea id: 69, Record type: 29, Record length: 42, Compressed

Data records: 102, bytes used: 3654 (7%)
average length: 36, compression ratio: .97

(continued on next page)

Adjusting Parameters 4–141

Example 4–21 (Cont.) RMU Analyze Areas Command with the Option=Full Qualifier

used/used+free vs # pages

>90% |======= (1)
80-90% |=============== (2)
70-80% |======= (1)
60-70% |======= (1)
50-60% | (0)
40-50% |=============== (2)
30-40% |=============== (2)
20-30% |======================= (3)
10-20% |== (7)

0-10% |== (7)

% of max length vs # records

>90% | (0)
80-90% |== (65)
70-80% |============================== (37)
60-70% | (0)
50-60% | (0)
40-50% | (0)
30-40% | (0)
20-30% | (0)
10-20% | (0)

0-10% | (0)

--

The storage area page space use by page histogram (% used vs # pages)
summarizes the percentage of page space used by data for all logical areas
versus the total number of pages in the storage area. The shape of the
histogram depends on the type of application and the history of the database.
If you have just loaded the database without specifying a PLACEMENT VIA
clause in the CREATE STORAGE MAP statement, most pages fall at the top or
bottom of the histogram. Oracle Rdb stores data on each database page until
the page is full, then proceeds to the next page. When all the data has been
stored, some pages are left empty.

In the EMPIDS_LOW storage area, most pages fall at the bottom of the chart.
The EMPLOYEES and JOB_HISTORY rows in this storage area are placed
using the PLACEMENT VIA INDEX clause that use the EMPLOYEES_HASH
and JOB_HISTORY_HASH hashed indexes, respectively.

Further analysis of the logical areas with the aid of the two logical area
histograms, used/used+free vs # pages and % of max length vs # of records,
indicates the following:

4–142 Adjusting Parameters

• The EMPLOYEES_HASH and JOB_HISTORY_HASH logical areas’ records
are not compressed. The size of the hash bucket in each index averages
38 bytes. Most records (19 of 26 for both EMPLOYEES_HASH and JOB_
HISTORY_HASH) are no more than 10 percent of maximum length. The
hash buckets are spread out over 26 of 52 pages, and most pages where
hash buckets are stored have sufficient free space to allow growth of hash
bucket and new records.

• For the EMPLOYEES table, rows are compressed and have an average
record length of 74 bytes and an average compression ratio of .63. Most
rows (32 of 37) are less than 60 percent of their maximum length. Thirty-
seven EMPLOYEES rows are spread out over 26 pages. Most pages (23 of
26 pages) where EMPLOYEES rows are stored have sufficient free space to
store additional EMPLOYEES rows.

• For the JOB_HISTORY table, rows are compressed and have an average
record length of 36 bytes and an average compression ratio of .97. More
than half of the rows (65 of 102) are between 80 and 90 percent of their
maximum record length. A total of 102 rows are spread out over 26 pages.
Most of the pages (22 of 26 pages) where the JOB_HISTORY rows are
stored have sufficient free space to store additional JOB_HISTORY rows.

If the database is frequently updated, the display may show that many pages
are nearly 100 percent full. Extensive updates may result in fragmented rows.
As this process continues, performance may deteriorate.

When the display of the RMU Analyze Areas command shows that a large
number of pages are more than 60 percent full, it may be time to examine
database performance. As a general rule, storage areas should be defined with
30 to 50 percent free space.

If database performance is poor and the RMU Analyze Areas display reveals
a large number of unused pages or fragmented rows, it may be necessary to
use the SQL ALTER DATABASE statement, define new storage areas, specify
sets of optimal parameters for the new storage areas, and modify the storage
maps to load data from old storage areas to respective new storage areas. See
the Oracle Rdb7 Guide to Database Maintenance for more information on this
procedure.

Adjusting Parameters 4–143

Using the RMU Analyze Areas Option=Debug Command
When you use the RMU Analyze Areas command and specify the Option=Debug
qualifier to gather information on the EMPIDS_LOW storage area, Oracle Rdb
displays the output in two parts:

• The first part contains a detailed accounting of the contents of each page in
the storage area. This part shows the following in this order:

Summary information for each logical area

A legend that defines the 11 possible types of records found on a page

A detailed accounting of the contents of each storage area page

• The second part contains the same information that displays for the
Option=Full qualifier; see the Option=Full qualifier for the RMU Analyze
Areas command earlier in this section for information on the format and
content of this output.

Example 4–22 shows the information displayed when you use the RMU
Analyze Areas command and specify the Option=Debug qualifier.

Example 4–22 RMU Analyze Areas Command with the Option=Debug Qualifier

$ RMU/ANALYZE/AREAS=EMPIDS_LOW/OPTION=DEBUG mf_personnel
0--
0
0 Storage-area-name Area-ID Page-len Last-page File-name
0
0 Logical-area-name Larea-ID Rec-type Rec-len Compressed
0--
0
1 EMPIDS_LOW 2 1024 52 $DUA0:[ORION]EMPIDS_LOW.RDA;1
0
2 RDB$SYSTEM_RECORD 57 0 215 F
2 EMPLOYEES_HASH 58 0 215 F
2 EMPLOYEES 63 26 121 T

(continued on next page)

4–144 Adjusting Parameters

Example 4–22 (Cont.) RMU Analyze Areas Command with the Option=Debug Qualifier
2 JOB_HISTORY_HASH 66 0 215 F
2 JOB_HISTORY 69 29 42 T
0
0
0--
0
0 TYPES: 0 SPAM 4 B-tree index 8 First data fragment
0 1 AIP 5 Hash index 9 First fragment compressed
0 2 ABM 6 data record 10 Next data fragment
0 3 System record 7 Compressed data 11 Next fragment compressed
0
0 AREA LAREA PNO FREE SIZE EXPANDED TYPE TOTAL-SIZE
0--
0
3 2 0 1 948 54 54 0 54
3 2 57 2 62 18 18 3 18
3 2 63 2 62 71 116 7 71
3 2 58 2 62 49 49 5 49
3 2 63 2 62 73 116 7 73
3 2 69 2 62 38 37 7 38
3 2 66 2 62 49 49 5 49
3 2 69 2 62 38 37 7 38
3 2 0 2 62 90 90 5 90
3 2 69 2 62 38 37 7 38
3 2 69 2 62 32 37 7 32
3 2 69 2 62 38 37 7 38
3 2 69 2 62 38 37 7 38
3 2 0 2 62 90 90 5 90
3 2 69 2 62 32 37 7 32
3 2 69 2 62 38 37 7 38
3 2 57 3 964 5 5 3 5
3 2 57 4 964 5 5 3 5
3 2 57 5 344 18 18 3 18
3 2 63 5 344 73 116 7 73
3 2 58 5 344 30 30 5 30
3 2 69 5 344 38 37 7 38
3 2 69 5 344 38 37 7 38
3 2 69 5 344 32 37 7 32
3 2 69 5 344 32 37 7 32

.

.

.

The format and content of the output for the RMU Analyze Areas=EMPIDS_
LOW command specifying the Option=Debug qualifier are grouped by header
as follows (described for the EMPLOYEES_HASH logical area and the first line
(PNO 1) in the detailed output section):

• Main header

Storage-area-name

Adjusting Parameters 4–145

The storage area name (EMPIDS_LOW).

Area-ID

The storage area ID (2).

Page-len

The storage area page length (1024).

Last-page

The last page number in the storage area (52).

File-name

The storage area file name ($DUA0:[ORION]empids_low.rda;1).

• Secondary header (describing only the EMPLOYEES_HASH logical area)

Logical-area-name

The logical area name (EMPLOYEES_HASH).

Larea-id

The logical area ID (58).

Rec-type

The record type (table ID) for the logical area; indexes are always 0 (0).

Rec-len

The maximum size of a record (uncompressed) plus overhead of this
type (215). This value is meaningless for logical areas in mixed storage
areas.

Compressed

Record compression, a coded value, T=compressed, F=not compressed
(F).

• The record types legend

A legend that denotes the coded value for the 11 possible record types found
on a page. This coded value is used in the TYPE column in the detailed
page contents section of the output.

• Detailed storage area page contents (described here for the first line,
PNO=1)

AREA

Storage area ID number (2).

LAREA

4–146 Adjusting Parameters

Logical area ID number (0).

PNO

Storage area page number; all logical area IDs found on the page are
grouped by page number (1).

FREE

The number of free bytes in the logical area on the specified page (948).

SIZE

The actual record size (in bytes), compressed or uncompressed, in the
logical area (54).

EXPANDED

The expanded record size (in bytes) if the record is compressed (54).

TYPE

A coded field for the record type; see the TYPES legend on the output
table for an interpretation of the coded value in this column (0,
indicating a SPAM page record).

TOTAL-SIZE

The actual total record length, including all record fragments for the
record in the logical area (54).

• Option=Full information

See the information on using the RMU Analyze Areas Option=Full
command earlier in this section for a description of this part of the output.

From a scan of the TYPE column in Example 4–22 and a further inspection
of the output, you can determine that there are no fragmented rows (TYPE
= 8, 9, 10, or 11) on any of the data pages for any of the tables. This is some
of the most useful information in the display. A row is fragmented if it grows
too large for the amount of available space on its page or if it is larger than a
database page when initially stored. If your database has a large number of
fragmented rows, then you should consider several possible remedies:

• Use the SQL ALTER DATABASE statement to define new storage areas
and specify an optimal set of parameters for the storage areas (such as
a larger page size) or lower the SPAM thresholds and modify the storage
maps to effect a load of data from the old storage areas to the respective
new storage areas. See the Oracle Rdb7 Guide to Database Maintenance
for more information on this procedure.

Adjusting Parameters 4–147

• Use the SQL EXPORT and IMPORT statements and create a new database
with a larger page size or lower the SPAM thresholds if the page size is
large enough.

If several storage areas have fragmentation problems, using the SQL ALTER
DATABASE statement may offer the best remedy to the problem.

By inspecting each logical area on a page, you can determine what logical
areas are found on the page, the size of the logical area’s records, and the
amount of free space. For example, for page 2 (PNO 2) in Example 4–22,
the four different logical areas plus the system record use 824 bytes of page
space, leaving 62 free bytes on the page. This is considered a full page because
another parent EMPLOYEES row cannot be stored on the page with its child
JOB_HISTORY row. The following records are stored on page 2:

• Two EMPLOYEES rows (116 bytes each, total 232 bytes)

• Eight JOB_HISTORY rows (37 bytes each, total 296 bytes)

• One SYSTEM record (18 bytes)

• Two hash buckets (49 bytes each, total 98 bytes)

• Two duplicate node records (90 bytes each, total 180 bytes)

By analyzing the page contents in this way, you can get a good idea of how
space is being utilized on pages in a storage area. This information coupled
with the histogram output can give you an early indication of potential
problems. You should perform analysis on your database on a regular
basis, especially if your application primarily updates the database, which
is continuously growing. If you know the page range desired, you can use the
Start and End qualifiers to analyze just this desired range of pages.

You can also use the output from the RMU Analyze Area command specifying
the Option=Debug qualifier as input to a program of your own design to devise
your own summary reports. For example, you can summarize information by
logical area and by page.

4.2.1.2 RMU Analyze Lareas Display
This section describes the format and content of the output when you use the
RMU Analyze command with the Lareas and Option qualifiers.

4–148 Adjusting Parameters

Using the RMU Analyze Lareas Option=Normal Command
When you use the RMU Analyze command and specify the Lareas and
Option=Normal qualifiers, Oracle Rdb displays a summary of important
information for all logical areas defined within each storage area. The
information that is displayed is identical in format and content to that
produced when you use the RMU Analyze command and specify the Areas and
Option=Normal qualifiers. See Using the RMU Analyze Areas Option=Normal
Command in Section 4.2.1.1 for a description of this information.

A practical use for this command is to selectively display specific logical areas
within a specific storage area by specifying the Areas qualifier along with
the Lareas qualifier. Note that the logical areas with the same name and
logical ID number within the RDB$SYSTEM storage area do not display if
they are not specified. When you use the RMU Analyze command and specify
the Areas=DEPARTMENTS, Lareas=(DEPARTMENTS, DEPARTMENTS_
INDEX), and Option=Normal qualifiers, the information for just these areas is
displayed, as shown in Example 4–23.

Example 4–23 RMU Analyze Areas Command with the Lareas and
Option=Normal Qualifiers

$ RMU/ANALYZE/AREAS=DEPARTMENTS /LAREAS=(DEPARTMENTS,DEPARTMENTS_INDEX) -
_$ /OPTION=NORMAL mf_personnel

--

Storage analysis for storage area: DEPARTMENTS - file: $DUA0:[ORION]DEPARTMENTS.RDA;1
Area_id: 5, Page length: 1024, Last page: 28

Bytes free: 25144 (88%), bytes overhead: 2062 (7%)
Spam count: 1, AIP count: 0, ABM count: 0
Data records: 27, bytes used: 1466 (5%)

average length: 54, compression ratio: .85
index records: 1, bytes used: 428 (1%)

B-Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

Logical area: DEPARTMENTS_INDEX for storage area : DEPARTMENTS
Larea id: 72, Record type: 0, Record length: 215, Not Compressed

Data records: 1, bytes used: 428 (1%)
average length: 428

(continued on next page)

Adjusting Parameters 4–149

Example 4–23 (Cont.) RMU Analyze Areas Command with the Lareas and
Option=Normal Qualifiers

Logical area: DEPARTMENTS for storage area : DEPARTMENTS
Larea id: 73, Record type: 28, Record length: 55, Compressed

Data records: 26, bytes used: 1038 (4%)
average length: 40, compression ratio: .80

--

Note that the DEPARTMENTS logical area, even though it also exists within
the RDB$SYSTEM storage area and is empty, is not displayed because this
storage area was not specified.

Using the RMU Analyze Lareas Option=Full Command
When you use the RMU Analyze Lareas command and specify the Option=Full
qualifier, the same information displays that displays for the RMU Analyze
Lareas command with the Option=Normal qualifier. In addition, the three
types of histograms described in Section 4.2.1.1 for the RMU Analyze command
using the Areas and Option=Full qualifiers are also displayed. Refer to this
section for a description of the histograms.

Using the Lareas and Option=Full qualifiers displays the following information,
in this order:

• Summary information and a summary histogram for all logical areas by
storage area

• Specific information for each logical area and the storage area page space
use by page histogram

• A pair of histograms for each logical area within each storage area

Using the RMU Analyze Lareas Option=Debug Command
When you use the RMU Analyze Lareas command and specify the Option=Debug
qualifier, the output forms two parts as described for the RMU Analyze Areas
Option=Debug command in Section 4.2.1.1. However, only the information for
the selected logical areas and the system records (logical area ID 0) is shown in
the output:

• The first part contains a detailed accounting of the contents of each page in
the storage area. This part shows the following in this order:

Summary information for each logical area

4–150 Adjusting Parameters

A legend that defines the 11 possible types of records found on a page

A detailed accounting of the contents of each storage area page

• The second part contains the same information that displays for the
Option=Full qualifier; see the Option=Full qualifier for the RMU Analyze
Areas command in Section 4.2.1.1 for information on the format and
content of this output.

Refer to the descriptions of the RMU Analyze Areas command with the
Option=Debug qualifier in Section 4.2.1.1 for information and an example
of this display.

4.2.1.3 Performance Monitor Storage Area Information Screen
Oracle Rdb allows you to display information for each storage area in the
database. Select the Storage Area Information option from the Database
Parameter Information submenu. The following is an example of a Storage
Area Information screen:

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1996 13:57:59
Rate: 3.00 Seconds Storage Area Information Elapsed: 03:37:05.72
Page: 1 of 60 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

Storage area "RDB$SYSTEM"
Area ID number is 1
Filename is "RDBVMS_USER1:[LOGAN.V70]MF_PERS_DEFAULT.RDA;1"
Access mode is read/write
Page format is uniform
Page size is 2 blocks
- Current physical page count is 1036
Row level locking is enabled
Row caching is disabled
No row cache is defined for this area
Extends are enabled
- Extend area by 20%, minimum of 99 pages, maximum of 9999 pages
- Area has been extended 8 times
Volume set spreading is enabled
Snapshot area ID number is 31
SPAMs are enabled
- Interval is 1089 data pages
--
Exit Help Menu >next_page <prev_page Options Refresh Set_rate Write !

See the Performance Monitor help for information about this screen.

Adjusting Parameters 4–151

4.2.1.4 Performance Monitor I/O Statistics Screen
Oracle Rdb allows you to display I/O statistics for each file in the database.
When you select IO Statistics (by file) in the Performance Monitor, Oracle Rdb
displays a menu of the files that comprise the database and for which you can
view statistics. The following is an example of an I/O Statistics (by file) menu:

Node: ALPHA3 14-MAR-1995 14:18:24
Rate: 3.00 Seconds Select File Elapsed: 00:05:54.89
Page: 1 of 1 RDBVMS +-------------------------------+ .RDB;1 Mode: Online
---------------------- | A. File IO Overview | -----------------------
statistic......... | B. Device IO Overview | average......
name.............. | C. Device Information | per.trans....
transactions | D. root file | 0 0.0
verb successes | E. AIJ file | 0 0.0
verb failures | F. RUJ file | 0 0.0

| G. ACE file |
synch data reads | H. all data/snap files | 0 0.0
synch data writes | I. data file MF_PERS_DEFAULT | 0 0.0
asynch data reads | J. data file EMPIDS_LOW | 0 0.0
asynch data writes | K. data file EMPIDS_MID | 0 0.0
RUJ file reads | L. data file EMPIDS_OVER | 0 0.0
RUJ file writes | M. data file DEPARTMENTS | 0 0.0
AIJ file reads | N. data file SALARY_HISTORY | 0 0.0
AIJ file writes | O. data file JOBS | 0 0.0
ACE file reads | P. data file EMP_INFO | 0 0.0
ACE file writes | Q. <<more>> | 0 0.0
root file reads | | 17 0.0
root file writes +-------------------------------+ 0 0.0

--
Type <return> or <letter> to select file, <control-Z> to cancel menu

Note that the display includes all .rda and .snp files. You cannot use this
screen in graph format. Note that the information applies from the time that
your Performance Monitor session began, or since the accumulators were last
reset using the Reset option.

For information about each of the fields shown in this display, see the
Performance Monitor help.

The following example shows the File I/O Statistics screen for all data/snap
files:

4–152 Adjusting Parameters

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1996 12:52:53
Rate: 3.00 Seconds File IO Statistics Elapsed: 02:31:59.67
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

For File: All data/snap files
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
total I/Os 0 36 12.0

(Synch. reads) 0 0 0.0 36 12.0
(Synch. writes) 0 0 0.0 0 0.0
(Extends) 0 0 0.0 0 0.0
(Asynch. reads) 0 0 0.0 0 0.0
(Asynch. writes) 0 0 0.0 0 0.0

statistic........... blocks.transferred......... stall.time.(x100)...........
name................ avg.per.I/O.. total........ avg.per.I/O... total........
total I/Os 6.0 216 0.6 25

(Synch. reads) 6.0 216 0.6 25
(Synch. writes) 0.0 0 0.0 0
(Extends) 0.0 0 0.0 0
(Asynch. reads) 0.0 0 0.0 0
(Asynch. writes) 0.0 0 0.0 0

--
Exit Help Menu Options Reset Set_rate Unreset Write !

OpenVMS
VAX

OpenVMS
Alpha

The Device IO Overview screen displays the synchronous and asynchronous
read and write I/O counts for all devices that contain live or snapshot storage
areas, or the database root file.

The Device IO Overview screen does not display information for devices on
which .ruj, .aij, or .ace files reside.

Storage areas that are added to or deleted from the database will be
automatically reflected in the screen.

The following example shows a Device IO Overview screen:

Adjusting Parameters 4–153

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1996 13:07:36
Rate: 3.00 Seconds Device IO Overview (Unsorted total I/O) Elapsed: 02:46:42.70
Page: 1 of 1 KODD$:[R_ANDERSON.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Device.Name......... Num Sync.Reads Sync.Writes Async.Reads Async.Writes
111DUA12: 2 52 4 0 0
111DUA155: 4 0 0 0 0
111DUA46: 19 218 5 144 0

--
Config Exit Help Menu >next_page <prev_page Options Set_rate Write !

The ‘‘Device.Name’’ column displays the expanded storage area device name;
concealed logicals are expanded to eliminate duplicated entries.

The ‘‘Num’’ column displays the number of live and snapshot storage areas
(and possibly the root file) included in the device information.

The remaining columns display information based on the selected configu-
ration. The Device IO Overview screen name in the header region indicates
which display configuration has been selected.

See the Performance Monitor help for information on the Device IO Overview
configuration options. ♦

OpenVMS
VAX

OpenVMS
Alpha

You can use the Device Information screen to determine when a storage area
device is low on disk space. The following example shows a Device Information
screen:

4–154 Adjusting Parameters

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1996 13:10:46
Rate: 3.00 Seconds Device Information Elapsed: 02:49:52.38
Page: 1 of 1 USER$:[ORACLEUSER.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Device.Name......... Status. #Err Volume.Label FreeBlocks Max#Blocks %Full
111DUA46: Mounted 0 KODA_USER2 377727 2376153 84.1
111DUA12: Mounted 0 KODA_TEST1 595920 1216665 51.0
111DUA13: Mounted 0 KODA_TEST2 6350 1216665 99.4

--
Exit Help Menu >next_page <prev_page Options Set_rate Write !

The Device Information screen provides an online view of the storage area
device information local to a particular database.

See the Performance Monitor help for a complete description of this screen. ♦

4.2.2 Page Size
The page size value determines the number of 512-byte blocks Oracle Rdb uses
for the storage page of the database. The default value is 2 blocks per page, or
a total of 1024 bytes.

If your row size is larger than 950 bytes, or you have segmented strings
that are larger than 950 bytes, you need a larger page size. You might also
want to increase the page size value if you have a bill of materials (recursive
relationship) application.

It is important to remember that, in addition to user data and free space, each
database page stores such items as:

• Page header

A fixed-length portion of the page that contains information about the page,
including the number of bytes available.

• Line index

A directory to all the storage segments on the page.

• Record version number

Adjusting Parameters 4–155

Because of its relational capabilities, Oracle Rdb allows for dynamic
record type modification. The user always views the record as the current
definition of the record type. To keep track of the record type versions, each
user record contains a version number field.

Each page, therefore, makes fewer bytes available for user data than the
actual page size value specified for the PAGE SIZE parameter indicates. The
overhead for each page is estimated to be about 7 to 10 percent. The amount
of overhead depends on the size of the database page. The larger the page,
the less overhead space Oracle Rdb requires to maintain information about
the contents of the page. Therefore, when you calculate the row sizes in the
database, allow enough space in the database page size for the largest row as
well as for the overhead.

For retrieval, the database operates most efficiently when the database page
is nearly full. For this reason, try to choose a page size that accommodates
the size of the rows in your tables. If the page size is too large, you waste
space. Sequential I/O operations benefit from large pages, while random I/O
operations benefit from small pages. However, if the page size is too small,
Oracle Rdb may split (fragment) rows across more than one database page.

As you fill a database page, you use up free space until space is no longer
available for a complete row. If you then modify a row and make it larger,
Oracle Rdb may need to fragment the row. A fragmented row is divided across
the available free space. Pointers attached to the row’s fragments indicate
the location of other fragments. However, retrieving fragmented rows is more
costly than retrieving whole rows. For this reason, you should try to avoid
fragmentation when you design and maintain your database.

A common use for the RMU Dump command is to track down problems with
storage allocation and record placement by dumping the SPAM pages, and then
the individual data pages. You can use the Spams_Only qualifier of the RMU
Dump command to dump only the SPAM pages in the selected storage areas
and page range. See the Oracle RMU Reference Manual for more information
on using the RMU Dump command.

4.2.3 Allocation Size
When you specify the initial database space with the ALLOCATION parameter,
Oracle Rdb reserves disk space for the database file based on the PAGE SIZE
value you include in the SQL CREATE DATABASE statement for each storage
area you define with the SQL CREATE STORAGE AREA statement. The
allocation size is the amount of space used to store the rows or records in each
storage area when it is created. Note that pages are allocated in groups of
three and rounded up to the nearest increment of three pages. For example, if
you specify an allocation of 25 pages, the storage area will actually be allocated

4–156 Adjusting Parameters

27 pages. The default value of ALLOCATION is 400 pages. If you use the
default page size, the initial allocation size of the storage area file is 800
512-byte disk blocks. If you know how large each storage area will be, or if you
are using the SQL EXPORT statement, set the allocation to the final size of
each storage area. This causes Oracle Rdb to allocate space contiguously where
possible and results in better system performance for large databases.

4.2.4 Page Format
The default storage area page format is uniform. This page format is suitable
for everything except special cases such as parent-child relationships with
exact match retrievals. In other words, use a uniform page format unless
some special case dictates otherwise. This is generally the case for many
applications with fewer than 10 to 15 tables that are small-to-medium-sized
single-file databases. The same is true for multifile databases where some
tables are stored in the default RDB$SYSTEM storage area, while others
are stored individually in separate storage areas. These types of applications
would probably use sorted indexes for accessing rows in moderately sized
tables, and sequential access methods for accessing rows in small tables. For
some applications in this category with one or several large tables, access to
rows might be improved with a hashed index defined in a storage area with a
mixed page format.

In applications with more than 15 tables that are medium-to-very-large
complex databases, a uniform page format is again suitable for everything
except special cases such as parent-child relationships with exact-match
retrievals. While large, complex databases may benefit from judicious use of
mixed page format, there is not a one-to-one relationship between database
size, complexity, and storage area type. Some of the benefits include the use
of hashed indexes, optimizing SPAM intervals, controlling SPAM thresholds,
and storing parent-child rows together in the same mixed storage area. The
benefits of selecting SPAM thresholds and optimizing SPAM intervals are
described in more detail in Section 4.2.5 and Section 4.2.6, while the benefits of
using hashed indexes with parent-child tables are described in Section 3.9.7.

4.2.5 General Guidelines for Selecting SPAM Threshold Values
A SPAM page manages the free space on a range of data pages by means of a
2-bit entry for each data page. The 2-bit entry indicates the threshold value
for a particular page. You can set three threshold values, which indicate the
relative fullness of a page for pages in storage areas with a mixed page format,
or for pages in logical areas with a uniform page format.

Adjusting Parameters 4–157

Thresholds are calculated against the maximum amount of free space on a
page. To determine the maximum amount of free space on a page, subtract the
page overhead from the page size. For example, a page in the DEPARTMENTS
storage area in the mf_personnel database is 1024 bytes and has 60 bytes of
page overhead, which means the maximum amount of free space is 964 bytes.

Refer to the Oracle Rdb7 Guide to Database Maintenance for more information
on SPAM pages and thresholds.

4.2.5.1 Thresholds for Mixed Format Pages
For multifile databases with mixed page format storage areas, you can set
three threshold values associated with the SPAM page free space inventory
lists. The default values are 70, 85, and 95 percent. These represent ranges of
guaranteed free space on each data page as 30, 15, and 5 percent, respectively.

When a table has a storage map that specifies placement via index and the
target page is full, the pages in the buffer are searched for free space. If a page
in the buffer has sufficient space to store the record, the record is stored. If no
space is found among the pages in the buffer, then Oracle Rdb scans the SPAM
pages in the storage area for sufficient space to store the record. Searching the
pages in the buffer for free space before scanning the SPAM pages can improve
the performance of storing records by reducing the I/O operations needed to
store them.

Oracle Rdb uses a storage algorithm that guarantees free space when using
SPAM thresholds and a placement index. With this algorithm, Oracle Rdb
never stores a new record on a page that has reached the third threshold
value. Thus, a table that uses the PLACEMENT VIA INDEX clause with a
hashed index no longer writes directly to the target page without first verifying
that the page has not reached the third threshold value.

By knowing the length of the rows being stored in an area and the size of
each database page, you can select threshold values that speed up row storage.
The goal is to minimize the amount of searching necessary to store a complete
row on one database page. Threshold values should be based on the size
and storage frequency of the rows being stored in the database. Follow these
general guidelines to select SPAM threshold values:

• Set threshold values that guarantee a typical row (in terms of size and
frequency of storage) can be stored at least one more time on a single
database page.

• Use the THRESHOLDS ARE option for each storage area if the length of
the rows varies greatly from one storage area to another.

4–158 Adjusting Parameters

• Within each storage area, if you are storing multiple tables (EMPLOYEES
and JOB_HISTORY, for instance) of different sizes (a common occurrence),
do the following:

Set the lowest threshold value so that it guarantees any pages that
have not reached this fullness percentage can still store the largest
record type at least once. You may have to increase the number of
blocks per page to accommodate this arrangement. To increase the
blocks per page, use the PAGE SIZE IS page-blocks BLOCKS option in
the SQL CREATE DATABASE or SQL IMPORT statement.

Set the middle threshold value so that the pages that have not reached
this fullness percentage can still store at least one more of the smaller
record types (an index or table row).

Oracle Rdb never stores a row on a page at the highest threshold. You
can use the value set for this threshold to reserve free space on a page
for growth due to row updates.

The third threshold value determines at what percentage you consider the
database page to be completely full. If the third threshold value is set at 85,
no rows are stored on database pages with less than 15 percent free space
remaining. Most importantly, Oracle Rdb does not waste time examining any
database pages that have reached the third fullness threshold.

Note

The SPAM algorithm assumes that data compression will not shrink
the row being stored. Therefore, when you think about the size of your
largest rows, use the row’s uncompressed size.

You can determine the number of bytes for each threshold in a storage area as
follows:

SPAM_THRESHOLD_n = THRESHOLD_n * (maximum free space - 1) /100

Example 4–24 shows the number of bytes for each threshold for the
DEPARTMENTS storage area when the default thresholds of 70, 85, and
95 percent are used.

Adjusting Parameters 4–159

Example 4–24 Determining the Size of Thresholds for the DEPARTMENTS
Storage Area

SPAM_THRESHOLD_1 = 70 * 963 / 100 = 674

SPAM_THRESHOLD_2 = 85 * 963 / 100 = 818

SPAM_THRESHOLD_1 = 95 * 963 / 100 = 914

4.2.5.2 Thresholds for Uniform Format Pages
You can specify three threshold values for a logical area when you create or
change a storage map or index. By taking into account data compression or
index node size when you set threshold values, you can maximize the number
of rows stored on a page. Oracle Rdb is aware of the compressed row or index
node size. In the previous example, you could set the third threshold value
at 94 percent, indicating a fullness threshold of 893 bytes (950 * .94), leaving
57 bytes of free space. This would guarantee pages in this logical area would
store the maximum number of 60-byte rows. Refer to the Oracle Rdb7 Guide to
Database Maintenance for information on how SPAM pages work.

You can set threshold values for a logical area by using the SQL CREATE
or ALTER INDEX statement or the CREATE or ALTER STORAGE MAP
statement.

The following examples illustrate how to set thresholds for logical areas.
Refer to the Oracle Rdb7 SQL Reference Manual for more information on SQL
syntax.

SQL> CREATE INDEX index_name
cont> ON table_name (column_name)
cont> TYPE IS SORTED
cont> STORE USING (column_name)
cont> IN area_name (THRESHOLDS ARE (value1,value2,value3))
cont> WITH LIMIT OF (literal)
cont> IN area_name (THRESHOLDS ARE (value1,value2,value3))
cont> WITH LIMIT OF (literal)
cont> OTHERWISE IN area_name (THRESHOLDS ARE (value1,value2,value3));

The preceding example defines a sorted index and uses the store clause to
partition the index into three different storage areas. The THRESHOLDS ARE
clauses can establish up to three threshold values for each storage area.

4–160 Adjusting Parameters

SQL> CREATE STORAGE MAP map_name FOR table_name
cont> STORE USING (column_name)
cont> IN area_name (THRESHOLDS ARE (value1,value2,value3))
cont> WITH LIMIT OF (literal)
cont> IN area_name (THRESHOLDS ARE (value1,value2,value3))
cont> WITH LIMIT OF (literal)
cont> OTHERWISE IN area_name (THRESHOLDS ARE (value1,value2,value3))
cont> ENABLE COMPRESSION;

The preceding example creates a storage map, sets the logical area thresholds
for three specified, partitioned areas, and enables compression. Note that
if you specify THRESHOLDS ARE (0,0,0) or if you do not specify threshold
values for an area, Oracle Rdb uses the default storage behavior. That is, a
page is marked as full or not full, depending on whether the page can store at
least one more row.

SQL> CREATE STORAGE MAP map_name FOR table_name
cont> STORE IN area_name
cont> ENABLE COMPRESSION
cont> THRESHOLDS ARE (value1,value2,value3);

The preceding example creates a storage map that stores all the rows from a
single table in one area and sets the logical area thresholds.

SQL> ALTER STORAGE MAP map_name
cont> STORE IN area_name
cont> ENABLE COMPRESSION
cont> THRESHOLDS ARE (value1,value2,value3)
cont> PLACEMENT VIA INDEX index_name;

The preceding example uses the PLACEMENT VIA INDEX clause to store
rows in a storage area. The threshold values established apply only to areas
added during this CREATE STORAGE MAP statement. Areas subsequently
added by an ALTER STORAGE MAP statement default to (0,0,0) unless you
specify an explicit THRESHOLDS ARE clause.

To determine the threshold values for a logical area, you need to calculate the
free space available on a database page and the compression ratio of rows that
will be stored on the page. Refer to the Oracle Rdb7 Guide to Database Design
and Definition for information on calculating page size; refer to Section 4.3.3
for information on the data compression option.

You can use the SQL SHOW STORAGE MAP and SHOW INDEX statements
to display the original text used to create a storage map or index. You can
use the RMU Dump Larea=RDB$AIP or RMU Extract Item=(Index,Storage)
commands to display current information about thresholds.

Adjusting Parameters 4–161

4.2.6 Optimizing SPAM Intervals
Accepting the default value of 216 pages for the SPAM interval is fine when
your database is medium-sized (smaller than 100 Mb or 200,000 blocks), for
example, and is relatively simple (containing only 10 to 15 tables). Generally,
for a large database (between 100 Mb and 1 Gb in size) that contains only
10 to 15 tables, a few storage areas might be quite large (between 10 Mb or
20,000 blocks and 100 Mb or 200,000 blocks). When you know that the storage
areas are going to range between 10 to 100 Mb, you should consider adjusting
specific storage area parameters. In this case, select a SPAM interval value
that matches your application’s activity (insert-intensive as opposed to update-
intensive activity) for that storage area. A 10 Mb storage area with a page size
of 2 blocks has 10,000 pages and, with a default SPAM interval of 216 pages,
provides about 46 SPAM pages for the storage area. A 100 Mb storage area
can have about 460 SPAM pages or potentially many more I/O operations to
find free space for records.

A higher interval value can result in greater contention for SPAM pages in an
update-intensive environment. That is, with a single SPAM page that contains
information about the amount of free space on many data pages, some users
who attempt to update rows in the range of data pages maintained by that
SPAM page may have to wait until other users complete their use of the free
space inventory list on that SPAM page.

A summary of the INTERVAL IS trade-offs is presented in the following list:

• A larger interval value for a storage area may help reduce disk I/O
operations when Oracle Rdb is trying to locate free space for an insert-
intensive application. But a larger interval value may also increase SPAM
page locking when many simultaneous update users are accessing this
portion of the storage area for an update-intensive application.

• With smaller interval values, you can reduce SPAM page-locking problems
for update-intensive environments. However, smaller interval values can
increase the number of disk I/O operations (and elapsed time) required to
locate free row space for an insert-intensive application.

Determine whether disk I/O operations or SPAM page locking costs your
applications more time, and adjust the INTERVAL IS value accordingly. To
determine the disk I/O operations, use the IO Statistics (by file) screen in
the Performance Monitor. See Section 2.2 for information on invoking and
interpreting the Performance Monitor screens.

4–162 Adjusting Parameters

See the Oracle Rdb7 SQL Reference Manual for syntax and arguments
for setting interval and threshold values. See the Oracle Rdb7 Guide to
Database Maintenance for more information on SPAM thresholds, for additional
examples on setting interval and threshold values, and for details on what the
threshold values mean and how you can use them to your application’s
advantage.

4.2.7 Placing Snapshot, Storage Area, and Database Files on Separate Disks
You can reduce disk I/O contention in certain Oracle Rdb applications by
placing the snapshot (.snp) file and the database root (.rdb) file on separate
disk devices for single-file databases. For multifile databases, you can reduce
disk I/O contention by placing storage area (.rda) files on different disks from
the .rdb and .snp files. You should place .ruj and .aij files on disks where disk
contention can be minimized and database recovery can be carried out most
efficiently when needed. Be sure that .aij files are not placed on disks with
other database files.

Placing .snp files apart from .rda files for the same storage area improves
performance in applications that have simultaneous read-only and read/write
transactions. It also improves performance for applications that have
many read/write transactions when snapshots are enabled and the default
IMMEDIATE option is used because the I/O operations are spread over
two disks. Also, because disk write operations at commit time are done
asynchronously, response time improves by spreading the I/O operations over
two or more disks.

Remember that the location of the .snp file for each .rda file is specified in
the SQL CREATE DATABASE statement with the CREATE STORAGE AREA
clause. You cannot change the .snp file name using the ALTER STORAGE
AREA clause of the ALTER DATABASE statement.

4.2.8 Initializing, Moving, and Changing the Allocation of Snapshot Files
The RMU Repair command can be used to initialize, move, and change the
allocation of .snp files. These operations may be necessary when a disk with a
snapshot file has a hardware problem or is removed in a hardware upgrade, or
when a snapshot file has grown too large and you want to truncate it. Oracle
Corporation recommends that you use the RMU Backup command to perform
a full backup of your database before using the RMU Repair command on the
database.

You can initialize the snapshot files for specific storage areas by using the
RMU Repair Nospams Initialize=Snapshots command with the Area qualifier.
Example 4–25 shows how to initialize departments.snp and jobs.snp for the
mf_personnel database.

Adjusting Parameters 4–163

Example 4–25 Using RMU Repair to Initialize Existing Snapshot Files for
Specific Storage Areas in a Database

$ RMU/REPAIR/NOSPAMS/INITIALIZE=SNAPSHOTS/AREA=(DEPARTMENTS,JOBS) mf_personnel

$ rmu -repair -nospams -initialize=snapshots
> -area=(DEPARTMENTS,JOBS) mf_personnel

By using the RMU Repair Nospams Initialize=Snapshots command without
the Area qualifier, you can initialize all the snapshot files for the mf_personnel
database, as shown in Example 4–26.

Example 4–26 Using RMU Repair to Initialize All the Existing Snapshot Files
for a Database

$ RMU/REPAIR/NOSPAMS/INITIALIZE=SNAPSHOTS mf_personnel

$ rmu -repair -nospams -initialize=snapshots mf_personnel

When you specify the CONFIRM keyword with the Initialize=Snapshots
qualifier, you can use RMU Repair to not only initialize, but also to optionally
rename, move, and change the allocation of snapshot files. The CONFIRM
keyword causes Oracle Rdb to prompt you for a name and allocation for one or
more snapshot files. If you use the Area qualifier, you can select the snapshot
files in the database that you want to modify. If you omit the Area qualifier,
all the snapshot files for the database will be initialized and Oracle Rdb will
prompt you interactively for an alternative file name and allocation for each
snapshot file. By specifying a new file name for a snapshot file, you can change
the location of the snapshot file. By specifying a new allocation for a snapshot
file, you can truncate a snapshot file or make it larger.

OpenVMS
VAX

OpenVMS
Alpha

In Example 4–27, the RMU Repair command is used to initialize and rename
departments.snp, to initialize and move salary_history.snp, and to initialize,
move, and truncate jobs.snp.

Example 4–27 Using RMU Repair to Initialize, Rename, Move, and Truncate
Snapshot Files for Specific Storage Areas in a Database

$ RMU/REPAIR/NOSPAMS/INITIALIZE=SNAPSHOTS=CONFIRM -
_$ /AREA=(DEPARTMENTS,JOBS,SALARY_HISTORY) mf_personnel
%RMU-I-FULBACREQ, A full backup of this database should be performed after
RMU/REPAIR

(continued on next page)

4–164 Adjusting Parameters

Example 4–27 (Cont.) Using RMU Repair to Initialize, Rename, Move, and
Truncate Snapshot Files for Specific Storage Areas in
a Database

Area DEPARTMENTS snapshot filename [SQL1:[TEST]DEPARTMENTS.SNP;1]: NEW_DEPT
Area DEPARTMENTS snapshot file allocation [10]?
Area SALARY_HISTORY snapshot filename [SQL1:[TEST]SALARY_HISTORY.SNP;1]: SQL2:
Area SALARY_HISTORY snapshot file allocation [10]?
Area JOBS snapshot filename [SQL1:[TEST]JOBS.SNP;1]: SQL2:[TEST2]
Area JOBS snapshot file allocation [10]? 5
$
♦

Use the Performance Monitor Storage Area Information screen located in the
Database Parameter Information submenu to display the new location and new
allocation of a snapshot file.

You should be careful when specifying names for new snapshot files with RMU
Repair. If you specify the name of a file that already exists and was created for
the database, it will be initialized as you requested.

If you mistakenly initialize a live database file in this way, you should not
use the database until the error has been corrected. Use the RMU Restore
command to restore the database to the condition it was in when you backed
it up just prior to issuing the RMU Repair command. If you did not back
up the database before issuing the RMU Repair command, you will have to
restore from your most recent backup file and then recover from .aij files (if the
database had after-image journaling enabled).

If you specified the wrong snapshot file (for example, if you specified JOBS.SNP
for all the snapshot file name requests in Example 4–27), you can correct this
by issuing the RMU Repair command again with the correct snapshot file
names.

After the RMU Repair operation completes, delete old snapshot files and use
the RMU Backup command to perform a full backup of your database.

You can truncate snapshot files on line. This means the database can continue
to be available to users during the snapshot file truncation.

Example 4–28 shows how to truncate a database or storage area snapshot file
on line.

Adjusting Parameters 4–165

Example 4–28 Truncating a Database or Storage Area Snapshot File On Line

SQL> -- Truncate the database snapshot file on line:
SQL> ALTER DATABASE FILENAME mf_personnel
cont> SNAPSHOT ALLOCATION IS 18 PAGES;
SQL> --
SQL> -- Truncate a storage area snapshot file on line:
SQL> ALTER DATABASE FILENAME mf_personnel
cont> ALTER STORAGE AREA EMPIDS_LOW
cont> SNAPSHOT ALLOCATION IS 6 PAGES;

When an online snapshot truncation operation is started, Oracle Rdb waits
for a read-only transaction quiet point and then temporarily adopts a deferred
snapshot mode for the database. When the deferred snapshot mode is in
effect, Oracle Rdb truncates the snapshot file to the requested size. Read-
only transactions are blocked when the truncation is taking place. After the
snapshot file has been truncated, Oracle Rdb restores the database to the
previous snapshot mode (the deferred snapshot mode is in effect only while the
snapshot file is being truncated).

During online snapshot truncation, users acquire two new locks when they
attach to the database, resulting in a slight increase in the time it takes them
to attach to the database.

Truncating snapshot files is recommended in the following situations:

• After long read-only transactions

• To prevent the performance degradation caused by large, fragmented
snapshot files

4.2.9 Snapshot File Growth and Prestarted Transactions
A prestarted transaction is an optimization that Oracle Rdb uses to reduce
I/O when a transaction starts. With prestarted transactions enabled (the
default), when a process issues a COMMIT or ROLLBACK statement
to end a read/write transaction, Oracle Rdb immediately starts a new
read/write transaction for that process (the new read/write transaction that
is immediately started is called a prestarted transaction). Oracle Rdb
gives the new prestarted transaction the same transaction sequence number
(TSN) as the original read/write transaction. Prestarted transactions save I/O
because Oracle Rdb does not have to reserve a new TSN from the database
root file.

Oracle Rdb also lets you disable prestarted transactions. You might want to
disable prestarted transactions when they are causing excessive snapshot file
growth in a database. More I/O to the root file is incurred for new transactions
when you disable prestarted transactions.

4–166 Adjusting Parameters

Figure 4–11 shows how Oracle Rdb handles the writing of snapshot records
when prestarted transactions are enabled. In Figure 4–11, four transactions
are accessing a database. The first transaction is a read/write transaction,
the second a read-only transaction, the third a read/write transaction, and the
fourth a read-only transaction. Oracle Rdb assigns a ‘‘cutoff TSN’’ to the oldest
read/write transaction in the database. If the TSN for a record on a snapshot
page is less than the cutoff TSN, then Oracle Rdb can reclaim the record.

Figure 4–11 Prestarted Transactions and Snapshot File Growth

Read/write TSN: 136 (cutoff TSN) Read/write TSN: 136 (prestarted)

Read−only TSN: 136

Read/write transaction writes before−images of updated rows to snapshot file

NU−2766A−RA

Read/write TSN: 137

Read−only TSN: 137

Read/write transaction writes before−images of updated rows to snapshot file

COMMIT or
ROLLBACK

Because prestarted transactions are enabled in Figure 4–11, when the first
read/write transaction (TSN 136, the cutoff TSN) commits or rolls back, a
new read/write transaction is prestarted. Oracle Rdb gives TSN 136 to the
prestarted transaction, so TSN 136 remains the cutoff TSN. Because the first
read/write transaction (TSN 136) is still the oldest read/write transaction in
the database, Oracle Rdb cannot reclaim the snapshot records written by the
cutoff TSN’s process and by the other read/write transaction (TSN 137). The
snapshot files will continue to grow until one of the following occurs:

• The cutoff TSN’s process detaches from the database or is terminated.

• The cutoff TSN’s process performs a commit or rollback operation, then
starts an explicit read-only transaction that is rolled back immediately:

SQL> COMMIT;
SQL> SET TRANSACTION READ ONLY;
SQL> ROLLBACK;

Adjusting Parameters 4–167

Usually, having prestarted transactions enabled does not cause snapshot files
to grow excessively. However, if your application uses a server that is attached
to the database for long periods of time, the cutoff TSN may be very old. In
this situation, the snapshot files grow large because Oracle Rdb can reclaim
fewer snapshot records.

In Example 4–29, output from the RMU Dump Users command provides more
information on the prestarted transactions scenario shown in Figure 4–11.
Example 4–29 shows the two read/write transactions and two read-only
transactions in Figure 4–11. Prestarted transactions are used for the
read/write transactions. Note that after the first read/write transaction
(TSN 136, the cutoff TSN) is committed or rolled back, Oracle Rdb begins a
prestarted transaction with the same TSN, so this transaction remains the
cutoff TSN.

Example 4–29 Displaying Transactions When Prestarted Transactions Are
Enabled

$! While the four transactions are in progress:
$ RMU/DUMP/USERS mf_personnel
Active user with process ID 71A01142

Stream ID is 1
Monitor ID is 1
Transaction ID is 19
Recovery journal filename is "SQL_USER1:[RDM$RUJ]MF_PERSONNEL$009685067AF25
C00.RUJ;1"
Read/write transaction in progress !
Transaction sequence number is 136 "

Active user with process ID 71A0126C
Stream ID is 1
Monitor ID is 1
Transaction ID is 86
Snapshot transaction in progress
Transaction sequence number is 136 #

Active user with process ID 71A01269
Stream ID is 1
Monitor ID is 1
Transaction ID is 166
Recovery journal filename is "SQL_USER1:[RDM$RUJ]MF_PERSONNEL$0096850694F0
B7A0.RUJ;1"
Read/write transaction in progress
Transaction sequence number is 137 $

(continued on next page)

4–168 Adjusting Parameters

Example 4–29 (Cont.) Displaying Transactions When Prestarted
Transactions Are Enabled

Active user with process ID 71A0126D
Stream ID is 1
Monitor ID is 1
Transaction ID is 246
Snapshot transaction in progress
Transaction sequence number is 136 #

$!
.
.
.

$! After the first read/write transaction (the cutoff TSN) has
$! committed or rolled back:
$ RMU/DUMP/USERS mf_personnel
Active user with process ID 71A01142

Stream ID is 1
Monitor ID is 1
Transaction ID is 19
Recovery journal filename is "SQL_USER1:[RDM$RUJ]MF_PERSONNEL$009685067AF2
5C00.RUJ;1"
Read/write transaction in progress %
Transaction sequence number is 136 &

Active user with process ID 71A0126C
Stream ID is 1
Monitor ID is 1
Transaction ID is 86
Snapshot transaction in progress
Transaction sequence number is 136 '

Active user with process ID 71A01269
Stream ID is 1
Monitor ID is 1
Transaction ID is 166
Recovery journal filename is "SQL_USER1:[RDM$RUJ]MF_PERSONNEL$0096850694F0
B7A0.RUJ;1"
Read/write transaction in progress
Transaction sequence number is 137

Active user with process ID 71A0126D
Stream ID is 1
Monitor ID is 1
Transaction ID is 246
Snapshot transaction in progress
Transaction sequence number is 136 '

$

The following callout numbers are keyed to Example 4–29.

! The first read/write transaction is the oldest read/write transaction in the
database, therefore it is the cutoff TSN.

Adjusting Parameters 4–169

" The cutoff TSN is TSN 136.

Read-only (snapshot) transactions receive the TSN of the oldest read/write
transaction (the cutoff TSN).

$ The second read/write transaction receives the next TSN, which is TSN
137.

% After the cutoff TSN is committed or rolled back, Oracle Rdb automatically
prestarts a new read/write transaction.

& The prestarted transaction retains the same TSN as the original
transaction, therefore this transaction is still the cutoff TSN.

' The oldest read/write transaction in the database is still TSN 136, so
Oracle Rdb cannot reclaim the snapshot records written by the cutoff TSN’s
process and by the other read/write transaction (TSN 137).

Example 4–30 shows the effect that disabling prestarted transactions has for
the scenario shown in Figure 4–11. Example 4–30 shows the two read/write
transactions and two read-only transactions in Figure 4–11. However, unlike
Example 4–29, in this example prestarted transactions are disabled. Note that
after the first read/write transaction (TSN 136, the cutoff TSN) is committed
or rolled back, Oracle Rdb does not begin a prestarted transaction, as shown
by the ‘‘No transaction in progress’’ message in the RMU Dump Users output.
This allows Oracle Rdb to reclaim snapshot records written before the cutoff
TSN committed or rolled back (all snapshot records with TSNs of 136 or less).

Example 4–30 Displaying Transactions When Prestarted Transactions Are
Disabled

$! While the four transactions are in progress:
$ RMU/DUMP/USERS mf_personnel
Active user with process ID 71A01142

Stream ID is 1
Monitor ID is 1
Transaction ID is 19

(continued on next page)

4–170 Adjusting Parameters

Example 4–30 (Cont.) Displaying Transactions When Prestarted
Transactions Are Disabled

Recovery journal filename is "SQL_USER1:[RDM$RUJ]MF_PERSONNEL$009685067AF2
5C00.RUJ;1"
Read/write transaction in progress !
Transaction sequence number is 136 "

Active user with process ID 71A0126C
Stream ID is 1
Monitor ID is 1
Transaction ID is 86
Snapshot transaction in progress
Transaction sequence number is 136 #

Active user with process ID 71A01269
Stream ID is 1
Monitor ID is 1
Transaction ID is 166
Recovery journal filename is "SQL_USER1:[RDM$RUJ]MF_PERSONNEL$0096850694F0
B7A0.RUJ;1"
Read/write transaction in progress
Transaction sequence number is 137 $

Active user with process ID 71A0126D
Stream ID is 1
Monitor ID is 1
Transaction ID is 246
Snapshot transaction in progress
Transaction sequence number is 136 #

$!
.
.
.

$! After the first read/write transaction (the cutoff TSN) has
$! committed or rolled back:
$ RMU/DUMP/USERS mf_personnel
Active user with process ID 71A01142

Stream ID is 1
Monitor ID is 1
Transaction ID is 19
Recovery journal filename is "SQL_USER1:[RDM$RUJ]MF_PERSONNEL$009685067AF2
5C00.RUJ;1"
No transaction in progress %

Active user with process ID 71A0126C
Stream ID is 1
Monitor ID is 1
Transaction ID is 86
Snapshot transaction in progress
Transaction sequence number is 136 '

(continued on next page)

Adjusting Parameters 4–171

Example 4–30 (Cont.) Displaying Transactions When Prestarted
Transactions Are Disabled

Active user with process ID 71A01269
Stream ID is 1
Monitor ID is 1
Transaction ID is 166
Recovery journal filename is "SQL_USER1:[RDM$RUJ]MF_PERSONNEL$0096850694F0
B7A0.RUJ;1"
Read/write transaction in progress
Transaction sequence number is 137 &

Active user with process ID 71A0126D
Stream ID is 1
Monitor ID is 1
Transaction ID is 246
Snapshot transaction in progress
Transaction sequence number is 136 '

$

The following callout numbers are keyed to Example 4–30.

! The first read/write transaction is the oldest read/write transaction in the
database, therefore it is the cutoff TSN.

" The cutoff TSN is TSN 136.

Read-only (snapshot) transactions receive the TSN of the oldest read/write
transaction (the cutoff TSN).

$ The second read/write transaction receives the next TSN, which is TSN
137.

% After the cutoff TSN is committed or rolled back, Oracle Rdb does not
prestart a new transaction, as shown by ‘‘No transaction in progress’’ in the
display.

& The first read/write transaction ends when it is committed or rolled back,
and the second read/write transaction (TSN 137) becomes the oldest
read/write transaction in the database (the cutoff TSN).

' Because the oldest read/write transaction is now TSN 137, Oracle Rdb
can reclaim the snapshot records with a TSN of 136 or less. In this case,
Oracle Rdb would be able to reclaim the snapshot records by the process
with TSN 136.

To enable prestarted transactions, specify or omit the PRESTARTED
TRANSACTIONS ARE ON clause of the SQL ATTACH, CONNECT, DECLARE
ALIAS, CREATE DATABASE, and IMPORT statements.

4–172 Adjusting Parameters

To disable prestarted transactions, specify the PRESTARTED TRANSACTIONS
ARE OFF clause of the SQL ATTACH, CONNECT, DECLARE ALIAS,
CREATE DATABASE, and IMPORT statements.

If the PRESTARTED TRANSACTIONS ARE ON or PRESTARTED
TRANSACTIONS ARE OFF clauses are used with the CREATE DATABASE or
IMPORT statement, they apply only to the current attach. They do not become
permanent database attributes.

See the descriptions of the SQL ATTACH, CONNECT, DECLARE ALIAS,
CREATE DATABASE, and IMPORT statements in the Oracle Rdb7 SQL
Reference Manual for more information on specifying the PRESTARTED
TRANSACTIONS ARE ON and PRESTARTED TRANSACTIONS ARE OFF
clauses.

4.3 Adjusting Storage Map Parameters
The following sections describe the RMU Analyze Placement command and two
storage map parameters (PLACEMENT VIA INDEX and data compression),
and provide information you can use to determine optimum values for your
database applications. Because you can often attain good performance with
Oracle Rdb using the default values for each of these two storage map
parameters, you should use these sections as guidelines to adjust your
database for applications with unusual characteristics.

Only two storage map parameters have default settings: compression is
enabled and logical area thresholds are disabled. All other storage map
parameters must be explicitly declared (for example, you must enter a map
name).

Table 4–11 describes specific SQL statements and whether or not each
statement allows you to specify storage map parameters, using the
SQL CREATE DATABASE, ALTER DATABASE, or IMPORT statement,
respectively.

Table 4–11 SQL Statements Affecting Storage Map Parameters

Storage Map
Parameters

SQL CREATE
STORAGE MAP

SQL ALTER
STORAGE MAP

SQL IMPORT or
CREATE
STORAGE MAP

Map name Yes Yes Yes

(continued on next page)

Adjusting Parameters 4–173

Table 4–11 (Cont.) SQL Statements Affecting Storage Map Parameters

Storage Map
Parameters

SQL CREATE
STORAGE MAP

SQL ALTER
STORAGE MAP

SQL IMPORT or
CREATE
STORAGE MAP

Description No No No

Specify table Yes No Yes

Specify using column Yes Yes Yes

Specify within storage
area name

Yes Yes Yes

Specify partitioning limits Yes Yes Yes

Specify PLACEMENT
VIA INDEX

Yes Yes Yes

Specify compression
enable/disable

Yes Yes Yes

Specify logical are
thresholds

Yes Yes Yes

Specify REORGANIZE No Yes No

You can also establish page thresholds for logical areas within a uniform
page format using the CREATE or ALTER INDEX and CREATE or ALTER
STORAGE MAP statements. Refer to Section 4.2.5 for information on selecting
threshold values.

See the Oracle Rdb7 Guide to Database Design and Definition for information
on modifying many of the storage map parameters and reorganizing data into
different storage areas.

4.3.1 Gathering Storage Map Parameter Information
This section describes the format and content of the output when you use the
RMU Analyze command and specify the Placement and the Option [= Normal,
Full, or Debug] qualifiers. For general information on the RMU Analyze
command, see Section 2.1.

The RMU Analyze Placement command is useful to determine the following:

• The maximum and average path length to a data row or stated in another
way, the maximum and average number of index records accessed to reach
a data row

4–174 Adjusting Parameters

• The maximum I/O path length or the total number of pages traversed to
reach a data row. The maximum I/O path length is the expected I/O when
all of the following conditions are true:

None of the database records required are buffered (local or global
buffers)

The minimum number of global buffers are available

There is maximum contention from other users for these database
records

• The minimum I/O path length or considering the buffer size, whether or
not the index and data rows would both be in the buffer. The minimum
I/O path length is the expected I/O when all of the following conditions are
true:

None of the database records required are buffered (local or global
buffers)

There is an adequate number of buffers to minimize I/O

There is no contention from other users for the database records

• The frequency distributions for the dbkey path lengths, maximum I/O path
lengths, and minimum I/O path lengths for specified indexes

• The distribution of data rows on data pages in a storage area by logical
area ID and dbkey, the number of keys needed to reach each data row, the
maximum and minimum I/O path lengths needed to reach the data row,
the length of each key, and the specific key for the data row

The estimated maximum I/O path length values are calculated using a worst
case scenario, so the real application performance should never be worse than
the estimated maximum I/O path length values.

However, in some cases, application performance can be better than the
estimated minimum I/O path length values. For example, the second or
subsequent index lookup may find all the required records already fetched into
buffers by the first index lookup, and little or no I/O may be required. The
true minimum I/O path length may be very nearly zero. In most cases, the
estimated minimum I/O path length will approximate the true measured I/O
path length for the application.

Adjusting Parameters 4–175

4.3.1.1 Using the RMU Analyze Placement Option=Normal Command
When you use the RMU Analyze Placement command with the Option=Normal
qualifier and specify the EMPLOYEES_HASH hashed index, Oracle RMU
displays the information shown in Example 4–31.

Example 4–31 RMU Analyze Placement Command with the Option=Normal
Qualifier for a Hashed Index

$ RMU/ANALYZE/PLACEMENT mf_personnel EMPLOYEES_HASH /OPTION=NORMAL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Hashed index EMPLOYEES_HASH for relation EMPLOYEES duplicates not allowed
Levels: 1, Nodes: 69, Keys: 100, Records: 100
Maximum path length -- DBkeys: 3, IO range: 1 to 1
Average path length -- DBkeys: 3.00, IO range: 1.00 to 1.00

--

The following list explains the information in the output from the RMU
Analyze Placement command with the Option=Normal qualifier. Entries in
parentheses that follow each field description are keyed to the EMPLOYEES_
HASH index shown in Example 4–31.

• Index name (EMPLOYEES_HASH).

• for relation

Table name (EMPLOYEES).

• duplicates

Duplicates allowed or not allowed (duplicates not allowed).

• Levels

The number of levels in the index (1).

• Nodes

The total number of nodes in the index (69).

• Keys

The total number of unique keys in the index (100).

• Records

The total number of data rows with unique keys in the index (100).

• Maximum path length—DBkeys

4–176 Adjusting Parameters

The maximum number of dbkeys (index records) accessed to reach a data
row (3).

• IO range

The range of the maximum I/O path lengths required to access data rows.
The first value represents the low estimate of I/Os required to access data
rows. The second value represents the high estimate of I/Os required to
access data rows (1 to 1).

• Average path length—DBkeys

The average number of dbkeys (index records) accessed to reach a data row
(3.00).

• IO range

The range of the average I/O path lengths required to access data rows.
The first value represents the low estimate of the average number of
I/Os required to access data rows. The second value represents the high
estimate of the average number of I/Os required to access data rows (1.00
to 1.00).

When you use the RMU Analyze Placement command with the Option=Normal
qualifier and specify the DEPARTMENTS_INDEX sorted index, Oracle RMU
displays the information shown in Example 4–32.

Example 4–32 RMU Analyze Placement Command with the Option=Normal
Qualifier for a Non-Ranked Sorted Index

$ RMU/ANALYZE/PLACEMENT mf_personnel DEPARTMENTS_INDEX /OPTION=NORMAL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Index DEPARTMENTS_INDEX for relation DEPARTMENTS duplicates not allowed
Levels: 1, Nodes: 1, Keys: 26, Records: 26
Maximum path length -- DBkeys: 2, IO range: 1 to 2
Average path length -- DBkeys: 2.00, IO range: 1.00 to 1.65

--

In Example 4–32, for the DEPARTMENTS_INDEX sorted index, the maximum
level is 1, and there is one node (the root node). There are 26 unique keys for
26 data rows. The maximum path length (number of records accessed—leaf
node and data row) is 2, and the estimated number of I/Os required to access
the data with the maximum path length is in the range 1 (low estimate) to 2
(high estimate). The path length (number of records accessed) averaged over
all of the indexed data is 2.00, and the estimated number of I/Os required to

Adjusting Parameters 4–177

access the data averaged over all the indexed data is in the range 1.00 (low
estimate) to 1.65 (high estimate).

Example 4–33 shows the output from the RMU Analyze Placement command
with the Option=Normal when you specify a ranked sorted index that allows
duplicates.

Example 4–33 RMU Analyze Placement Command with the Option=Normal
Qualifier for a Ranked Sorted Index

$ RMU/ANALYZE/PLACEMENT mf_personnel DEGREES_YEAR_RANKED /OPTION=NORMAL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Index DEGREES_YEAR_RANKED for relation DEGREES duplicates allowed
Levels: 2, Nodes: 5, Keys: 25, Records: 165

Dup nodes: 0, Dup keys: 18, Dup maps: 18, Dup records: 162
Maximum path length -- DBkeys: 3, IO range: 2 to 3
Average path length -- DBkeys: 3.00, IO range: 2.01 to 2.48

--

When an index allows duplicates, the RMU Analyze Placement command
displays the following additional information:

• Dup nodes

For ranked sorted indexes, the number of overflow nodes. The number can
be zero (0) even if the index contains duplicates. For non-ranked sorted
indexes, the number of duplicate nodes. For hashed indexes, the number of
duplicate nodes.

• Dup keys

The total number of duplicate keys in the index.

• Dup maps

For ranked sorted indexes only, the number of bit maps used to represent
the dbkeys that point to duplicate index key data. This field does not
appear for non-ranked sorted indexes or hashed indexes.

• Dup records

The total number of duplicate records in the index.

4–178 Adjusting Parameters

When you use the RMU Analyze Placement command with the Option=Normal
qualifier and specify the JOB_HISTORY_HASH hashed index, which allows
duplicates, Oracle RMU displays the information shown in Example 4–34.

Example 4–34 RMU Analyze Placement Command with the Option=Normal
Qualifier for a Hashed Index (Duplicates Allowed)

$ RMU/ANALYZE/PLACEMENT mf_personnel JOB_HISTORY_HASH /OPTION=NORMAL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Hashed index JOB_HISTORY_HASH for relation JOB_HISTORY duplicates allowed
Levels: 1, Nodes: 69, Keys: 100, Records: 274

Dup nodes: 80, Dup keys: 80, Dup records: 254
Maximum path length -- DBkeys: 4, IO range: 1 to 3
Average path length -- DBkeys: 3.93, IO range: 1.00 to 1.08

--

In Example 4–34 for the JOB_HISTORY_HASH hashed index, the level is 1
and there are 69 nodes (hash buckets). There are a total of 100 keys for 274
data rows. There are 80 keys (duplicate node records) that represent 254 data
rows. (Thus, there are 20 keys that have no duplicates and represent 20 data
records.)

The maximum path length is 4 (number of records accessed—system record,
hash bucket, duplicate node record, and data row) and the estimated number of
I/Os required to access the data with the maximum path length is in the range
1 (low estimate) to 3 (high estimate). The path length (number of records
accessed) averaged over all the indexed data is 3.93, and the estimated number
of I/Os required to access the data averaged over all the indexed data is in the
range 1.00 (low estimate) to 1.08 (high estimate).

For sorted indexes, if Oracle Rdb reads the top level (root node), the bottom
level (leaf node), and the data page, three I/O operations are necessary to
make a row retrieval. However, the top level of the index normally stays in the
buffer.

If there are enough buffers, the lower levels remain in the buffer as well. For
the sorted index DEPARTMENTS_INDEX (Example 4–32), the maximum and
average I/O path length ranges are 1 to 2 and 1 to 1.65, respectively. These
values indicate that up to 2 pages would be accessed to read any data row.
Using the DEPARTMENTS_INDEX, it is almost certain that the top level node
record, bottom level node record, and the data row would all be retrieved in the
same I/O operation, because both the sorted index structure and all data rows
reside on two adjacent pages.

Adjusting Parameters 4–179

To verify that these records, including the lower level of the sorted index,
are all in the buffer, use the RMU Analyze Placement command, specify the
Option=Full qualifier, and inspect the MIN I/O path length by frequency
histogram. The frequency distribution of minimum I/O path lengths in this
histogram generally shows you how accessible data rows are in terms of
the number of I/O operations required to access them. Note that when the
minimum I/O path length is greater than 1, the top level, the bottom level, and
data rows would not be read in one I/O operation.

For hashed indexes stored in the same storage area and on the same page
as the data using the PLACEMENT VIA INDEX clause of the SQL CREATE
and ALTER STORAGE MAP statement, a minimum of one I/O operation is
required to retrieve a data row.

If overflow occurs, data rows may be written to the page if space is available,
but if there is not enough space to make entries in the hash bucket on the
same page as the data rows, the hash bucket overflows to an adjacent page.
Additional data rows that try to hash to the full data page may be written to
this adjacent page, and additional entries are made in the overflow hash bucket
if space is available for both record types. As a consequence, hash buckets and
data may be placed on different pages, which increases the maximum I/O path
length by the number of pages on which the hash bucket and data rows have
been written.

When duplicates are allowed, duplicate node records are created and also
placed on the data page as part of the hash structure. If there are many
duplicate records and the page size is too small, data rows are placed on
adjacent pages where space is available, followed by the duplicate node records,
and finally by more entries in the overflow hash buckets for these data pages.
As the database pages fill up over time and more overflows occur, performance
may drop as the maximum I/O path length increases to the point where the
minimum I/O path length indicates that entire hashed index structures and
data rows are no longer in the same buffer and subsequent additional I/O
operations are required to gather this information.

The JOB_HISTORY_HASH hashed index (Example 4–34) contains duplicate
records and the maximum I/O path length ranges between 1 and 3, but
averages 1.00 to 1.08. This indicates that only 1 in 12 data rows have
a maximum I/O path length greater than 1 page. In this case, the hash
structures and the data rows are all still retrieved in the same I/O operation.

To verify that these duplicate records are all in the buffer together, use the
RMU Analyze Placement command, specify the Option=Full qualifier, and
inspect the MIN I/O path length by frequency histogram. The frequency
distribution of minimum I/O path lengths in this histogram generally shows

4–180 Adjusting Parameters

you how accessible data rows are in terms of the number of I/O operations
required to access them. Note that when the minimum I/O path length is
greater than 1, all hash structures (system record, hash bucket, overflow hash
bucket, and duplicate node records) and data rows are not all read in one I/O
operation.

4.3.1.2 Using the RMU Analyze Placement Option=Full Command
When you use the RMU Analyze Placement command and specify the
Option=Full qualifier, Oracle RMU displays the following information:

• Summary information

The summary information is identical to that which results when you
specify an index and the Option=Normal qualifier.

• DBkey path length by frequency histogram

The DBkey path length by frequency histogram shows frequency
distribution of the number of dbkeys required to access a data row.

• MAX I/O path length by frequency histogram

The MAX I/O path length by frequency histogram shows frequency
distribution of the maximum number of pages required to reach a data
row.

• MIN I/O path length by frequency histogram

The MIN I/O path length by frequency histogram shows frequency
distribution, considering the buffer size, of the instances in which both
index and data rows would or would not be in the buffer at the same time.

For the EMPLOYEES_HASH hashed index, the index is only one level.
The information for the EMPLOYEES_HASH hashed index is shown in
Example 4–35.

Example 4–35 RMU Analyze Placement Option=Full Command for a Hashed
Index

$ RMU/ANALYZE/PLACEMENT mf_personnel EMPLOYEES_HASH /OPTION=FULL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

(continued on next page)

Adjusting Parameters 4–181

Example 4–35 (Cont.) RMU Analyze Placement Option=Full Command for a
Hashed Index

--
Hashed index EMPLOYEES_HASH for relation EMPLOYEES duplicates not allowed
Levels: 1, Nodes: 69, Keys: 100, Records: 100
Maximum path length -- DBkeys: 3, IO range: 1 to 1
Average path length -- DBkeys: 3.00, IO range: 1.00 to 1.00

DBkey path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 |== (100)
2 | (0)
1 | (0)

MAX IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 | (0)
1 |== (100)

MIN IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 | (0)
1 |== (100)

--

For the DEPARTMENTS_INDEX sorted index, the index is only one level.
The information for the DEPARTMENTS_INDEX sorted index is shown in
Example 4–36.

4–182 Adjusting Parameters

Example 4–36 RMU Analyze Placement Option=Full Command for a Sorted
Index

$ RMU/ANALYZE/PLACEMENT mf_personnel DEPARTMENTS_INDEX /OPTION=FULL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Index DEPARTMENTS_INDEX for relation DEPARTMENTS duplicates not allowed
Levels: 1, Nodes: 1, Keys: 26, Records: 26
Maximum path length -- DBkeys: 2, IO range: 1 to 2
Average path length -- DBkeys: 2.00, IO range: 1.00 to 1.65

DBkey path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 |== (26)
1 | (0)

MAX IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 |== (17)
1 |============================ (9)

MIN IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 | (0)
1 |== (26)

--

The information for the JOB_HISTORY_HASH hashed index is shown in
Example 4–37.

Adjusting Parameters 4–183

Example 4–37 RMU Analyze Placement Option=Full Command for a Hashed
Index (Duplicates Allowed)

$ RMU/ANALYZE/PLACEMENT mf_personnel JOB_HISTORY_HASH /OPTION=FULL
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
Hashed index JOB_HISTORY_HASH for relation JOB_HISTORY duplicates allowed
Levels: 1, Nodes: 69, Keys: 100, Records: 274

Dup nodes: 80, Dup keys: 80, Dup records: 254
Maximum path length -- DBkeys: 4, IO range: 1 to 3
Average path length -- DBkeys: 3.93, IO range: 1.00 to 1.08

DBkey path length vs. frequency

6 | (0)
5 | (0)
4 |== (254)
3 |==== (20)
2 | (0)
1 | (0)

MAX IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (1)
2 |==== (21)
1 |== (252)

MIN IO path length vs. frequency

6 | (0)
5 | (0)
4 | (0)
3 | (0)
2 | (0)
1 |== (274)

--

Further analysis of the three indexes, EMPLOYEES_HASH, DEPARTMENTS_
INDEX, and JOB_HISTORY_HASH using the three histograms yields the
following information:

4–184 Adjusting Parameters

• The EMPLOYEES_HASH hashed index (Example 4–35)

All 100 data rows have a dbkey path length of 3 dbkeys (system record,
hash bucket, and data row). The maximum I/O path length (number
of pages accessed) for all 100 index records is 1. This means that each
respective EMPLOYEES_HASH hash bucket shares the same page as
its EMPLOYEES data row. The minimum I/O path length for all 100
index records is 1. This means, considering the buffer size, that for any
EMPLOYEES_HASH hash bucket, the respective EMPLOYEES data row
would be retrieved in one I/O operation.

• The DEPARTMENTS_INDEX sorted index (Example 4–36)

All 26 data rows have a dbkey path length of 2 dbkeys (leaf node and
data row). The maximum I/O path length (number of pages accessed) for
all 26 index records is 2 for 17 index records and 1 for 9 index records.
This means that 9 DEPARTMENTS_INDEX leaf node records share
the same page as their respective DEPARTMENTS data row and that
17 DEPARTMENTS data rows can be accessed by traversing 2 pages.
The minimum I/O path length for all 26 index records is 1. This means,
considering the buffer size, that for any DEPARTMENTS_INDEX leaf node
record, the respective DEPARTMENTS data row would be retrieved in one
I/O operation.

• The JOB_HISTORY_HASH hashed index (Example 4–37)

For 274 data rows, the dbkey path length is as follows: 3 dbkeys for 20
index records (system record, hash bucket, and data row) and 4 dbkeys for
254 records (system record, hash bucket, duplicate node record, and data
row). The maximum I/O path length (number of pages accessed) for 274
index records is 1 for 252 index records, 2 for 21 index records, and 3 for 1
index record. This means that most JOB_HISTORY_HASH hash buckets
(252) share the same page as their respective JOB_HISTORY data row,
while 21 rows can be accessed by traversing 2 pages, and 1 data row can
be accessed by traversing 3 pages. The minimum I/O path length for all
274 index records is 1. This means, considering the buffer size, that for
any JOB_HISTORY hash bucket, the respective JOB_HISTORY data row
would be retrieved in one I/O operation.

Note that because duplicates are allowed for the JOB_HISTORY_HASH
hashed index, 20 data rows with no duplicates can be reached by accessing
3 dbkeys, and 254 data rows can be reached by accessing 4 dbkeys that
include the duplicate node records.

Adjusting Parameters 4–185

Because pages filled with hashed index structures and their respective
associated parent-child data rows, the maximum I/O path length indicated
that a small percentage of hash buckets (8 percent or 22 index records)
were not on the same page as their respective JOB_HISTORY data rows.
By following the DBkey path length by frequency histogram and the MAX
I/O path length by frequency histogram over time, you can observe how
the dbkey path length frequency might increase, especially for values of
5 dbkeys or higher, and how the maximum I/O path length frequency
might also increase for values of 2 or higher. However, more importantly,
you should follow the MIN I/O path length by frequency histogram and
determine if hash structures and data rows would still be retrieved in
one I/O operation. When the minimum I/O path length values become
greater than 1, you may notice some performance degradation as more I/O
operations are necessary to retrieve both index and data rows.

4.3.1.3 Using the RMU Analyze Placement Option=Debug Command
When you use the RMU Analyze Placement command with the Option=Debug
qualifier, Oracle RMU displays detailed index node and index record
information:

• Distribution of data rows on data pages

• Number of keys needed to reach a specific data row on a data page

• Maximum I/O path length to access a data row (number of pages traversed)

• Minimum I/O path length to access a row when considering the buffer size

• Length of each key, and the specific key for the data row

The output header is divided into two parts, general and detailed information.
The headers are followed by detailed index record information. The last part
of the output, including the three histograms, displays information identical to
the RMU Analyze Placement command with the Option=Full qualifier. If an
index is stored in more than one logical area, information for all logical areas
is displayed in the output.

Example 4–38 shows the output when you use the RMU Analyze Placement
command with the Option=Debug qualifier and specify the EMPLOYEES_
HASH hashed index.

4–186 Adjusting Parameters

Example 4–38 RMU Analyze Placement Option=Debug Command for a
Hashed Index

$ RMU/ANALYZE/PLACEMENT mf_personnel EMPLOYEES_HASH /OPTION=DEBUG
0--
0
0 Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;
0
0 ID Hash Dup Name Relation
0--
4 62 T F EMPLOYEES_HASH EMPLOYEES
4 60 T F EMPLOYEES_HASH EMPLOYEES
4 58 T F EMPLOYEES_HASH EMPLOYEES
0
0--
0
0 Selected areas -
0 Area = 1 - RDB$SYSTEM
0 Area = 2 - EMPIDS_LOW
0 Area = 3 - EMPIDS_MID
0 Area = 4 - EMPIDS_OVER
0 Area = 5 - DEPARTMENTS
0 Area = 6 - SALARY_HISTORY
0 Area = 7 - JOBS
0 Area = 8 - EMP_INFO
0 Area = 9 - RESUME_LISTS
0 Area = 10 - RESUMES
0
0--
0
0 ID DB KEY DB_KEYS MAX_IO MIN_IO (LEN)"KEY"
0--
0
7 58 0063:0000000002:001 3 1 1 (6)"003030313635"
7 58 0063:0000000002:003 3 1 1 (6)"003030313930"
7 58 0063:0000000005:001 3 1 1 (6)"003030313837"
7 58 0063:0000000007:001 3 1 1 (6)"003030313639"
7 58 0063:0000000007:003 3 1 1 (6)"003030313736"
7 58 0063:0000000007:004 3 1 1 (6)"003030313938"

.

.

.

(continued on next page)

Adjusting Parameters 4–187

Example 4–38 (Cont.) RMU Analyze Placement Option=Debug Command for
a Hashed Index

7 60 0064:0000000003:001 3 1 1 (6)"003030323133"
7 60 0064:0000000004:001 3 1 1 (6)"003030323139"
7 60 0064:0000000005:001 3 1 1 (6)"003030323235"
7 60 0064:0000000005:003 3 1 1 (6)"003030323430"
7 60 0064:0000000006:001 3 1 1 (6)"003030323637"
7 60 0064:0000000009:001 3 1 1 (6)"003030323837"

.

.

.
7 62 0065:0000000008:001 3 1 1 (6)"003030343135"
7 62 0065:0000000018:001 3 1 1 (6)"003030343335"
7 62 0065:0000000021:001 3 1 1 (6)"003030343035"
7 62 0065:0000000026:001 3 1 1 (6)"003030343138"
7 62 0065:0000000032:001 3 1 1 (6)"003030343731"
7 62 0065:0000000046:001 3 1 1 (6)"003030343136"
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--
0 Hashed index EMPLOYEES_HASH for relation EMPLOYEES duplicates not allowed
0 Levels: 1, Nodes: 69, Keys: 100, Records: 100
0 Maximum path length -- DBkeys: 3, IO range: 1 to 1
0 Average path length -- DBkeys: 3.00, IO range: 1.00 to 1.00

.

.

.

The following list provides information about the fields in the RMU Analyze
Placement command with the Option=Debug qualifier. Entries in parentheses
that follow each field description are keyed to the EMPLOYEES_HASH index,
logical area 58, shown in Example 4–38.

• General index information

ID

The logical area ID for the index (58).

Hash

A coded field: T = TRUE for hash index, F = FALSE for B-tree index
(T).

Dup

4–188 Adjusting Parameters

A coded field: T = TRUE for duplicates allowed, F = FALSE for
duplicates not allowed (F).

Name

Name of the index (EMPLOYEES_HASH).

Relation

The name of the table for which the index is to be used (EMPLOYEES).

• The selected areas legend

A legend that denotes the storage areas that comprise the mf_personnel
database.

• Detailed index information

ID

The logical area ID for the index (58).

DB KEY

The dbkey for the record; it is comprised of three parts—the logical
area ID (0063), the page number (0000000002), and the line on the
page where the record is stored (001).

DB_KEYS

The number of keys needed to access the data row (3); system record,
hash bucket, and data row dbkeys.

MAX_IO

The maximum I/O path length or the total number of pages traversed
to access a data row (1).

MIN_IO

The minimum I/O path length. The value 1 indicates that the index
and data row could both be in the buffer (1).

(LEN)

The length of the key in bytes (6).

‘‘KEY’’

The actual key printed as a hexadecimal string (003030313635).

Adjusting Parameters 4–189

When you use the RMU Analyze Placement command with the Option=Debug
qualifier and specify the DEPARTMENTS_INDEX sorted index, Oracle RMU
displays the information shown in Example 4–39.

Example 4–39 RMU Analyze Placement Option=Debug Command for a
Sorted Index

$ RMU/ANALYZE/PLACEMENT mf_personnel DEPARTMENTS_INDEX /OPTION=DEBUG
0--
0
0 Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;
0
0 ID Hash Dup Name Relation
0--
4 72 F F DEPARTMENTS_INDEX DEPARTMENTS
0
0--
0
0 Selected areas -
0 Area = 1 - RDB$SYSTEM
0 Area = 2 - EMPIDS_LOW
0 Area = 3 - EMPIDS_MID
0 Area = 4 - EMPIDS_OVER
0 Area = 5 - DEPARTMENTS
0 Area = 6 - SALARY_HISTORY
0 Area = 7 - JOBS
0 Area = 8 - EMP_INFO
0 Area = 9 - RESUME_LISTS
0 Area = 10 - RESUMES
0
0--
0
0 ID DB KEY DB_KEYS MAX_IO MIN_IO (LEN)"KEY"
0--
0
7 72 0073:0000000002:001 2 1 1 (5)"0041444D4E"
7 72 0073:0000000002:003 2 1 1 (5)"00454C454C"
7 72 0073:0000000002:004 2 1 1 (5)"00454C4753"
7 72 0073:0000000002:005 2 1 1 (5)"00454C4D43"
7 72 0073:0000000002:006 2 1 1 (5)"00454E4720"
7 72 0073:0000000002:007 2 1 1 (5)"004D424D46"
7 72 0073:0000000002:008 2 1 1 (5)"004D424D4E"
7 72 0073:0000000002:009 2 1 1 (5)"004D424D53"
7 72 0073:0000000003:001 2 2 1 (5)"004D43424D"

(continued on next page)

4–190 Adjusting Parameters

Example 4–39 (Cont.) RMU Analyze Placement Option=Debug Command for
a Sorted Index

7 72 0073:0000000003:002 2 2 1 (5)"004D434253"
7 72 0073:0000000003:003 2 2 1 (5)"004D475654"
7 72 0073:0000000003:004 2 2 1 (5)"004D4B5447"
7 72 0073:0000000003:005 2 2 1 (5)"004D4E4647"
7 72 0073:0000000003:006 2 2 1 (5)"004D534349"
7 72 0073:0000000003:007 2 2 1 (5)"004D534D47"
7 72 0073:0000000003:008 2 2 1 (5)"004D54454C"
7 72 0073:0000000003:009 2 2 1 (5)"005045524C"
7 72 0073:0000000003:010 2 2 1 (5)"0050455253"
7 72 0073:0000000003:011 2 2 1 (5)"005048524E"
7 72 0073:0000000003:012 2 2 1 (5)"0050524D47"
7 72 0073:0000000003:013 2 2 1 (5)"0053414C45"
7 72 0073:0000000003:014 2 2 1 (5)"0053455552"
7 72 0073:0000000003:015 2 2 1 (5)"0053554E45"
7 72 0073:0000000003:016 2 2 1 (5)"0053555341"
7 72 0073:0000000003:017 2 2 1 (5)"005355534F"
7 72 0073:0000000002:010 2 1 1 (5)"0053555745"
0--
0
0 Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;
0
0--
0 Index DEPARTMENTS_INDEX for relation DEPARTMENTS duplicates not allowed
0 Levels: 1, Nodes: 1, Keys: 26, Records: 26
0 Maximum path length -- DBkeys: 2, IO range: 1 to 2
0 Average path length -- DBkeys: 2.00, IO range: 1.00 to 1.65

.

.

.

In Example 4–39, the DEPARTMENTS_INDEX sorted index is for the
DEPARTMENTS table. The entire index (26 records) is located on pages 2
and 3 in logical area 72. The first dbkey, 0073:0000000002:001, indicates that
the data row it is pointing to is in logical area 73, on page 2, line entry 1. The
total number of dbkeys needed to access this data row is 2 (leaf node and data
row). The maximum I/O path length (number of pages accessed) is 1. The
minimum I/O path length (considering the buffer) is 1. The key length is 5
bytes, and the key value printed as a hexadecimal string is " 0041444D4E" .

For sorted indexes, if the index node is small and there are no duplicates, very
little system resources are expended to keep the index on the table.

Adjusting Parameters 4–191

Generally, you should pay close attention to the length of the index node and
to the number of duplicates, if they are allowed. If the index node is long, you
may be using a lot of system resources to keep the index on the table. At the
same time, if you allow duplicates and there are many duplicate values for the
index, the efficiency of the index is reduced.

By using the Option=Debug qualifier, you can find specifically where problems
are occurring. Problems are initially indicated when you use the Option=Full
qualifier. You should check the values for dbkeys, maximum I/O path lengths,
and minimum I/O path lengths on a regular basis and note changes and trends.

When you use the RMU Analyze Placement command with the Option=Debug
qualifier and specify the JOB_HISTORY_HASH hashed index, Oracle RMU
displays the information shown in Example 4–40.

Example 4–40 RMU Analyze Placement Option=Debug Command for a
Hashed Index (Duplicates Allowed)

$ RMU/ANALYZE/PLACEMENT mf_personnel JOB_HISTORY_HASH /OPTION=DEBUG
0--
0
0 Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;
0
0 ID Hash Dup Name Relation
0--
4 68 T T JOB_HISTORY_HASH JOB_HISTORY
4 67 T T JOB_HISTORY_HASH JOB_HISTORY
4 66 T T JOB_HISTORY_HASH JOB_HISTORY
0
0--
0
0 Selected areas -
0 Area = 1 - RDB$SYSTEM
0 Area = 2 - EMPIDS_LOW
0 Area = 3 - EMPIDS_MID
0 Area = 4 - EMPIDS_OVER
0 Area = 5 - DEPARTMENTS
0 Area = 6 - SALARY_HISTORY
0 Area = 7 - JOBS
0 Area = 8 - EMP_INFO
0 Area = 9 - RESUME_LISTS
0 Area = 10 - RESUMES
0
0--

(continued on next page)

4–192 Adjusting Parameters

Example 4–40 (Cont.) RMU Analyze Placement Option=Debug Command for
a Hashed Index (Duplicates Allowed)

0
0 ID DB KEY DB_KEYS MAX_IO MIN_IO (LEN)"KEY"
0--
7 66 0069:0000000002:009 4 1 1 (6)"003030313635"
7 66 0069:0000000002:008 4 1 1 (6)"003030313635"
7 66 0069:0000000002:006 4 1 1 (6)"003030313635"
7 66 0069:0000000002:004 4 1 1 (6)"003030313635"
7 66 0069:0000000002:014 4 1 1 (6)"003030313930"
7 66 0069:0000000002:013 4 1 1 (6)"003030313930"
7 66 0069:0000000002:011 4 1 1 (6)"003030313930"
7 66 0069:0000000002:010 4 1 1 (6)"003030313930"
7 66 0069:0000000005:006 3 1 1 (6)"003030313837"
7 66 0069:0000000007:010 4 1 1 (6)"003030313639"
7 66 0069:0000000007:009 4 1 1 (6)"003030313639"
7 66 0069:0000000007:007 4 1 1 (6)"003030313639"
7 66 0069:0000000007:005 4 1 1 (6)"003030313639"
7 66 0069:0000000005:005 4 2 1 (6)"003030313736"

.

.

.
7 67 0070:0000000003:003 3 1 1 (6)"003030323133"
7 67 0070:0000000004:007 4 1 1 (6)"003030323139"
7 67 0070:0000000004:005 4 1 1 (6)"003030323139"
7 67 0070:0000000004:003 4 1 1 (6)"003030323139"

.

.

.
7 68 0071:0000000008:008 4 1 1 (6)"003030343135"
7 68 0071:0000000008:007 4 1 1 (6)"003030343135"
7 68 0071:0000000008:005 4 1 1 (6)"003030343135"
7 68 0071:0000000008:003 4 1 1 (6)"003030343135"
7 68 0071:0000000018:007 4 1 1 (6)"003030343335"
--

Indices for database - $DUA0:[ORION]MF_PERSONNEL.RDB;

--

(continued on next page)

Adjusting Parameters 4–193

Example 4–40 (Cont.) RMU Analyze Placement Option=Debug Command for
a Hashed Index (Duplicates Allowed)

0 Hashed index JOB_HISTORY_HASH for relation JOB_HISTORY duplicates allowed
0 Levels: 1, Nodes: 69, Keys: 100, Records: 274
0 Dup nodes: 80, Dup keys: 80, Dup records: 254
0 Maximum path length -- DBkeys: 4, IO range: 1 to 3
0 Average path length -- DBkeys: 3.93, IO range: 1.00 to 1.08

.

.

.

In Example 4–40 for the JOB_HISTORY_HASH hashed index, the index is
partitioned across three logical areas (66, 67, and 68) for the table JOB_
HISTORY. The first dbkey, 0069:0000000002:009, indicates that the data row
it is pointing to is in logical area 69, on page 2, line entry 9. The total number
of dbkeys needed to access this data row is 4 (system record, hash bucket,
duplicate node record, and data row). The maximum I/O path length (number
of pages accessed) is 1. The minimum I/O path length (considering the buffer)
is 1. The key length is 6 bytes, and the key value printed as a hexadecimal
string is " 003030313635" .

Because duplicates are allowed for the JOB_HISTORY_HASH hashed index,
duplicate node records must be accessed to reach a data row and the number
of dbkeys increases to 4. On occasion, the maximum I/O path length increases
to 2. This indicates that the data row resides on a different page from its hash
bucket or duplicate node record.

As pages fill, closely monitor the minimum I/O path length values. If values
become greater than 1, more I/O operations will be necessary to access the data
row, because both the index record and data row will no longer be in the buffer
together. This is an early sign of performance degradation.

For hashed indexes, when hash bucket overflows occur, especially for a
database that is growing with many new parent and child duplicate records,
detailed placement information should be monitored on a regular basis to
determine the nature and extent of any hash bucket overflows.

The first indication that you may have a hash bucket overflow is when the
maximum index level changes from a value of 1 to 2 or higher, based on the
results of either an RMU Analyze Indexes command or an RMU Analyze
Placement command. You should also note all instances when values obtained
for the minimum I/O path length for any data row become greater than
an expected value of 1. A value of 2 or higher for the minimum I/O path

4–194 Adjusting Parameters

length indicates that two or more I/O operations are necessary to retrieve all
associated hash index records and the data row, because none of these records
are physically close enough together on the disk to be accessed in one I/O
operation. This situation subsequently leads to decreased performance for your
database application.

Be careful when estimating the page size and the number of child duplicate
records initially to be stored on a page when the PLACEMENT VIA INDEX
option is used. To store both parent and child data rows and any defined hash
structures on the same page, you must select a page size that will initially
provide adequate space to hold these records, as well as sufficient space in
which to add more records over some planned period of time.

To produce custom reports to pinpoint specific problems, you could use the
output from RMU Analyze Placement command with the Option=Debug
qualifier as input to a program of your own design. For example, you could
scan the output for instances of where values for dbkeys are greater than
some value you select, or where values for the minimum I/O path length
were greater than 1, and print the entire record for each instance. Remember,
however, that the three histograms produced from the RMU Analyze Placement
command with the Option=Full qualifier give you dbkey path length, maximum
I/O path length, and minimum I/O path length frequency distribution
information. These histograms provide a sufficient overview of your data
to give you the first obvious indications of access problems.

4.3.2 PLACEMENT VIA INDEX Option
The PLACEMENT VIA INDEX option permits you to specify the name of an
index to be used for placing rows into the table specified in the SQL CREATE
STORAGE MAP statement. Rows are stored in storage areas according to
the specifications of the STORE clause. Using a placement index to initially
store rows in a specific order improves access to these rows. This improved
performance continues as long as there is sufficient space on the data page
in which to store new rows. Sufficient space on the data page can be ensured
for a period of time by carefully calculating the page and file allocation sizes
needed. Using mixed storage areas, for example, with a hashed placement
index along with a properly sized page and file allocation to contain both the
index structures and the data rows, provides the level of tuning required to
achieve one I/O operation to retrieve a row in an exact-match query.

If your data pages start to fill up with rows and spill over to adjacent data
pages, the performance gains of using an index and the PLACEMENT VIA
INDEX option may slowly begin to drop. You can regain the performance edge
by using the SQL ALTER DATABASE statement and defining new storage
areas with comparable specifications. This causes a reload of the data from

Adjusting Parameters 4–195

these less efficient storage areas into the new storage areas when you modify
the storage maps with the SQL ALTER STORAGE MAP statement so that
each storage map points to its respective new storage areas. This process is
described in more detail in the Oracle Rdb7 Guide to Database Maintenance.

4.3.3 Data Compression Option for a Table
Data compression allows Oracle Rdb to fit more data in fewer disk blocks.
This saves space and may reduce the time it takes Oracle Rdb to perform
certain kinds of retrievals. When you create new tables, use the SQL CREATE
STORAGE MAP statement and specify the ENABLE COMPRESSION option
to set this characteristic. Use the SQL ALTER STORAGE MAP statement
specifying the table name and the DISABLE COMPRESSION option to
automatically change the compression characteristic for the table rows in
the storage area specified in the STORE clause. Alternatively, use the SQL
EXPORT and IMPORT statements to change this characteristic or define a new
storage area, specify a new compression parameter, and dynamically remap
rows to the new storage area with the SQL ALTER STORAGE MAP statement.
Use this alternative, especially if other major database changes are planned
and you want to implement them all in one operation.

In general, disable compression only if:

• You are getting lots of row fragmentation

• You have very stable row sizes with no benefit from compression

In both instances, use the RMU Analyze command to check for row
fragmentation and row compression benefits in storage areas. See Section 2.1
for more information on how to use the RMU Analyze command and how to
interpret the results.

Generally, data compression works well for tables that are not updated
frequently. This type of table contains fairly stable information and is accessed
primarily for ad hoc queries and sequential retrievals. With compressed data,
more data can be placed in fewer disk blocks; this saves disk space, and
sequential read operations bring more data into the user’s buffer with each I/O
operation to a disk.

If a table is frequently updated, it does not usually benefit from data
compression. For example, in an order-entry application, a table named
NEXT_ORDER_NUMBER has one row used by all users to get the sequence
number. Because this row is frequently updated, it is not practical to compress
this row. In insert and update operations, data compression costs more CPU
time because Oracle Rdb uses the data compression algorithm to format input.
Any tables that users modify and query fairly often become fragmented if the
row size changes (increases). Retrieving a row that Oracle Rdb has fragmented

4–196 Adjusting Parameters

over one or more database pages may slow the read operation dramatically. If
the size of the row has changed significantly, the time it takes to complete a
read operation may be even longer. For more information on data compression,
see the Oracle Rdb7 SQL Reference Manual. Figure 4–12 illustrates data as
it would be represented without and with compression. Instead of the ASCII
code, the character itself is shown.

Figure 4–12 Effect of Data Compression

Without compression:

With compression:

AAAAABCDEEEEEEFGHIJKKKKKKKK (27 bytes)

Number of unlike characters that follow the ASCII character

The "unlike" flag

The character itself

Number of repeated characters that follow the ASCII character

Alike/unlike flag; 1 means "alike"

ZK−7400−GE

[1,4]A[0,2]BCD[1,5]E[0,4]FGHIJ[1,7]K (16 bytes)

Note that the information illustrated here in brackets occupies 1 byte.
Obviously, the brackets are not part of the stored data. The designation of
[1,4]A means:

• 1

The following string contains at least three consecutive characters.

• 4

There are five characters that are alike (the letter A). This designation is
zero-based; thus the 4 indicates that five characters are present.

• A

An ASCII value.

The designation of [0,2]BCD means:

• 0

The following string does not contain alike characters.

Adjusting Parameters 4–197

• 2

There are three unlike characters (the letters BCD); again, the designation
is zero-based.

Because not all types of tables benefit from data compression, you can enable
and disable compression for each table.

Row fragmentation may occur when a modification extends the row’s physical
length. Such an extension causes the row to fragment if the database page
cannot contain the size of the new storage segment.

Caution

Avoid disabling data compression for tables that contain SQL
VARCHAR data type columns. When data compression for an SQL
VARCHAR data type column is disabled, Oracle Rdb stores the
column’s maximum length. Thus, if you defined an SQL VARCHAR
data type column as 32,000 bytes, and the column contained 1000
nonblank characters and 31,000 blanks, Oracle Rdb stores 32,000
characters. Oracle Rdb ignores the count portion of an SQL VARCHAR
data type column and always treats it as the column’s maximum
length.

4.3.3.1 Examples of Setting Data Compression
This section shows examples of setting data compression characteristics.

Example 4–41, for single-file databases only, defines a new EMPLOYEES_MAP
storage map and disables compression for the EMPLOYEES table.

Example 4–41 Setting Data Compression for Single-File Databases

SQL> CREATE STORAGE MAP EMPLOYEES_MAP
cont> STORE IN ...
cont> DISABLE COMPRESSION;
SQL>
SQL> SHOW STORAGE MAPS EMPLOYEES_MAP

EMPLOYEES
For Table: EMPLOYEES
Compression is: DISABLED
Store clause: STORE IN ...

4–198 Adjusting Parameters

In Example 4–42, assume that data compression is disabled for the
EMPLOYEES table and enabled (by default) for the SALARY_HISTORY
table. The goal is to continue disabled data compression for the EMPLOYEES
table and to change the SALARY_HISTORY table from enabled to disabled.

An efficient way to do this is to specify DISABLE COMPRESSION in the SQL
ALTER STORAGE MAP statement. You automatically change compression
for all rows for the table specified in the original storage map definition
statement for the storage area specified in the STORE clause of the SQL
ALTER STORAGE MAP statement, as shown in Example 4–42.

Example 4–42 Setting Data Compression for Tables Using a Storage Map
Statement

SQL> ALTER STORAGE MAP SALARY_HISTORY_MAP
cont> STORE IN SALARY_HISTORY
cont> DISABLE COMPRESSION;

However, you must be certain that the uncompressed rows still fit on the page;
otherwise rows may become fragmented, reducing performance. This highlights
the importance of defining page sizes based on uncompressed row sizes. If you
know rows will become fragmented when compression is disabled for a storage
area, you need to define a new storage area and move all the rows to this new
storage area in which the page size is specified correctly. For storage areas
with mixed page format, you could just decrease the SPAM threshold values
using the THRESHOLDS ARE option so fewer rows are initially stored per
page.

To accomplish the combined goal of decompressing rows and avoiding
fragmentation due to a small page size, make these changes:

1. Within an SQL ALTER DATABASE statement add-storage-area-clause,
create a new storage area using new names for the storage area and
storage area file, and either specify a larger page size or a larger SPAM
interval.

2. Modify the SALARY_HISTORY_MAP storage map using the SQL ALTER
STORAGE MAP statement and change the STORE clause so it points
to the new storage area. Set the enable/disable data compression
characteristic to disable. When these changes are made, rows from the
SALARY_HISTORY table are moved to the new storage area and take on
the desired characteristics specified in the ALTER DATABASE, CREATE
STORAGE AREA, and ALTER STORAGE MAP statements.

3. Delete the old storage area.

Adjusting Parameters 4–199

Example 4–43 performs each of these steps.

Example 4–43 Defining a New Storage Area and Specifying a Larger Page
Size, Decompressing Rows in a Storage Map, and Deleting
the Old Storage Area

SQL> ALTER DATABASE FILENAME mf_personnel
cont> ADD STORAGE AREA NEW_SALARY_HISTORY FILENAME new_salary_history.rda
cont> ALLOCATION IS 25 PAGES
cont> PAGE SIZE IS 3 BLOCKS
cont> PAGE FORMAT IS MIXED
cont> SNAPSHOT FILENAME new_salary_history.snp
cont> SNAPSHOT ALLOCATION IS 10 PAGES;
SQL>
SQL> ATTACH ’FILENAME mf_personnel’;
SQL>
SQL> ALTER STORAGE MAP SALARY_HISTORY_MAP
cont> STORE IN NEW_SALARY_HISTORY
cont> DISABLE COMPRESSION;
SQL>
SQL> COMMIT;
SQL> DISCONNECT ALL;
SQL>
SQL> ALTER DATABASE FILENAME mf_personnel
cont> DROP STORAGE AREA SALARY_HISTORY;

You can specify changes such as disabled compression with the SQL
EXPORT and IMPORT statements as shown by the SQL procedure in
Example 4–44. This method is useful if you have many other changes planned
including, perhaps, changing the buffer size. Because the default is ENABLE
COMPRESSION, if DISABLE COMPRESSION is not specified in the SQL
ALTER STORAGE MAP statement, DISABLE COMPRESSION must be
specified in the storage map statements for both the EMPLOYEES and the
SALARY_HISTORY tables.

Example 4–44 Using the IMPORT Statement to Specify Import Parameters,
New Storage Area, and Storage Map Characteristics

SQL> EXPORT DATABASE FILENAME mf_personnel.rdb INTO intpers_bu.rbr;
SQL> --
SQL> -- Export uses WITH EXTENSIONS by default
SQL> --
SQL> @IMPORT_COMPRESS

(continued on next page)

4–200 Adjusting Parameters

Example 4–44 (Cont.) Using the IMPORT Statement to Specify Import
Parameters, New Storage Area, and Storage Map
Characteristics

--
IMPORT DATABASE FROM intpers_bu.rbr
--
-- Specify import options
--
NO ACL
--
-- Specify root-file parameters
FILENAME newtest.rdb
BUFFER SIZE IS 12 BLOCKS
--
-- Specify storage area parameters
-- Define the new storage areas needed
--
CREATE STORAGE AREA EMPIDS_LOW FILENAME new_empids_low.rda
--
-- Specify needed options for the new storage area
--

ALLOCATION IS 50 PAGES
PAGE FORMAT IS MIXED
SNAPSHOT FILENAME new_empids_low.snp
SNAPSHOT ALLOCATION IS 10 PAGES

--
CREATE STORAGE AREA NEW_SALARY_HISTORY FILENAME new_salary_history.rda

ALLOCATION IS 25 PAGES
PAGE SIZE IS 3 BLOCKS
PAGE FORMAT IS MIXED
SNAPSHOT FILENAME new_salary_history.snp
SNAPSHOT ALLOCATION IS 10 PAGES

.

.

.
-- Specify metadata options by specifying new storage map options with
-- the CREATE STORAGE MAP statement for the EMPLOYEES_MAP and the
-- SALARY_HISTORY_MAP
--
CREATE STORAGE MAP EMPLOYEES_MAP FOR EMPLOYEES

STORE USING EMPLOYEE_ID
IN
EMPIDS_LOW WITH LIMIT OF (’00200’)
EMPIDS_MID WITH LIMIT OF (’00400’)
OTHERWISE IN EMPIDS_OVER

(continued on next page)

Adjusting Parameters 4–201

Example 4–44 (Cont.) Using the IMPORT Statement to Specify Import
Parameters, New Storage Area, and Storage Map
Characteristics

PLACEMENT VIA INDEX EMPLOYEES_HASH
DISABLE COMPRESSION

--
CREATE STORAGE MAP SALARY_HISTORY_MAP FOR SALARY_HISTORY

STORE IN NEW_SALARY_HISTORY
DISABLE COMPRESSION

.

.

.
END IMPORT;

Example 4–45 shows the messages displayed by the IMPORT statement when
the SQL procedure executes.

Example 4–45 IMPORT Statement Messages

Exported by Oracle Rdb V7.0-00 Import/Export utility
A component of SQL V7.0-00
Previous name was mf_personnel.rdb
It was logically exported on 28-MAY-1996 13:25

.

.

.
IMPORTing table EMPLOYEES
IMPORTing table SALARY_HISTORY

.

.

.
-- Import complete

Then, use the SQL SHOW STORAGE MAP statement to display the
compression characteristic for the table, as shown in Example 4–46. Note that
the SQL SHOW STORAGE MAP statement indicates whether compression is
disabled for any table defined or imported with an explicit DISABLE clause.

4–202 Adjusting Parameters

Example 4–46 Using the SHOW Statement to Check Compression

SQL> SHOW STORAGE MAP EMPLOYEES_MAP
EMPLOYEES_MAP

For Table: EMPLOYEES
Placement Via Index: EMPLOYEES_HASH
Compression is: DISABLED
Store clause: STORE USING (EMPLOYEE_ID)

IN EMPIDS_LOW WITH LIMIT OF (’00200’)
IN EMPIDS_MID WITH LIMIT OF (’00400’)
OTHERWISE IN EMPIDS_OVER

SQL>
SQL> SHOW STORAGE MAP SALARY_HISTORY_MAP

SALARY_HISTORY_MAP
For Table: SALARY_HISTORY
Compression is: DISABLED
Store clause: STORE IN SALARY_HISTORY

SQL>
SQL> SHOW STORAGE MAP JOB_HISTORY_MAP

JOB_HISTORY
For Table: JOB_HISTORY
Placement Via Index: JOB_HISTORY_HASH
Compression is: ENABLED
Store clause: STORE USING (EMPLOYEE_ID)

IN EMPIDS_LOW WITH LIMIT OF (’00200’)
IN EMPIDS_MID WITH LIMIT OF (’00400’)
OTHERWISE IN EMPIDS_OVER

4.3.3.2 Summary of Data Compression Options
The data compression options previously discussed are summarized as follows:

• ENABLE COMPRESSION (the default)

Leave data compression enabled for the tables used most frequently by
retrieval applications.

• DISABLE COMPRESSION

Disable data compression for the tables that are updated frequently, and
especially for the rows that are modified and retrieved often.

This option must be explicitly stated in the SQL CREATE or ALTER
STORAGE MAP statement or in the SQL IMPORT statement where a new
storage map is defined for the first time with the SQL CREATE STORAGE
MAP statement.

Adjusting Parameters 4–203

4.4 Adjusting OpenVMS Parameters for Oracle Rdb Applications
OpenVMS
VAX

OpenVMS
Alpha

When you change operating system parameters, note the effect of one change
before you make another. Try out operating system parameter changes when
the system is not very busy or when these changes would cause only a minor
disruption of business.

Schedule adequate down time for your database to make a change and verify if
it helped, and to see if the change adversely affected something else. You must
decide whether to tune your operating system and process quotas for database
use, or whether you must balance this need against the needs of other users of
computer resources.

In changing system and process parameters, you might find your time can be
better spent investigating the details of your application design, once you have
provided adequate memory, file limits, enqueue limit, byte limit, and so on. See
the Oracle Rdb7 Installation and Configuration Guide for further information
on how to set system and process parameters. Once you make sure operating
system and user-process parameters are large enough, you may not gain much
by continuing to tune the operating system. You may be more likely to achieve
significant results elsewhere. Refer to Section 7.6.1 for additional information
on tuning the system.

The OpenVMS Monitor utility is useful for monitoring system performance.
This is a software sampling performance monitor used to obtain information on
the system as it is running and to obtain summary reports of previous system
activity. See the OpenVMS documentation set for more information on using
the OpenVMS Monitor utility. You can also use the Performance Monitor VM
Usage Statistics screen described in Section 4.4.1. ♦

4.4.1 Performance Monitor VM Usage Statistics Screen
The VM Usage Statistics screen shows a summary of the dynamic virtual
memory usage for all database users on the VMScluster node. (Virtual memory
is unique to each database user.) The following is an example of a VM Usage
Statistics screen:

4–204 Adjusting Parameters

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1996 13:38:09
Rate: 3.00 Seconds VM Usage Statistics Elapsed: 03:17:15.56
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

GET_VM calls 1 0 1.0 12914 1844.8
FREE_VM calls 0 0 0.3 3560 508.5

GET_VM kilobytes 0 0 0.4 4462 637.4
FREE_VM kilobytes 4 0 3.5 41393 5913.2

$EXPREG calls 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For information about each of the fields shown in this display, see the
Performance Monitor help.

4.4.2 Checking and Setting OpenVMS System Parameters

OpenVMS
VAX

OpenVMS
Alpha

You can use AUTOGEN to reset parameter values and system file sizes to meet
the operational and performance characteristics your applications require. The
new values and file sizes take effect the next time the system is booted. For
more information on AUTOGEN, see the OpenVMS documentation covering
system management tasks and the Oracle Rdb7 Installation and Configuration
Guide.

System parameters you should check include the following:

• CHANNELCNT

Set high: CHANNELCNT = (application dependent).

CHANNELCNT specifies the number of permanent I/O channels available
to the system. You should set this value to a number larger than the
largest FILLM value in the database environment. One channel count is
used every time a file is opened in your database application. For example,
in a single-file database with one user, this value will be over 4: one for the
.rdb file, one for the .snp file, one for the user’s .ruj file, and one for the .aij
file (when enabled). Temporary files such as sort files and files assigned to
SYS$OUTPUT and SYS$INPUT also use channel count.

Section 4.4.4 describes the FILLM quota.

• IRPCOUNT, IRPCOUNTV

Adjusting Parameters 4–205

Run AUTOGEN after your application is running and tune according to
the feedback you receive.

Note

With OpenVMS VAX V6.0 and OpenVMS Alpha V1.5 and higher, the
operating system sets these parameters automatically. The system
manager does not need to set or modify these parameters.

IRPCOUNT sets the number of preallocated intermediate request packets
(IRPs). Each IRP requires 160 bytes of permanent resident memory.
If the IRPCOUNT value is too large, physical memory is wasted. If the
IRPCOUNT value is too small, the system increases its value automatically,
as needed, to permit proper performance. However, the system cannot
increase IRPCOUNT beyond the value of IRPCOUNTV. If you check
your system using the DCL command SHOW MEMORY/POOL/FULL
and see that CURRENT IRPs in use is a value larger than the value for
INITIAL IRPs, you should increase the SYSGEN parameter to at least the
CURRENT IRP value.

IRPCOUNTV establishes the upper limit to which the IRPCOUNT value
can be automatically increased by the system. If this parameter value
is set too low, system performance can be adversely affected because
IRPCOUNTV cannot be used for nonpaged pool requests.

• LRPCOUNT, LRPCOUNTV

Run AUTOGEN after your application is running and tune according to
the feedback you receive.

Note

With OpenVMS VAX V6.0 and OpenVMS Alpha V1.5 and higher, the
operating system sets these parameters automatically. The system
manager does not need to set or modify these parameters.

LRPCOUNT sets the number of preallocated large request packets (LRPs).
Each LRP uses 576 bytes of permanent resident memory that is equal
to the number of bytes specified by the LRPSIZE parameter. (Normally,
LRPSIZE is 576 bytes.) If the LRPCOUNT value is too large, physical
memory is wasted. If the LRPCOUNT value is too small, the system
increases its value automatically, as needed, to permit the system to
perform properly. However, the system cannot increase LRPCOUNT
beyond the value of LRPCOUNTV. If you check your system using the DCL

4–206 Adjusting Parameters

command SHOW MEMORY/POOL/FULL and see that CURRENT LRPs in
use is a value larger than the value for INITIAL LRPs, you should increase
the SYSGEN parameter to at least the CURRENT LRP value.

LRPCOUNTV establishes the upper limit to which the LRPCOUNT value
can be automatically increased by the system. If this parameter value is
set too low, system performance can be adversely affected by preventing the
system from using this memory allocation mechanism for nonpaged pool
requests.

• SRPCOUNT

Set high: SRPCOUNT = 8192 (for small systems); = 15000 (for large
systems).

Note

With OpenVMS VAX V6.0 and OpenVMS Alpha V1.5 and higher, the
operating system sets this parameter and SRPCOUNTV automatically.
The system manager does not need to set or modify these parameters.

SRPCOUNT sets the number of preallocated small request packets (SRPs).
Each SRP uses 96 bytes of permanent memory. Oracle Rdb uses one SRP
(or 96 bytes) for each lock. Never set the SRPCOUNT value lower than
the value for LOCKIDTBL because each lock uses one SRPCOUNT. If
you check your system using the DCL command SHOW MEMORY/POOL
/FULL and see CURRENT SRPs in use is a value larger than the value for
INITIAL SRPs, you should increase the SYSGEN parameter to at least the
CURRENT SRP value.

When global buffers are enabled, the number of locks used increases, which
may require that you increase the SRPCOUNT value.

• SRPCOUNTV

Set high: SRPCOUNTV = 32768 (for small systems); = 60000 (for large
systems).

SRPCOUNTV establishes the upper limit to which the SRPCOUNT
value can be increased. If you set the SRPCOUNT value manually using
SYSGEN, set SRPCOUNTV to the preceding values (four times the
SRPCOUNT value). If AUTOGEN was used to set the SRPCOUNT value
for your system, do not explicitly set a value for SRPCOUNTV, because
OpenVMS always sets this properly (usually four times the SRPCOUNT
value).

Adjusting Parameters 4–207

When global buffers are enabled, the number of locks used increases, which
may require that you increase the SRPCOUNTV value.

• LOCKIDTBL

Set high: LOCKIDTBL = 8192.

LOCKIDTBL sets the initial number of entries in the system Lock ID table.
It also determines the amount by which the Lock ID table will extend if
the system runs out of locks. The system will automatically extend the
Lock ID in increments of the SYSGEN parameter LOCKIDTBL when it
runs out of space. There is one entry in the Lock ID table for each lock
in the system, and each entry requires 4 bytes. Whenever you change the
value of LOCKIDTBL, you should examine the value of REHASHTBL and
change it, if necessary.

You can monitor locks with the Performance Monitor or with the OpenVMS
Monitor utility (MONITOR).

LOCKIDTBL is allocated from the nonpaged pool. If you set this parameter
too low, programs can receive the following error message:

%SYSTEM-E-NOLOCKID, no lock id available

When global buffers are enabled, the number of locks used increases, which
may require that you increase the LOCKIDTBL value.

• LOCKIDTBL_MAX

Set high: LOCKIDTBL_MAX = a value greater than LOCKIDTBL

LOCKIDTBL_MAX specifies an upper limit on the size of the Lock ID
table. This dynamic system parameter must be set permanently to a
value equal to or greater than 2048. If you set LOCKIDTBL to 8192, then
LOCKIDTBL_MAX should be set to a value greater than 8192. Do not
lower this value after you install Oracle Rdb. If you set this parameter too
low, programs can receive the following error message:

%SYSTEM-E-NOLOCKID, no lock id available

When global buffers are enabled, the number of locks used increases, which
may require that you increase the LOCKIDTBL_MAX value, based on the
total number of global buffers.

• NPAGEDYN

Run AUTOGEN after your application is running and tune according to
the feedback you receive.

4–208 Adjusting Parameters

NPAGEDYN defines the size of the nonpaged dynamic pool in bytes. This
parameter NPAGEDYN establishes the initial setting of the nonpaged pool
size, but the pool size can be increased dynamically. To set a value for this
parameter, use the default value initially, and then monitor the amount
of space actually used with the DCL command SHOW MEMORY/POOL
/FULL.

• NPAGEVIR

Run AUTOGEN after your application is running and tune according to
the feedback you receive.

NPAGEVIR defines the maximum size to which NPAGEDYN can be
increased. If this value is too small, systems could hang. To set this
parameter, use the default value initially, and then monitor the amount
of space actually used with the DCL command SHOW MEMORY/POOL
/FULL.

• GBLPAGES

The required minimum value for GBLPAGES is n plus 1396 pages, where
n refers to the system parameter value that is in use prior to installing
Oracle Rdb.

GBLPAGES sets the number of global page table entries allocated at
startup time. Each global section requires one global page table entry.
Every 128 entries add 4 bytes to permanently resident memory in the form
of a system page table entry.

When global buffers are enabled for a database, the size of the global
section increases, which could mean that you need to increase the
GBLPAGES value. See Section 4.1.2.12 for more information.

Note

As you increase the value of GBLPAGES beyond its default setting, you
must adjust SYSMWCNT. For every 128 pages you add to GBLPAGES,
increase SYSMWCNT by 1. SYSMWCNT sets the quota for the size of
the system working set, the paged dynamic pool, OpenVMS RMS, and
the resident portion of the system message file. While a high value for
SYSMWCNT takes space away from the user working sets, a low value
may seriously impair system performance. When you use AUTOGEN,
these parameters are set automatically.

• GBLSECTIONS

Adjusting Parameters 4–209

The required minimum value for GBLSECTIONS is n plus 80 sections,
where n refers to the system parameter value that is in use prior to
installing Oracle Rdb.

GBLSECTIONS sets the number of global section descriptors allocated
in the system header at startup time. Each section takes 32 bytes of
permanently resident memory.

• MAXBUF

The required minimum value for MAXBUF is 1200 bytes.

MAXBUF sets the maximum size in bytes of a buffered I/O transfer. Space
for buffered I/O transfers is allocated from the permanently resident
nonpaged dynamic pool.

• PROCSECTCNT

The required minimum value for PROCSECTCNT is 32 sections.

PROCSECTCNT sets the number of section descriptors that a process can
contain. Each section descriptor increases the fixed portion of the process
header by 32 bytes. You should set this value greater than the maximum
number of image sections in any section to be run, as indicated by the
linkage memory allocation map for the image.

• VIRTUALPAGECNT

Increase the current value for VIRTUALPAGECNT to 2000 additional
pages for each active database.

VIRTUALPAGECNT sets the maximum number of virtual pages that can
be mapped for any one process. Every 128 virtual pages requires 4 bytes of
permanently resident memory in the system page table.

When global buffers are enabled for a database, the size of the global
section increases. Because your process maps to the global section, as
the global section grows, so must the number of virtual pages you are
allowed to have. Therefore, an increase in the size of the global section
could mean that you need to increase the VIRTUALPAGECNT value. See
Section 4.1.2.12 for more information.

• WSMAX

Set high: WSMAX = set to largest working set size needed on the system.

WSMAX sets the maximum number of pages on a systemwide basis for
any working set. Set the value for WSMAX to the size of the largest
working set needed on your system. This is useful in a heterogenous
cluster environment, where memory differs but a common UAF file is used.
The default value is appropriate for normal time-sharing operations, while

4–210 Adjusting Parameters

significantly larger values should be used only to reduce page faulting for
programs with very large virtual address spaces.

• DEADLOCK_WAIT

DEADLOCK_WAIT defines the number of seconds a lock request must wait
before the system initiates a deadlock search.

Set DEADLOCK_WAIT low for a multiuser application involving a high-
contention, high-update work load in either a VMScluster or noncluster
environment. One second per node in the VMScluster +1 is recommended.
If 10 nodes are in the VMScluster, set DEADLOCK_WAIT to 11 seconds.
When DEADLOCK_WAIT is set to 11 seconds, a lock request must wait 11
seconds before the system initiates a deadlock search.

Work loads characterized by read-only tasks use fewer lock resources
and are not likely to encounter deadlocks. Therefore, a low value for
DEADLOCK_WAIT in a read-intensive environment is not as critical and
might decrease overall performance by causing unnecessary checking for
deadlocks. In this case, the default value of 10 is recommended.

You may decide to set different values for this parameter and determine
which value best meets the performance needs for your particular database
environment. Monitor lock statistics on your system using MONITOR.
This utility provides information on both deadlock search and deadlock
find counts. Oracle Corporation recommends that you leave the default
value of 10 seconds for DEADLOCK_WAIT unless MONITOR shows a
high percentage of deadlocks. Set the value to less than 10 seconds to get
deadlocks signaled more frequently. If, at 10 seconds, there are frequently
no deadlocks found, set the DEADLOCK_WAIT value to 20 or 30 seconds.
Be careful when you use the Performance Monitor to tune DEADLOCK_
WAIT because this command shows you locking statistics for just the
database in question, not the entire system.

See Section 8.4 for additional information on the DEADLOCK_WAIT
parameter. ♦

OpenVMS
Alpha

• VCC_FLAGS, VCC_MAXSIZE

OpenVMS Alpha allows you to use a virtual I/O cache on Alpha systems
to reduce I/O bottlenecks and improve performance. The virtual I/O cache
works only on single-node systems; clustered systems do not use a virtual
I/O cache.

After upgrading to OpenVMS Alpha Version 1.5, you may notice a
significant number of swapped out processes when you use the SHOW
SYSTEM command. You might also notice that resource-intensive
database operations, such as creating new databases, return SYSTEM-
W-POOLEXPF errors to the operator console, or fail altogether with

Adjusting Parameters 4–211

INSFMEM errors. These problems are not specific to Oracle Rdb; other
resource-intensive applications may cause the same symptoms to occur.

The source of these problems may be that the OpenVMS Alpha Version 1.5
upgrade procedure has set the virtual I/O cache size to a very large value,
which in turn requires a significant amount of physical memory to support.

You can determine whether or not this is the problem by using SYSGEN
to check the SYSGEN parameters VCC_FLAGS and VCC_MAXSIZE. The
VCC_FLAGS parameter is used to enable or disable virtual I/O caching.
Use SYSGEN to see if the virtual I/O cache is enabled:

SYSGEN> SHO VCC_FLAGS
Parameter Name Current Default Min. Max. Unit Dynamic
-------------- ------- ------- ------- ------- ---- -------
VCC_FLAGS 1 1 0 -1 Bitmask

If VCC_FLAGS is set to 1, the cache is enabled (a value of 0 means the
cache is disabled). If the cache is enabled, check the VCC_MAXSIZE
parameter:

SYSGEN> SHO VCC_MAXSIZE
Parameter Name Current Default Min. Max. Unit Dynamic
-------------- ------- ------- ------- ------- ---- -------
VCC_MAXSIZE 2000000000 6400 02000000000 Blocks

By default, memory is allocated for caching 6400 disk blocks. This requires
3.2 megabytes of memory. If you have a very large value set for the current
VCC_MAXSIZE value, reduce it to 6400 blocks and reboot your system.
This will correct the problem. ♦

4.4.3 Tuning Working Set Adjustment Parameters

OpenVMS
VAX

OpenVMS
Alpha

Memory management involves tuning working set adjustment parameters.
The goal of this task is to maintain an even balance between memory use and
the number of processes that can run concurrently on the system that require
physical space in physical memory. The physical memory space allotted to each
process is known as the working set.

In general, the working set consists of all the valid pages in memory for any
particular process. The working set usually represents a subset of the total
number of pages in the process’ page tables. Pages are kept in the working set
or in the page cache, or on the disk for each process in image, section, paging,
and swapping files. All processes have an initial working set limit of pages
known as the working set default, WSDEFAULT. As the WSDEFAULT limit
is used up, each process can expand to a quota of pages known as the working
set quota, WSQUOTA, through the automatic working set adjustment (AWSA)
feature. A process will increase from WSDEFAULT to WSQUOTA without
checking to see if any memory is available. For processes that need even more

4–212 Adjusting Parameters

pages, pages can be increased to a maximum working set limit known as the
working set extent, WSEXTENT. The maximum working set limit that can be
assigned to any program is always a value greater than WSEXTENT and is
known as the system parameter working set maximum, WSMAX.

The memory management strategy depends initially on the limits in effect
for WSQUOTA and WSEXTENT for each process. For a process, these limits
are derived from the user authorization file (UAF) as assigned by the system
manager or determined from the DEFAULT record and assigned by the system.
Care should be given to the limits you assign to WSDEFAULT, WSQUOTA,
and WSEXTENT for each user. Limits should be selected for WSQUOTA
that are large enough to allow each user’s process to perform reasonably well
without requesting additional pages, yet remain small enough so that a single
process is not guaranteed an inequitable share of memory when memory is
limited. Generally, the most desirable working set limit lies just above the
point where performance drops sharply. Therefore, set these initial limits
for the working set for different types of processes based on a strategy that
considers the desired automatic working set adjustment. By adopting this type
of strategy, you will know when the parameters are out of adjustment and how
to direct your tuning efforts. See the OpenVMS documentation set for detailed
guidelines on setting initial working set values for tuning automatic working
set adjustment parameters for two general strategies:

• Tuning for rapid response times whenever the workload demands greater
working set sizes in an ever-changing, time-sharing environment

• Tuning for less dynamic response times that will stabilize and track
moderate needs for working set growth in a production environment ♦

4.4.4 Checking and Setting User Account Parameters

OpenVMS
VAX

OpenVMS
Alpha

The values suggested in this section are minimum settings; the settings
required by users on your system might differ substantially. The suggested
values are specific only to the use of Oracle Rdb. You should add the values
required for other OpenVMS layered products to the value you choose to use
for Oracle Rdb and modify the values for each user as needed.

See the OpenVMS documentation set for information on how to use the
AUTHORIZE utility and UAF records. The UAF parameters pertinent to
Oracle Rdb users are:

• ENQLM

The lock queue limit, which is the maximum number of locks that can be
queued at any one time.

Set high: 2000.

Adjusting Parameters 4–213

You may need to set ENQLM higher for ad hoc use, if you are using the
repository, or if you have enabled global buffers. When global buffers are
enabled for a database, one lock is used for each page that a user has in
his or her allocate set, and each of these locks is charged against ENQLM.
ENQLM limits the number of locks a process can own.

• WSDEFAULT, WSQUOTA, WSEXTENT

The default working set size, the working set quota, and the working set
extent.

WSDEFAULT sets the initial working set size limit for a user’s process.
WSQUOTA guarantees the user that the number of physical pages specified
will be available. WSEXTENT sets the maximum number of pages on a
systemwide basis for any working set. If the automatic working set
adjustment (AWSA) feature is enabled, it can affect the user’s working set
size.

Set high: WSDEFAULT 512; WSQUOTA 1024 (depending on available
memory); WSEXTENT 2048 or higher.

If the database will be used for many join operations, a bigger page size
will probably be required to process the join requests more efficiently. If
the database has enabled global buffers and has a large number of global
buffers, you may need higher quotas for WSDEFAULT, WSQUOTA, and
WSEXTENT. See the OpenVMS documentation set for a more detailed
discussion on this topic and guidelines on setting initial working set values
for tuning automatic working set adjustment parameters.

If you perform any explicit sorting operations that include projection
(SQL ORDER BY and DISTINCT) or an implicit sort operation as
performed by the query optimizer, and the query takes more time than
expected to complete and you notice lots of disk accesses, check your
WSEXTENT and WSQUOTA parameter values to see if they are set
properly for the operation. For example, if the WSEXTENT value is
42,000 pages and the WSQUOTA value is 20,000 pages, try setting the
WSEXTENT parameter value closer to the value for WSQUOTA. That is,
WSEXTENT=WSQUOTA+2000. The Sort Utility (SORT) (which is called
many times during this query execution) uses the difference between these
two parameters (in this case 2000 pages) to allocate VM for scratch space.
This results in excessive paging when a disk-based temporary file would be
more efficient.

Sometimes less memory is desirable for these kinds of operations. If the
system is heavily used, the OpenVMS operating system may be unable to
allocate all the pages in the working set extent to your process. To avoid

4–214 Adjusting Parameters

excessive paging in a heavily used system, make the working set extent
lower. See DCL help for more information.

• FILLM

The open file limit, which specifies the maximum number of files that a
user’s process can have open at a time.

Set high: 100 for OpenVMS V5.4; 100 for OpenVMS V5.5; 300 for
OpenVMS V6.0

Each database storage area, snapshot file, .ruj file, .aij file, root file, or
log file can be opened by the user. Other application-specific files (such
as images and data files) or access to the database through the repository
add to the total number of open files. Each open file is charged against the
user’s file limit.

For a multifile database, set this value to the sum of the .rdb, .rda, .snp,
.ruj, .aij, and the temporary work files for the largest application running
on your system. Use the .ruj file value for the number of users (actually
the number of attaches to the database) for the application that creates
the largest number of .ruj files. Use the RMU Dump Users command to
determine this value.

If the FILLM quota is exceeded, the current operation aborts and an
exceeded quota message is returned to the user. Increasing the FILLM
quota requires a corresponding increase to the SYSGEN parameter
CHANNELCNT if the new FILLM quota is higher than the current value
of CHANNELCNT.

• BYTLM

The buffered I/O byte limit, which is the maximum number of bytes of
nonpaged system dynamic memory that can be specified at one time by a
user’s job for transfer to outstanding buffered I/O operations.

Set high: 20480 or more.

• ASTLM

The asynchronous trap limit, which is a limit on the number of outstanding
ASTs for a process.

Use the following formula to determine a value for ASTLM:

ASTLM > DIOLM + 6 (or equals 24 if DIOLM is set to 18)

Adjusting Parameters 4–215

The AST queue limit is the maximum number of AST operations and
scheduled wake-up requests that can be outstanding at any one time. The
ASTLM value should be greater than the value for DIOLM, plus 6. The
DIOLM value should be equal to or greater than the value for the defined
number of database buffers. The database buffers are written back to the
database in parallel. Therefore, there might be an outstanding AST for
each buffer.

See the following description of DIOLM for information about displaying
the value of the database’s number of buffers parameter.

• DIOLM

Direct I/O count limit is the count limit or maximum number of direct I/O
operations (usually disk) that can be outstanding at one time.

Set this value initially to 18.

For improved performance, the DIOLM value should be equal to or greater
than the value for the defined number of database buffers when local
buffers are enabled for a database. Use the Performance Monitor Buffer
Information screen to get the value of the database’s number of buffers
parameter.

For a process that will access the mf_personnel database, a DIOLM value
of 20 and an ASTLM value of 26 should be sufficient.

When a database has global buffers enabled, the DIOLM value should be
equal to or greater than the value for the USER LIMIT parameter (the
largest allocate set allowed for any user in the database). The RMU Show
Users command displays the active value of the USER LIMIT parameter
for a database on the current node, as shown in the following example:

$ RMU/SHOW USERS mf_personnel.rdb
.
.

- maximum global buffer count per user is 25

For a process that will access the mf_personnel database and use global
buffers, a DIOLM value of 25 and an ASTLM value of 31 should be
sufficient.

• BIOLM

Buffered I/O limit count, which is the maximum number of buffered I/O
operations that can be outstanding at one time. Set this value initially to
18.

Set BIOLM to the same value as DIOLM. Adjust BIOLM whenever you
modify DIOLM.

4–216 Adjusting Parameters

• PRCLM

The Subprocess creation limit, which is the maximum number of
subprocesses that can exist at one time for the user’s process.

This value can be set to 1.

• PGFLQUOTA

Paging file limit, which is the maximum number of pages that the user’s
process can use in the system paging file.

This value should be set to a minimum value of 20,000. ♦

Adjusting Parameters 4–217

Volume II

5
The Query Optimizer

The relational database model represents the user’s view of data stored in a
database. Consequently, determining the most efficient way to retrieve that
data can be a very complex task. Oracle Rdb contains a query optimizer
(frequently referred to as the optimizer) that automatically analyzes every
query to determine the most efficient method of data access.

5.1 Optimizer Responsibilities
Database performance is directly affected by the ability of a database to access
a row or rows stored on disk through I/O operations. The greater the number
of I/O operations, the longer it takes to find and retrieve rows that satisfy
a query. To keep I/O operations to a minimum, Oracle Rdb uses the query
optimizer. The optimizer’s responsibility is to determine the most I/O efficient
method of retrieving user-requested data, and to establish access paths to that
data. Although the optimizer may consider different retrieval possibilities, all
retrieval strategies yield the same requested data.

A significant portion of optimization is performed during query compilation.
This static optimization is done only once before any query execution takes
place. The primary goal of the static optimizer is to deliver the query execution
strategy that requires the fewest number of I/Os compared to other possible
strategies. A selection criterion for the best strategy is a pure mathematical
minimum execution cost, which is calculated using rough estimates of factors
such as table and index cardinality, workload and storage statistics, and
assumptions of how any relational operators typically change the incoming
data quantity and distribution. These basic estimates and assumptions often
prove effective, but in some cases they can be inaccurate and lead the query
optimizer to select a strategy that is less than optimal.

To compensate for potential static optimizer estimation errors, the Oracle Rdb
query executor uses a dynamic optimizer that controls the query retrieval
process and can dynamically switch to a better strategy. A between-strategy
switch occurs when the cost estimate of a strategy, originally rejected by the
optimizer in favor of the current strategy, improves during query execution to

The Query Optimizer 5–1

the point that it provides a more economical solution. Dynamic optimization
imitates the human way of solving a retrieval problem by recognizing that
estimates are not precise, and by using a powerful set of tools that try to
prevent mistakes but resolve any mistakes that do occur.

For most straightforward and simple queries, the static optimizer selects
the most efficient execution plan. If the selected strategy does prove less
than optimal at the single table retrieval level, the dynamic optimizer can
revise and correct that strategy during execution. However, there still may
be occasions when you feel the selected solution is not the best. This chapter
provides an overview of the optimizer, explains the different access methods
used to optimize a query, and describes what you can do to influence the
optimizer. Appendix C provides examples of the access methods, and describes
how to use the logical name RDMS$DEBUG_FLAGS and the configuration
parameter RDB_DEBUG_FLAGS to examine query costs, optimizer strategy,
and optimizer execution.

5.2 Optimizer Terminology
There are several terms, specific to the Oracle Rdb query optimizer, that need
to be defined immediately. Sections 5.2.1 through 5.2.3 define these terms.
Other query optimizer terms are defined as they are introduced.

5.2.1 Predicate Selectivity
Predicate selectivity is the estimated fraction of total rows in a table or in an
intermediate result table for which the predicate is true. Predicate selectivity
depends only on the operator, and not on the operands (that is, the data or
values in the query). For example, the optimizer estimates the selectivity of X
> 10, X > 125, or Y > 70 to be 0.35 in all three cases because all three cases use
the operator ‘‘>.’’ Predicate selectivity is applied at the earliest possible time in
query optimization to reduce the total number of rows as soon as possible.

5.2.2 Strategy
Strategy refers to a sequence of operations performed on data to solve a query
and produce a result. A strategy is produced by the optimizer and represents
an optimal solution for a query. An optimal solution is the one that the
optimizer estimates will require the minimum number of disk I/Os.

5–2 The Query Optimizer

5.2.3 Cost
Cost is the estimated number of disk I/O operations that a query solution will
require. This is the metric used by the optimizer to identify an optimal
solution—one with minimum cost. The cost of a solution is based on
the estimated cardinality and the type of access method the optimizer is
investigating. Factors affecting the cost include the following:

• Query structure

• Query predicates

• Result ordering or grouping

• Type of retrieval used

• Type of join used (if multiple table access)

• Type of storage area (uniform or mixed)

• The page size for the storage area (see Section 5.2.3.1)

• Cardinality statistics

• Workload statistics (if collected)

• Storage statistics (if collected)

Examine the cost of a query by using the logical name RDMS$DEBUG_FLAGS
or the configuration parameter RDB_DEBUG_FLAGS. Refer to Appendix C for
information.

5.2.3.1 How the Optimizer Estimates Page Size for Tables That Store Data in Multiple
Storage Areas

Oracle Rdb allows you to define a storage map that specifies the storage area
in which table rows will be stored, based on the value of one or more columns
in the table. For example, the following storage map definition specifies that
all rows in the table TABLE1 with a value not greater than 200 for the column
COLUMN1 will be stored in storage area AREA1 and all other rows from
TABLE1 will be stored in storage area AREA2:

SQL> CREATE STORAGE MAP MAP1 FOR TABLE1
cont> STORE USING (COLUMN1)
cont> IN AREA1 WITH LIMIT OF (’200’)
cont> OTHERWISE IN AREA2;

It is possible for the two storage areas (AREA1 and AREA2) to have different
page sizes. Whenever a storage map for a table specifies that rows for the table
will be stored in multiple storage areas, the optimizer uses the page size of the
first area (as it appears in the storage map definition) for all estimations on
the table, regardless of which area is used for retrieval.

The Query Optimizer 5–3

5.3 Optimizer Statistics
The optimizer uses statistics to determine the cost of a solution. Three types of
statistics available to the optimizer to select a strategy include:

• Cardinality

• Workload

• Storage

Oracle Rdb automatically maintains cardinality statistics. Workload and
storage statistics have to be collected using the RMU Collect Optimizer_
Statistics command.

See the Oracle RMU Reference Manual for more information on collecting and
maintaining optimizer statistics.

5.3.1 Cardinality Statistics
The cardinality statistics capture data volume information. Cardinality
refers to quantity. The cardinality statistics include table cardinality, index
cardinality, and index prefix cardinality.

5.3.1.1 Table Cardinality
Table cardinality specifies the number of rows in a table. Each retrieval
solution (both intermediate and final) also has a cardinality. The cardinality of
a complete solution is the estimated number of rows that a query will return.

The approximate cardinality of a table is stored in the field RDB$CARDINALITY
in the system table RDB$RELATIONS. This provides all database users with a
single location from which to retrieve a table’s approximate cardinality.

When a table is first referenced by a process, the value in RDB$CARDINALITY
is loaded in the symbol table associated with that process. This can cause
problems if the cardinality of the table is extremely volatile or if the
RDB$SYSTEM storage area is set to read-only. Oracle Rdb has no way to
update each process’ copy of RDB$CARDINALITY if there is a significant
change. RDB$CARDINALITY is not updated every time a user adds or deletes
a row from a table. Instead, statistics are kept for each user on how many
rows were added or deleted. Then, at commit time, if the total number
of changes exceeds log2 of the current cardinality, RDB$CARDINALITY
is updated. Otherwise, RDB$CARDINALITY is updated when a process
detaches. The more rows there are in a table, the less chance there is that
RDB$CARDINALITY will be sufficiently different to affect the optimizer
strategy.

5–4 The Query Optimizer

5.3.1.2 Index Cardinality
In addition to table cardinality, Oracle Rdb keeps track of the cardinality of
each sorted index with duplicates allowed in the database. The cardinality of
such an index is defined as the number of distinct values in that index. Only
the full index cardinality is stored, not subsets as in a multisegmented index.

Oracle Rdb maintains cardinality for each index that allows duplicates so that
the optimizer can reference a count of how many unique values occur in the
index. Consequently, the optimizer can prioritize the suitability of two or more
indexes based on which has the highest number of unique values.

For example, an index on SEX would have a cardinality of 2, while an index
on LAST_NAME in a table of 1000 rows might have a cardinality of 700. The
optimizer can distinguish between these two indexes and will use the one with
the higher cardinality value if there is an equality restriction on the index
column. Index cardinality maintenance adds a small amount of overhead to
update transactions that modify indexed columns, and to those transactions
that store or delete rows. Unlike non-unique indexes, the overhead is very
low on unique indexes because Oracle Rdb does not maintain the unique index
cardinality; instead, the optimizer uses table cardinality as the cardinality of a
unique index to estimate index cost.

Index cardinality is stored in the RDB$CARDINALITY field in the
RDB$INDICES system table.

5.3.1.3 Index Prefix Cardinality
Index prefix cardinality is the number of distinct key values in leading parts
of a multisegmented sorted index. That is, the number of distinct values in
the first segment alone, the number of distinct values in the first and second
segments combined, the number of distinct values in the first, second, and
third segments combined, and so on. This statistic is meaningful only for
sorted indexes; therefore, it is not maintained for hashed indexes.

The optimizer uses index prefix cardinality to determine the portion of the
B-tree index that needs to be scanned. This allows the optimizer to estimate
the cost of index retrieval. Index prefix cardinality is also used to estimate the
number of rows fetched from a table.

Index prefix cardinality is stored in the RDB$CARDINALITY field in the
RDB$INDEX_SEGMENTS system table.

The Query Optimizer 5–5

5.3.1.4 Correcting Table and Index Cardinality
Because it is possible for the values stored in the system tables to differ
from the actual number of table rows or index keys, the optimizer can create
retrieval strategies based on obsolete cardinality values.

You can correct cardinality with the RMU Collect Optimizer_Statistics
command. For example, to correct table and index cardinality for the
EMPLOYEES table, enter the following command:

$ RMU/COLLECT OPTIMIZER_STATISTICS mf_personnel/STATS=(CARDINALITY) -
_$ /TABLE=(EMPLOYEES)/LOG

$ rmu -collect optimizer_statistics mf_personnel \
> -statistics=\(cardinality\) -tables=\(EMPLOYEES\) -log

Note that this command also updates index prefix cardinality if multiseg-
mented sorted indexes are defined on the EMPLOYEES table.

The cardinality of a unique index may be altered using the RMU Collect
Optimizer_Statistics command. However, Oracle Rdb does not make use of
the stored value, nor will it attempt to update the value as rows are stored or
deleted.

5.3.2 Workload Statistics
The workload statistics capture data distribution information in the form
of duplicity and null factors. The duplicity and null factors are collected
for each workload column group. A workload column group contains one or
more columns from a table. The workload column groups are identified by
the optimizer based on a query workload. The workload column groups are
identified from equiselections, equijoins, GROUP BY clauses, and DISTINCT
clauses specified in each query of a workload. Each workload column group
is stored in the RDB$WORKLOAD system table. The collection of workload
column groups in RDB$WORKLOAD is referred to as a workload profile.

You must generate a query workload profile before you can collect workload
statistics. Use the WORKLOAD COLLECTION clause of the SQL ALTER
DATABASE or CREATE DATABASE statement to generate a query workload
profile. In turn, Oracle Rdb creates an RDB$WORKLOAD system table.

Consider disabling workload collection after all or most of the query workload
has been profiled. This will eliminate accidental creation of new workload
column groups based on ad hoc queries that are not part of the regular
workload.

5–6 The Query Optimizer

After the workload profile has been collected, use the RMU Collect Optimizer_
Statistics command to collect duplicity and null factors for each workload
column group. The duplicity and null factors are stored in the corresponding
workload column group entry in the RDB$WORKLOAD system table.

The workload statistics help the optimizer to estimate solution costs and
cardinalities with higher accuracy. This normally results in optimal processing
of various queries in a workload.

When the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is defined as O, the following line indicates the use of
workload statistics in optimizing the query:

Workload and Storage statistics used

5.3.2.1 Column Duplicity Factor
The column duplicity factor is a ratio of the total number of rows to the number
of distinct values in a workload column group. It is the arithmetic mean of the
duplicates per distinct value of a workload column group. It is a single-point
statistic about the data distribution in a workload column group.

This statistic is used in determining the selectivity factor of equiselections
as well as cardinality of the result from equijoin or grouped aggregation or
projection operations. When you group, you want to know how many groups
are formed; when you project (duplicate elimination), you want to determine
the number of distinct result rows; when you apply equiselection on a column
or group of columns, you need to know on average how many rows will be
selected; and when you perform equijoins on a column or group of columns, you
need to know the fanout factor of the join attribute to determine cardinality of
the joined result.

The column duplicity factor is stored in the RDB$DUPLICITY_FACTOR field
in the RDB$WORKLOAD system table.

This statistic is not automatically maintained by Oracle Rdb. Use the RMU
Collect Optimizer_Statistics command to collect it.

5.3.2.2 Column Null Factor
The column null factor is a ratio of the number of rows with NULL value in at
least one column of a workload column group to the total number of rows in
a table. Since equijoins and equiselections imply removal of rows with NULL
values, the column null factor is used to determine the number of rows that
do not participate in an equiselection or equijoin operation. The column null
factor is also used to estimate the cardinality of an outer join result.

The column null factor is stored in the RDB$NULL_FACTOR field in the
RDB$WORKLOAD system table.

The Query Optimizer 5–7

This statistic is not automatically maintained by Oracle Rdb. Use the RMU
Collect Optimizer_Statistics command to collect it.

5.3.3 Storage Statistics
The storage statistics capture data clustering information such as the index
key clustering factor, index data clustering factor, and table row clustering
factor.

When the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is defined as O, the following line indicates the use of
storage statistics in optimizing the query:

Workload and Storage statistics used

5.3.3.1 Index Key Clustering Factor
The index key clustering factor is the average number of I/O operations needed
to fetch a single index key and all dbkeys associated with it. It is a measure of
how well an index key and its associated dbkeys are co-located. For a sorted
index, it signifies the number of I/O operations needed to perform a full or
range scan without row fetches. For a hashed index, it signifies the number
of I/O operations needed to perform a hashed key lookup without row fetches.
This statistic helps to improve the cost estimate of doing index-only retrieval
using a sorted or hashed index.

The index key clustering factor is stored in the RDB$KEY_CLUSTER_FACTOR
field in the RDB$INDICES system table.

This statistic is not automatically maintained by Oracle Rdb. Use the RMU
Collect Optimizer_Statistics command to collect it.

5.3.3.2 Index Data Clustering Factor
The index data clustering factor is the average number of I/O operations
needed to fetch all rows associated with a single index key. It is a measure of
how well the index key order in a sorted index matches the physical placement
order of data rows in storage areas. For a hashed index, it is a measure of how
well all rows with the same key value are located in the same clump so that
one I/O operation is sufficient to access the data.

The index data clustering factor reveals hidden data clustering possessed by an
index. For example, a table may have been loaded with data that was already
sorted by a key (a column or group of columns). If a sorted index is created
using that key, the index will have full or close to full data clustering. If a
table is loaded by placing rows via a hashed index, full or close to full data
clustering will occur.

5–8 The Query Optimizer

The index data clustering factor is used to estimate the cost of fetching data
from a sorted index scan or from a hashed index lookup. Full data clustering
results in a data fetch cost equal to the cost of sequentially fetching data rows
for a sorted index scan, and equals 1 for hashed index lookup.

The index data clustering factor is stored in the RDB$DATA_CLUSTER_
FACTOR field in the RDB$INDICES system table.

This statistic is not automatically maintained by Oracle Rdb. Use the RMU
Collect Optimizer_Statistics command to collect it.

5.3.3.3 Table Row Clustering Factor
The table row clustering factor is the average number of I/O operations needed
to sequentially fetch one row from a table. It is a measure of how well the data
rows of a table are stored in different clumps of a storage area. This statistic
also captures the effect of data row fragmentation, which may be due to row
updates or due to rows that cannot fit into a single page and have to be split
into several fragments. This statistic is used to estimate the cost of doing a
sequential scan of a table.

The table row clustering factor is stored in the RDB$ROW_CLUSTER_
FACTOR field in the RDB$RELATIONS system table.

This statistic is not automatically maintained by Oracle Rdb. Use the RMU
Collect Optimizer_Statistics command to collect it.

5.3.4 Controlling the Collection of Workload and Storage Statistics
Using workload or storage statistics carries with it some risk. You can greatly
reduce the potential for negative side effects by:

• Using query outlines for individual queries

• Deleting workload and storage statistics from the database

• Defining the RDMS$USE_OLD_COST_MODEL logical name or the RDB_
USE_OLD_COST_MODEL configuration parameter

When you define RDMS$USE_OLD_COST_MODEL or RDB_USE_OLD_
COST_MODEL to be any value, the optimizer does not use workload or storage
statistics. Using RDMS$USE_OLD_COST_MODEL or RDB_USE_OLD_COST_
MODEL allows you to:

• Test the optimization of a query workload with and without the use of
storage and workload statistics

• Selectively disable the use of workload and storage statistics for particular
users, processes, and batch jobs

The Query Optimizer 5–9

When the RDMS$USE_OLD_COST_MODEL logical name or the RDB_USE_
OLD_COST_MODEL configuration parameter is defined, the optimizer uses
cost and cardinality functions that were in use prior to V7.0 and ignores any
workload and storage statistics that have been collected.

Deassign the logical name or configuration parameter to enable the optimizer
to start using workload and storage statistics again in cost and cardinality
estimates.

5.4 Query Optimizer Overview
Depending on the complexity of the query, the optimizer uses a single table
access method, or a combination of single table access methods and join
methods, to arrive at a minimal cost solution for the query. To find a minimal
cost solution, the optimizer creates solutions using different join orders and
picks the one with the least cost. The number of join orders that the optimizer
tries is directly related to the number of tables joined. If n tables are joined,
then there are n! (factorial n) possible join orders. For example, for a 3-way
join of tables A, B, and C, the optimizer tries 3! (which is equal to 6) join
orders: ABC, ACB, BAC, BCA, CAB, CBA.

To solve a query, the query optimizer executes the following steps:

1. Determines a possible retrieval method for a table. This is based on the
table columns specified in the query and the indexes defined on the table.

2. Estimates table cardinality; that is, how many rows would have to be
accessed from the table. This estimate is based on the query predicates
specified on the table.

3. Calculates the cost of the retrieval method. Cost is based on the estimated
cardinality and the type of retrieval method the optimizer is investigating.

4. Compares the current retrieval method with other potential solutions
already generated. Creates a new retrieval solution if any of the following
conditions are true:

• The cost of the current retrieval solution is less than previous retrieval
solutions.

• The current retrieval solution produces an interesting order, which
subsequently may be useful to solve the entire query.

5. Determines a join method to join the current table to an existing
intermediate solution that involves other tables if the query specifies
two or more tables.

5–10 The Query Optimizer

6. Creates a new join solution if any of the following conditions are true:

• The cost of the current join solution is less than previous join solutions.

• The current join produces an interesting order, which may be useful
later on to solve the entire query.

7. If step 6 creates a new join solution, then repeat steps 1 through 6 to join
each of the remaining tables and produce a complete solution for the query.

8. Repeats steps 1 through 7 for each of the join orders. Finally, picks a
complete solution by selecting the solution with the minimum cost.

During step 4 and step 6, a previous solution is pruned if it is more costly than
the current one and if it does not produce any interesting order. The optimizer
will not create a complete solution using a join order if its partial solution
becomes costlier than an existing complete solution. This early pruning of
partial solutions significantly reduces the amount of time spent optimizing a
query.

You do not have to be overly concerned about how to construct your queries; if
your database changes, the query optimizer automatically devises a new access
strategy. The order in which you specify joins, and the order of the clauses in a
select expression do not, in most cases, influence the order the optimizer uses
to satisfy a query. Refer to Section 5.8 for information on how to work with the
optimizer.

5.5 Single Table Retrieval Methods
This section describes the strategies the optimizer can use to access a single
table. In addition to accessing a single table, these strategies can be used as
elements in a join to access rows in multiple tables.

You can use the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_
FLAGS configuration parameter to display the retrieval strategy for a query.
Appendix C describes how to use the logical name and configuration parameter,
and provides selected, annotated examples of access strategies.

The query optimizer can use the following methods for retrieving data from a
single table:

• Sequential retrieval

Accesses the database pages for a table’s logical area sequentially, and
reads all the rows in the table regardless of the selection expression used
in the query. When RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS is
defined as S, the following line indicates sequential retrieval:

The Query Optimizer 5–11

Get Retrieval sequentially of relation RELATION_NAME

• Dbkey retrieval

Accesses table data directly through the dbkey (logical address) row
pointer. Because this access path does not touch any index nodes, only
the row itself is locked. When RDMS$DEBUG_FLAGS or RDB_DEBUG_
FLAGS is defined as S, the following line indicates dbkey retrieval:

Get Retrieval by DBK of relation RELATION_NAME

• Index retrieval

Accesses a specific index structure (sorted or hashed) and retrieves the
index keys, which include the dbkeys, of the rows. The optimizer then
uses the dbkeys to fetch data rows. The data is delivered in index order if
a sorted index is used. When RDMS$DEBUG_FLAGS or RDB_DEBUG_
FLAGS is defined as S, the following lines indicates index retrieval:

Get Retrieval by index of relation RELATION_NAME
Index name INDEX_NAME

• Index-only retrieval

Accesses only the index data. The selected index contains all the table
columns specified in the query. Thus, no further row fetches are necessary.
The optimizer delivers the data in index order if a sorted index is used.
When RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS is defined as S,
the following lines indicate index-only retrieval:

Index only retrieval of relation RELATION_NAME
Index name INDEX_NAME

Index-only retrieval is possible with either sorted or hashed indexes.

• OR index retrieval

Uses two or more sorted indexes, or a hashed index, defined on a single
table when the predicates on these indexes are combined with the logical
OR in the query. When RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS
is defined as S, the following lines indicate OR index retrieval:

OR index retrieval
Get Retrieval by index of relation RELATION_NAME

Index name INDEX_NAME_1 . . .
Conjunct Get Retrieval by index of relation RELATION_NAME

Index name INDEX_NAME_2 . . .

5–12 The Query Optimizer

The two indexes, INDEX_NAME_1 and INDEX_NAME_2, are processed
separately as normal index retrievals and the rows fetched from these
retrievals are concatenated. The optimizer discards any duplicate
occurrences of the same row that may have been fetched from different OR
legs. The data is not delivered in any particular order.

• Dynamic OR index retrieval

Accesses a specific sorted index for a query that contains two or more
predicates combined with the logical OR. The data is delivered in the index
order. When RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS is defined
as S, the following lines indicate dynamic OR index retrieval:

Get Retrieval by index of relation RELATION_NAME
Index name INDEX_NAME [1:1...]2

See Section 5.7.1 for information on dynamic OR optimization.

• Dynamic leaf retrieval

Chooses between indexes dynamically (during execution). When
RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS is defined as S, the
following line indicates dynamic leaf retrieval:

Leaf#01 . . .

See Section 5.7.2 for information on dynamic leaf optimization.

For single tables, the optimizer finds the cheapest retrieval solution by
evaluating the cost for each possible retrieval strategy. The estimated retrieval
cost for a solution includes the cost of scanning one or more useful indexes and
the cost of fetching data records. The cheapest access path that produces rows
in each interesting order and the cheapest access path that produces unordered
rows are examined.

• If the query does not require a sort, the optimizer chooses the cheapest
access path that produces unordered rows.

• If the query does require a sort, then the cost for producing that interesting
order is compared with the cost for the cheapest unordered path added to
the cost of sorting the rows into the proper order, and the cheapest path is
selected.

The optimizer chooses index retrieval when a particular advantage is gained
by using an index. If, however, the query does not specify a particular output
order, the indexed columns are not used in the Boolean restriction specified for
this table, and a given index cannot be used for retrieval without fetching the
rows from a data area, there is no inherent reason to select an index. The only
exception to this rule is when a query accesses rows in a mixed format storage

The Query Optimizer 5–13

area. The preferred strategy in this case might be to use an index, even if
it requires retrieving all the rows. This is true because sequential retrieval
would require reading the entire storage area (all rows in all tables in the
area).

Key-Only Boolean Optimization
Key-only Boolean optimization is used in conjunction with index retrieval.
Whenever possible, the optimizer uses this optimization to filter out as many
index keys as possible before fetching rows. Thus the key-only Boolean
optimization can save I/O operations by reducing the total number of row
fetches.

To illustrate this optimization, assume a sorted index, EMP_FIRST_LAST,
is defined using the FIRST_NAME and LAST_NAME columns of the
EMPLOYEES table. The key-only Boolean optimization is used for the
following query:

SQL> SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME STARTING WITH ’A’
cont> ORDER BY FIRST_NAME, LAST_NAME;

EMPLOYEE_ID FIRST_NAME LAST_NAME
00374 Leslie Andriola
00416 Louie Ames

2 rows selected

If the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is defined as S, the following strategy results from the
previous query:

Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_FIRST_LAST [0:0] Bool

The optimizer uses the EMP_FIRST_LAST index because it provides the order
specified in the query, and therefore there is no need to sort the result. The
[0:0] notation indicates that all keys in the index are scanned, and the Bool
notation means that a key-only Boolean is applied to each of these index keys.
Here the optimizer uses the selection predicate, LAST_NAME STARTING
WITH ’ A’ , as a key-only Boolean. Note that the predicate LAST_NAME
STARTING WITH ’ A’ cannot be used to scan only those keys whose value
starts with ’ A’ because LAST_NAME is not a leading segment and there is no
equality on the first segment.

The optimizer sequentially scans all keys in the EMP_FIRST_LAST index.
The key-only Boolean is applied to each index key, and unwanted keys are
filtered out. Then, the optimizer fetches only those rows that would satisfy
the key-only Boolean. Without the key-only optimization, all rows from

5–14 The Query Optimizer

the EMPLOYEES table would have been fetched. This type of optimization
generally saves a considerable number of I/O operations.

The optimizer also uses the key-only Boolean optimization for the following
query:

SQL> SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE FIRST_NAME LIKE ’%G%’ IGNORE CASE;

Leaf#01 FFirst EMPLOYEES Card=100
BgrNdx1 EMP_FIRST_LAST [0:0] Bool Fan=9

EMPLOYEE_ID FIRST_NAME LAST_NAME
00175 George Siciliano
00319 Glenn Silver
00202 Margaret Harrington
00179 Meg Dallas
00267 Roger Saninocencio
00209 Roger Smith

6 rows selected

For this query, the optimizer uses the predicate FIRST_NAME LIKE ’ %G%’

IGNORE CASE as a key-only Boolean. The entire EMP_FIRST_LAST index is
scanned, and the key-only Boolean is applied to each index key. The optimizer
fetches only those rows whose keys satisfy the key-only Boolean. Out of 100
rows in the EMPLOYEES table, only 6 rows are retrieved.

Note that a LIKE predicate cannot be used to scan only those keys in the index
that satisfy the predicate; instead, all keys in the index must be scanned. This
is also true for CONTAINING predicates.

Min/Max Aggregate Optimization
The optimizer uses the min or max aggregate optimization when a query
contains the MIN or MAX statistical functions. This optimization requires an
appropriate sorted index, and the aggregate value must be located in a column
that is part of the index. Other necessary conditions for this optimization
include the following:

• The query should select a single MIN or MAX value.

• The column on which the value is based should be the first segment of the
index. If the value is not based on the first segment, then all preceding
segments should be based on equality selections. That is, the columns
based on leading segments should equal some value or the columns should
be null.

• The query selection should specify a single range for the index used.

• Selections should not be based on columns outside of the index.

The Query Optimizer 5–15

• The sorted index to be used for min/max optimization should not have a
VARCHAR or COLLATING SEQUENCE column as one of its segments.

The optimizer can use the min/max aggregate optimization with ascending,
descending, partitioned, or multisegmented sorted indexes. When this
optimization is selected, the optimizer performs a B-tree index descent to
locate either the minimum or the maximum column value. This approach
is much faster than either scanning a range of index keys or sequentially
scanning all table rows to find the min or max column value.

The following sample queries use min/max optimization. The strategy output
(generated by defining RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS as S)
shows the notation indicating the min/max optimization. Refer to Appendix C
for a complete description of the S flag notation.

SQL> SELECT MIN(EMPLOYEE_ID) FROM EMPLOYEES;

Aggregate Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0] Min key lookup

00164
1 row selected

The notation ‘‘Min key lookup’’ indicates that the optimizer used the min/max
optimization to find the minimum value for the EMPLOYEE_ID column.

SQL> SELECT MAX(EMPLOYEE_ID) FROM EMPLOYEES;

Aggregate Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0] Max key lookup

00471
1 row selected

The notation ‘‘Max key lookup’’ indicates that the optimizer used the min/max
optimization to find the maximum value for the EMPLOYEE_ID column.

SQL> SELECT MAX(EMPLOYEE_ID) FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID BETWEEN ’00200’ AND ’00300’;

Aggregate Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Max key lookup

00287
1 row selected

In this example, the optimizer used the min/max optimization to find the
maximum value for the EMPLOYEE_ID column and found this maximum
column value within an index range (BETWEEN ’ 00200’ and ’ 00300’). The
notation ‘‘[1:1]’’ indicates the existence of an index range.

5–16 The Query Optimizer

The following example creates an index with two segments and then uses
a query to select the maximum value from the column on which the second
segment of the index is based:

SQL> CREATE INDEX SH_SALEND_SALARY
cont> ON SALARY_HISTORY (SALARY_END, SALARY_AMOUNT);
SQL> --
SQL> -- Find the highest current salary.
SQL> SELECT MAX(SALARY_AMOUNT)
cont> FROM SALARY_HISTORY
cont> WHERE SALARY_END IS NULL;

Aggregate Index only retrieval of relation SALARY_HISTORY
Index name SH_SALEND_SALARY [1:1] Max key lookup

93340.00
1 row selected

The keys in the index SH_SALEND_SALARY include two columns:
SALARY_END and SALARY_AMOUNT. The optimizer uses the min/max
optimization to find the maximum SALARY_AMOUNT value within the range
of index keys that all have a null SALARY_END value.

5.6 Multiple Table Access Strategies
The degree of complexity in solving (optimizing) a query, and therefore the
time required to produce a strategy, depends on the number of tables involved
and the number of indexes on each table. To deal with this complexity, the
optimizer joins one table at a time to an existing intermediate solution until a
complete solution is created. The data source (that is, the record source stream
or RSS) can be a table, a subquery solution, or a view.

There are three different methods for combining multiple data sources:

• Cross join

• Match join

• Merge

These strategies can be nested and, at the leaf level of nesting, each uses
the single table access methods described in Section 5.5. The cross and match
strategies join rows from two or more data sources, whereas the merge strategy
(used for unions) concatenates rows from two or more data sources.

The Query Optimizer 5–17

5.6.1 Cross Join
The cross join method, also known as the nested loop join, joins two or more
data streams. Each data stream corresponds to an Entry in the cross join
notation. A cross join method does not require that rows in any entry be in
sorted order. When the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter is defined as S, the following lines
within the query strategy indicate the cross join:

Cross block of 2 entries
Cross block entry 1

.

.

.
Cross block entry 2

.

.

.

The following steps are performed in a cross join:

1. A row is retrieved from the data stream, which can be a single table, in
entry 1.

2. Any existing restriction predicate is applied to the row.

3. If the row satisfies the restriction predicate, all rows that match the join
predicate are retrieved from the data stream in entry 2, one row at a time.

4. Steps 1 through 3 are repeated for each row retrieved from entry 1.

Generally, in a cross join with n entries, for each processed row from entry
K, all rows matching a join predicate are retrieved from entry K+1. Then, for
each processed row from entry K+1, all rows matching a join predicate are
retrieved from entry K+2, and so on.

Entries following entry 1 often use index retrieval, because this is the most
efficient way to find all matching rows based on a join predicate. Entry 1 can
also use index retrieval if the optimizer finds an appropriate index. Because
entry 2 is processed for each row in entry 1, the data stream with the least
estimated cardinality is usually placed in entry 1, so that the number of
iterations for processing subsequent entries is reduced.

In addition to the inner join, the cross join algorithm can also perform a left
outer join. The right outer join is performed by reversing the two operands
and making it a left outer join. When doing a left outer join, the cross join
algorithm sets all inner data stream values to NULL when no key matching
row is found in the inner data stream. It returns the nonmatched row from the
outer data stream along with NULL values as part of the left outer join result.

5–18 The Query Optimizer

5.6.2 Match Join
The match strategy has two variations:

• The general match variation, which uses either a sort with a temporary
table or index retrieval

• A special match variation called the zigzag match, which does extra
optimization when using index retrieval by employing index key skip on an
incoming data stream

This section describes the general match strategy; Section 5.6.3 describes the
zigzag match join.

When the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is defined as S, the following lines indicate the general
match retrieval strategy:

Match
Outer Loop

.

.

.
Inner Loop

.

.

.

The match strategy is more specific than the cross strategy. It contains two
data streams, an outer loop and an inner loop. In this type of join, both loops
must be sorted, either explicitly or by using an index. Rows in each loop are
processed only once. Match join works only when the rows in the inner and
outer loops are sorted in the same ascending order. In other words, descending
indexes, if any, are not used by the match join method. In general, a match
join is more efficient than a cross join because the match join scans each of the
two loops once, while the cross join scans entry 2 (and higher entries) multiple
times.

At the start of processing, the optimizer reads one row in both the inner
and outer loops. If the join key values in the two rows are different, the
optimizer keeps reading rows in the loop with the lower key value until the
keys are equal in both loops. When a match of equal key values occurs, the
optimizer checks for repetition of this matched key in both loops, and performs
a cross join for this equal key group exactly as described in Section 5.6.1. The
optimizer then repeats the process of finding matching keys.

The Query Optimizer 5–19

For example, consider two tables, TABLE1 and TABLE2. TABLE1 has five
rows, which return the values 1, 5, 5, 6, and 9. TABLE2 has six rows, which
return the values 2, 3, 4, 5, 5, and 7. The match would process the two tables
as shown in Example 5–1.

Example 5–1 General Match Strategy Processing

Outer Loop (TABLE1) Inner Loop (TABLE2)

**** Start search for a matching group ****

Read first key (1) Read first key (2)

1 < 2

Switch to Outer Loop to use lower key value

************ Skip unmatched keys ************

Read next key (5)
5 > 2 (no match)
Switch to Inner Loop

Read next key (3)
5 > 3 (no match)

Read next key (4)
5 > 4 (no match)

Read next key (5)
5 = 5 (match)

********* Process equal key group *********
Perform the nested loop algorithm

as in Cross strategy
Deliver pairs of matching records

Use last-read 5 Use last-read 5
Deliver pair of records

Use last-read 5 Read next key (5)
Deliver pair of records

Read next key (7)
Read next key (5)
(still the same equal key group)

(continued on next page)

5–20 The Query Optimizer

Example 5–1 (Cont.) General Match Strategy Processing

Restart at first key 5
Use last-read 5 Use restarted 5

Deliver pair of records

Use last-read 5 Read next key (5)
Deliver pair of records

Read next key (7)
Read next key (6)
(equal key group has ended)

**** Start search for a matching group ****

Use last-read 6 Use last-read 7
6 < 7

Switch to Outer Loop to use lower key value

************ Skip unmatched keys ***********

Read next key (9)
9 > 7 (no match)
Switch to Inner Loop

Read EndOfData mark
Finish matching

The optimizer tries to place the data stream with unique join keys in the outer
loop. This eliminates backup of the inner loop data stream to the beginning of
the equal key group.

In addition to an inner join, the match join algorithm can also perform a left
outer join and full outer join. The right outer join is performed by reversing the
two operands and making it a left outer join. When doing a left outer join, the
match join algorithm sets all inner data stream values to NULL when no key
matching row is found in the inner data stream. It returns the nonmatched
row from the outer data stream along with NULL values as part of the left
outer join result.

When doing the full outer join, the match join algorithm also sets all outer
data stream values to NULL when no key matching row is found in the outer
data stream. It returns the nonmatched row from the inner data stream along
with NULL values as part of the full outer join result.

The Query Optimizer 5–21

5.6.3 Match, Zigzag
The zigzag join strategy is a faster variation of the general match method.
With this method, the data stream in the inner loop, outer loop, or both loops
must be a table, and index retrieval must be available for that table. The
zigzag strategy can be applied to the inner or outer leg.

When the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is defined as S, the following lines indicate the zigzag
match retrieval strategy:

Match
Outer Loop (zig-zag)

.

.

.
Inner Loop (zig-zag)

.

.

.

Zigzag processing differs from the regular match strategy described in
Section 5.6.2. With the zigzag match variation, the optimizer can skip multiple
keys in the inner and outer loops. The regular match strategy reads the inner
loop keys one by one, comparing them with the outer loop key, and rejects the
inner loop keys that do not match, one by one.

The zigzag match can skip over multiple keys in the inner loop by using the
current outer loop key as a fresh point to restart index scan. The zigzag match
can also skip over multiple keys in the outer loop by using the current inner
loop key as a fresh point to restart index scan. When a large number of keys
can be skipped, the restart scan procedure chooses to quickly descend from the
top of the index B-tree to the fresh point, thus saving I/O operations and CPU
time. When only a few keys need to be skipped, the restart procedure will not
descend the B-tree but will perform an efficient in-memory skip saving CPU
time.

Example 5–2 uses the same tables found in Example 5–1, and it shows a zigzag
skip that occurs only on the inner loop. The outer loop is sorted and scanned.
The inner loop has an index, which is used to access the key values.

5–22 The Query Optimizer

Example 5–2 Zigzag Match Strategy Processing

Outer Loop (TABLE1) Inner Loop (TABLE2)
Zigzag side

**** Start search for a matching group ****

Read first key (1) Read first key (2)

1 < 2

Switch to Outer Loop to use lower key value

************ Skip unmatched keys ************

Read next key (5)
5 > 2 (no match)
Switch to Inner Loop

Skip to next key >=5
Skips keys 3,4

Gets key 5
5 = 5 (match)

********* Process equal key group *********

Processing continues as in a regular match strategy

Oracle Rdb also supports zigzag key skip on the outer loop if the data stream
in the outer loop is a table and index retrieval is used.

The zigzag match join’s advantage over a regular match join is the ability to
skip ahead to a higher key using the index on the inner, outer, or both loops.

5.6.4 Merge
The merge strategy concatenates data from two or more data sources. This
strategy is invoked when the optimizer encounters the UNION operator.

When the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is defined as S, the following lines indicate the merge
retrieval strategy:

Merge block of n entries
Merge block entry 1

. . .
Merge block entry 2

. . .
.
.
.

The Query Optimizer 5–23

Unlike join operations, the merge strategy can return data common to several
data sources as well as data contained in only one of the sources. In a merge
strategy, two or more data sources are combined using an append function
rather than a match function.

The merge strategy follows these general steps:

1. Entry 1 is processed completely according to the strategies described in the
body of the entry.

2. Entry 2 is processed completely according to the strategies described in the
body of the entry, and the result appended to the work from entry 1.

5.6.5 Join Ordering
One of the major functions of the query optimizer is to consider all possible
ways in which tables can be joined together in order to identify the most
efficient join order. However, the use of the following limit the range of
possible solutions the optimizer will consider:

• Outer joins

• Derived tables

• Views

Contrary to inner joins and full outer joins, the left and right outer joins are
noncommutative operations. That is, the operands of a left or right outer join
cannot be reversed. For example, the join expression A left outer join B gives
a different result than B left outer join A .

Also, contrary to inner joins, outer joins (left, right, or full) are nonassociative
operations. This means the operands of an outer join cannot be permuted (or
interchanged). For example, the join expression (A inner join B) inner join
C gives the same result as A inner join (B inner join C) . Whereas, the join
expression (A full outer join B) full outer join C gives a different result
than A full outer join (B full outer join C) .

The following sections describe join ordering in further detail. Note that
when not specified, ‘‘outer join’’ refers to a left or right or full outer join.
Also note that in the following examples, the symbols IJ, LJ, RJ, and FJ are
used to denote inner join, left outer join, right outer join, and full outer join,
respectively.

5–24 The Query Optimizer

5.6.5.1 Ordering of Join Operators
In a series of outer joins, SQL defines the default join ordering to be from left
to right. However, you can override the default by using parentheses. For
example, consider the join expression A LJ B LJ C.

Without parentheses, SQL will default to the join order [A LJ B] LJ C and
require that you supply the ON or USING clauses as follows:

A LJ B ON LJ C ON

You can use parentheses to alter the join ordering as follows:

A LJ (B LJ C ON) ON

Note that the second expression does not produce the same results as the first,
because the two orders are semantically different. Note also that the ON or
USING clauses are not necessary if you use the NATURAL qualifier, effectively
telling SQL to use the identically named columns in both tables for joining.

5.6.5.2 Ordering of Join Operands
The operands of a left or right outer join are noncommutative. That is, the
operands cannot be reversed. For example, A LJ B is not the same as B LJ A.
However, A LJ B produces the same results as B RJ A. This property is used
by the optimizer to convert all right outer joins into left outer joins while still
guaranteeing correct results. This conversion is done so that the join algorithm
will have to perform only inner, left outer, and full outer joins.

Because inner joins and full outer joins are commutative, their operands can
be reversed. The optimizer tries solutions by commuting their operands, and
picking the solution that has the lowest cost.

5.6.5.3 Combining Join Operators
For semantically correct processing of outer joins, the operands of an outer
join must not be permuted. Therefore, the outer join operands cannot be
interchanged with operands of other joins.

For example, consider the join expression:

A IJ B ON ... IJ C ON

With inner joins, the optimizer is free to join A, B, and C in any order. It can
first join A and C even though no explicit join condition exists between A and
C. Doing so produces correct results and may provide the best performance.

By contrast, consider the following join expression:

A LJ B ON ... LJ C ON

The Query Optimizer 5–25

This problem can be solved only by first joining operands A and B and then
joining operand C.

In a mix of inner and outer joins, the outer joins enforce some restrictions on
the join order. The two operands to each outer join are always joined together,
and they do not permute with any other operands.

For example, consider the join expression:

A LJ B IJ C

There are only two possible join orders:

[A LJ B] IJ C
C IJ [A LJ B]

If LJ is replaced with FJ in the above join expression as follows:

A FJ B IJ C

Then there are four possible join orders:

[A FJ B] IJ C
[B FJ A] IJ C
C IJ [A FJ B]
C IJ [B FJ A]

In this example, the operands to the inner join as well as the operands to the
full outer join can commute.

5.6.5.4 Changing the Join Order
It is not necessary to use the derived table construct to alter the join ordering
unless you also want aggregation. Therefore, it is better to just use the
parentheses to alter the join ordering, as in the following join expression:

A LJ (B LJ C ON) ON

The previous example is a better construct than the following join expression:

A LJ (B LJ C ON) as DTAB ON

The latter join expression can prevent the optimizer from generating an
efficient strategy.

Note that the use of parentheses does not impose any restriction on the join
ordering unless outer join semantics dictate such a restriction. For example,
the following three join expressions are equivalent:

5–26 The Query Optimizer

(A IJ B) IJ C

A IJ (B IJ C)

A IJ B IJ C

However, the following two join expressions are not equivalent:

(A IJ B) LJ C

A IJ (B LJ C)

In this case, the join order restriction is imposed by the presence of left outer
join rather than the use of parentheses.

The use of derived tables and views imposes restrictions on the join ordering.
For example, the following join expression forces the optimizer to always join A
and B together; therefore, operands A and B are not allowed to permute with
operand C.

(A IJ B) AS DTAB IJ C

The following query containing a view also forces the optimizer to always join
A and B together:

CREATE VIEW V AS SELECT * FROM A NATURAL JOIN B;

SELECT * FROM V NATURAL JOIN C;

5.6.5.5 Using Derived Tables
SQL allows writing queries that include subqueries in various areas: the
select list, the WHERE clause, and the FROM clause. Those subqueries can be
nested.

A subquery in the FROM clause is called a derived table. An example of a
derived table follows:

SELECT ... FROM
(SELECT FROM WHERE ...) AS T1,
(SELECT FROM

(SELECT FROM WHERE ...) AS T3,
(SELECT FROM WHERE ...) AS T4

WHERE T3.x = T4.x) AS T2
WHERE T1.y = T2.y;

Derived tables allow the easy expression of complex operations such as
double aggregations or joining aggregations. However, using derived tables
to perform only selections and joins, without any aggregations, can result in
poor performance by limiting the choices available to the optimizer.

The Query Optimizer 5–27

There is no reason to use derived tables if the query does not include
aggregations. It is more efficient to ‘‘roll’’ the subqueries back into the parent
query, a process called query flattening.

For example, the following query is inefficient:

SELECT E.EMPLOYEE_ID, E.LAST_NAME, J.JOB_CODE
FROM

(SELECT EMPLOYEE_ID, LAST_NAME
FROM EMPLOYEES

WHERE STATE = ’MA’) E,
(SELECT EMPLOYEE_ID, JOB_CODE

FROM JOB_HISTORY
WHERE JOB_END IS NULL) J

WHERE E.EMPLOYEE_ID = J.EMPLOYEE_ID;

The query is better expressed in the following way:

SELECT E.EMPLOYEE_ID, E.LAST_NAME, J.JOB_CODE
FROM EMPLOYEES E, JOB_HISTORY J

WHERE E.EMPLOYEE_ID = J.EMPLOYEE_ID
AND J.JOB_END IS NULL
AND E.STATE = ’MA’;

When processing the first query, the optimizer considers each derived table as a
separate entity and derives a query subplan for each of them. It then combines
the results of the two subplans to obtain the final result. This is much less
efficient than the second query, where the optimizer is able to produce one
globally optimized query plan.

5.7 Dynamic Optimization
In the current version of Oracle Rdb, dynamic optimization is used only for a
single table retrieval. In other words, it is a leaf-level dynamic optimization.
During dynamic optimization, different table access strategies are run
simultaneously, and each strategy produces some rows that satisfy the query.
The strategy that seems to be working the fastest after a certain time period
is selected to deliver the bulk of the rows. Static optimization, on the other
hand, selects a table access strategy during query compilation time, leaving the
execution time adjustments to dynamic optimization.

The static optimizer unavoidably makes mistakes in choosing the best retrieval
strategy. One possible mistake is making the wrong choice between sequential
and index retrieval; a second possible mistake is selecting a long index
scan when a much shorter index range is available. Dynamic optimization
improves upon traditional optimization techniques by using the correct index
or combination of indexes.

5–28 The Query Optimizer

Any number of tables can be optimized dynamically, but joins and unions are
still translated by the static optimizer into an execution tree, with one table
for each branch. Individual tables are accessed using one of the traditional
strategies described in Section 5.5 or by one of the dynamic leaf-level strategies
described in Section 5.7.2.

The query optimizer uses two aspects of dynamic optimization:

• Dynamic OR optimization

• Dynamic leaf-level optimization

5.7.1 Dynamic OR Optimization
The optimizer selects the dynamic OR optimization strategy when the following
conditions exist:

• A sorted or hashed index is available.

• The query contains one of the following operators that define two or more
index ranges:

IN

OR

Dynamic OR optimization offers the following advantages over traditional OR
index retrieval (described in Section 5.5):

• It uses a single pair of NDX and GET blocks instead of one pair for each
range. The index is opened and closed once instead of doing an index open
and close for each range.

• It sorts the index ranges (either at query compilation time or at query
execution time if range predicates involve host variables) on the low end
of the key ranges; then, overlapping ranges are combined to eliminate
scanning of redundant keys.

• It delivers results in index key order. This type of optimization eliminates
the use of a sort, which is required if an explicit order is specified by the
query, if the grouping of data for aggregation or duplicate elimination is
specified by the query, or if query retrieval is processed as part of a match
join. The following cases illustrate where dynamic OR optimization avoids
the use of a sort to return results in index key order:

The following query illustrates the use of dynamic OR optimization,
which helps avoid the use of a sort for a query that requests rows
returned in an explicit order:

The Query Optimizer 5–29

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME
FROM EMPLOYEES
WHERE EMPLOYEE_ID IN (’00345’, ’00166’, ’00222’)
ORDER BY EMPLOYEE_ID;

Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1...]3

EMPLOYEE_ID FIRST_NAME LAST_NAME
00166 Rick Dietrich
00222 Norman Lasch
00345 James Stornelli

3 rows selected

With traditional static OR optimization, the result would not have been
delivered in index key order, and therefore, a sort would have been
used to deliver the query result in the EMPLOYEE_ID order requested.

The following query illustrates the use of dynamic OR optimization,
which helps avoid the use of a sort when a query requires the grouping
of data to compute a value with an aggregate built-in function:

SELECT E.EMPLOYEE_ID, AVG(SALARY_AMOUNT) AS AVG_SALARY
FROM EMPLOYEES E, SALARY_HISTORY SH
WHERE E.EMPLOYEE_ID = SH.EMPLOYEE_ID AND

E.EMPLOYEE_ID IN (’00345’, ’00166’, ’00222’)
GROUP BY E.EMPLOYEE_ID;

Aggregate Conjunct
Match

Outer loop
Conjunct Index only retrieval of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1...]3
Inner loop (zig-zag)

Conjunct Get Retrieval by index of relation SALARY_HISTORY
Index name SH_EMPLOYEE_ID [1:1...]3

E.EMPLOYEE_ID AVG_SALARY
00166 1.691766666666667E+004
00222 1.307625000000000E+004
00345 5.160700000000000E+004

3 rows selected

To illustrate dynamic OR optimization on sorted indexes, assume that a sorted
index, DEG_COLLEGE_CODE, is defined on the COLLEGE_CODE column of
the DEGREES table. The next example shows a query using the IN operator,
which is shorthand notation for (COLLEGE_CODE =’ USCA’ OR COLLEGE_
CODE = ’ FLU’). Following the query, the resulting strategy output is shown
with the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter defined as S.

5–30 The Query Optimizer

SQL> SELECT * FROM DEGREES
cont> WHERE COLLEGE_CODE IN (’USCA’, ’FLU’);
Leaf#01 FFirst DEGREES Card=165

BgrNdx1 DEG_EMP_ID [0:0] Fan=17
BgrNdx2 DEG_COLLEGE_CODE [1:1...]2 Fan=17

EMPLOYEE_ID COLLEGE_CODE YEAR_GIVEN DEGREE DEGREE_FIELD
00187 FLU 1966 BA Arts
00206 FLU 1979 BA Arts
00231 FLU 1967 BA Arts
00249 FLU 1977 BA Arts
00415 FLU 1976 MA Applied Math
00176 USCA 1982 MA Applied Math
00198 USCA 1974 BA Arts
00217 USCA 1974 BA Arts

8 rows selected
SQL>

The notation in the example is described in detail in Appendix C but the third
line of output that begins ‘‘BgrNdx2’’ can be described as follows:

• DEG_COLLEGE_CODE indicates the index used for data retrieval.

• [1:1 . . .]2 indicates the optimizer is using dynamic OR index retrieval.

The first ‘‘1’’ indicates a low value for the segment in the first range
(COLLEGE_CODE = ’ USCA’).

The second ‘‘1’’ indicates a high value for the segment in the first range
(COLLEGE_CODE = ’ USCA’).

The ‘‘ . . . ’’ notation indicates other index ranges (in this case, one
more range, COLLEGE_CODE = ’ FLU’).

The final ‘‘2’’ specifies the total number of index ranges before any
overlapping ranges are combined.

When the optimizer executes the previous query, the following steps are
performed:

1. The DEG_COLLEGE_CODE index is opened and a B-tree descent is
performed, positioning at the low key of the first index range.

2. A get-next operation is performed to fetch a key from the index.

3. A Boolean check (COLLEGE_CODE = ’ USCA’ if the first range, and
COLLEGE_CODE = ’ FLU’ if the second range) is done to determine if the
key belongs to the current range.

The Query Optimizer 5–31

4. If so, then a row is fetched and delivered, and steps 2 to 4 are repeated
until Boolean check at step 3 fails. Otherwise, a key-skip is performed
using the low key of the next range (if any) to gain a start position at the
beginning of the next range and steps 2 to 4 are repeated to scan keys from
the new range.

5. When all index ranges are scanned, the index is closed.

The key-skip mechanism is optimized so that, depending on the size of the gap
between the ranges, a B-tree descent may or may not be performed to locate
the beginning of the next range.

Consider another example using a two-segment index. Assume a sorted index
DEG_COLLEGE_CODE_YEAR_GIVEN exists on the COLLEGE_CODE and
YEAR_GIVEN columns of the DEGREES table. Dynamic OR optimization is
used for the following query:

SQL> SELECT * FROM DEGREES
cont> WHERE COLLEGE_CODE = ’STAN’ AND
cont> (YEAR_GIVEN = 1973 OR YEAR_GIVEN = 1981);
Leaf#01 FFirst DEGREES Card=165

BgrNdx1 DEG_COLLEGE_CODE_YEAR_GIVEN [2:2...]2 Fan=17

EMPLOYEE_ID COLLEGE_CODE YEAR_GIVEN DEGREE DEGREE_FIELD
00185 STAN 1973 MA Elect. Engrg.
00201 STAN 1973 BA Arts
00208 STAN 1981 BA Arts
00226 STAN 1981 BA Arts
00230 STAN 1981 MA Statistics
00374 STAN 1981 PhD Statistics
6 rows selected

Two index ranges are specified in the query:

• The first range is COLLEGE_CODE = ’ STAN’ and YEAR_GIVEN = 1973

• The second range is COLLEGE_CODE = ’ STAN’ and YEAR_GIVEN =
1981

The notation [2:2 . . .]2 indicates that the optimizer uses dynamic OR index
retrieval, that there are low values for two segments and high values for two
segments in the first range, and there are a total of two index ranges.

5–32 The Query Optimizer

5.7.2 Dynamic Leaf Optimization
Dynamic leaf optimization (sometimes referred to as DynamOpt) chooses the
best combination of indexes when several useful indexes are available. An
index scan yields a highly accurate count of data that will result from the
query. The selectivity estimates resulting from a scan are used to sequence the
available indexes in order of scan cost to determine the best index or indexes
to use.

The optimizer chooses the dynamic leaf strategy automatically when at least
one index with a range or equality restriction is available, and the query does
not perform any updates on the table. In four cases the optimizer selects
a traditional index retrieval strategy to avoid dynamic leaf optimization’s
experimental overhead. The four exceptions include:

• A unique index with exact key match (that is, all segments are specified as
equalities)

• An index only retrieval where no other useful indexes exist

• An index only retrieval that delivers rows in requested order (other useful
indexes can exist but will be ignored)

• An OR index retrieval that uses two or more indexes to access data from a
table

Dynamic leaf strategies cover most major requirements and index
configurations for single table retrieval. The four dynamic leaf-level retrieval
strategies include:

• Background Only (shown as ‘‘BgrOnly’’ in the RDMS$DEBUG_FLAGS or
RDB_DEBUG_FLAGS strategy display), which optimizes total retrieval
time. This strategy is described in Section 5.7.2.1.

• Fast First (‘‘FFirst’’), which optimizes retrieval time for the first few rows
of a query. This strategy is described in Section 5.7.2.2.

• Index Only (‘‘NdxOnly’’), which the optimizer uses when an index contains
all the columns required by a query, and one or more other useful indexes
exist that require a data fetch. This strategy is described in Section 5.7.2.3.

• Sorted (‘‘Sorted’’), which the optimizer uses when an existing index
provides the requested sorted order, and one or more useful indexes exist.
This strategy is described in Section 5.7.2.4.

All four strategies are governed by two major principles:

• Strategies compete against each other; the winner is selected to deliver the
rows.

The Query Optimizer 5–33

• During competition, useful data is accumulated from each index scan to
help other scans and fetches to be more effective.

The primary benefit of dynamic leaf-level optimization is the provision of
near-optimal performance for each instance of table access, even within the
same query run, regardless of:

• Data distribution

• Columns correlation

• Whether zero or small numbers of selected rows are delivered in one
instance

• When all or many rows are delivered in the other instance of the same leaf
execution

There are two dynamic optimization contexts: the background process and the
foreground process. The two processes are implemented within a single thread
of either a user program or within interactive SQL. Pieces of individual scans
run interchangeably, maintaining the same proportional speed of advancement
over the rows.

The Background Process
The background process scans ranges of one or more indexes and delivers a
sorted list of dbkeys and a filter represented either as an in-memory sorted
dbkey list or an in-memory bitmap. Filters are used by the foreground process
to avoid unnecessary row fetches from the data areas. The sorted dbkey list
is used by the Fin stage for the final data row fetches and delivery. The
presorting of dbkeys for delivery improves the efficiency of queries that fetch
data that is not placed using an index. The background process cannot deliver
rows to the user.

The background process scans each background index (noted as BgrNdx1,
BgrNdx2, . . . BgrNdxN) and stores dbkey lists in memory buffers or in
temporary tables. Each dbkey list is usually smaller than the previous list
because dbkeys that are not in the previous dbkey list are discarded. As a
result, only the current and last completed lists of dbkeys are maintained at
any one time.

When the static optimizer selects two or more background indexes, the initial
index sequence is based on rough estimates of the number of dbkeys that
satisfy each index restriction. However, the actual number of dbkeys can
change at each new leaf node invocation because the values of the variables
involved in restrictions can change.

5–34 The Query Optimizer

To provide better dbkey number estimates for each leaf invocation, dynamic
optimization runs a quick estimate procedure for each background index at
each leaf invocation. The purpose of this estimation is to change the sequence
of the background indexes to ascending selectivity order. The sequence may
change from one leaf invocation to another because range-defining variables
can change. By resequencing based on fresh variable values, the optimality
of index usage is assured even if range sizes go up and down with each
leaf invocation. In some cases, dynamic estimates are not performed if the
estimation procedure would take an excessive amount of time, such as when:

• The range list containing the logical OR is involved in a restriction, as
described in Section 5.7.1

• An index is stored in more than one storage area

Table 5–1 shows the conditions that can cause background index scan
termination. The table also shows the execution trace output (RDMS$DEBUG_
FLAGS or RDB_DEBUG_FLAGS defined as E) that indicates each condition.

Table 5–1 Conditions That Cause Background Index Scan Termination

Condition E Flag Output

Whole index range scanned to completion. EofData

Too many dbkeys are read (threshold limit reached). The
background process scans other available indexes.

ThreLim

Too many I/O operations done (fetch limit reached). The
background index tries the next index.

FtchLim

Explicit command issued, such as ‘‘Close Leaf.’’ Termin*

Note

Table C–3 lists and defines all output notation for the RDMS$DEBUG_
FLAGS and RDB_DEBUG_FLAGS E flag.

The background process never delivers rows to a caller (hence the term
background). When the background process terminates, dynamic leaf-level
optimization usually switches to the final (Fin) stage. The Fin stage delivers
data rows based on:

• The dbkey list collected in a memory buffer. This is noted as ‘‘Fin Buf’’ in
the strategy output.

• The dbkey list collected in a temporary table. This is noted as ‘‘Fin TTbl’’.

The Query Optimizer 5–35

The Fin stage never switches to another stage, and is never interrupted except
by the explicit command ‘‘Close Leaf (- ‘CUT)’’

The Foreground Process
The second component of dynamic leaf-level optimization is the foreground
process, which either scans a foreground index or borrows dbkeys from
the background process. The foreground process runs in parallel with the
background process. The foreground process fetches and delivers rows
immediately after reading a dbkey from an index or receiving the dbkey
from the background process.

Section 5.7.2.1 through Section 5.7.2.4 describes the four leaf types used by
dynamic optimization to retrieve data rows.

5.7.2.1 Background Only Retrieval
The most important component of dynamic optimization is the background
process. This process scans one or more indexes and delivers a sorted list of
dbkeys in ascending order to the final (Fin) stage of retrieval. The Fin stage
then delivers the data rows. The background only leaf strategy (BgrOnly)
optimizes a query for total time retrieval—that is, BgrOnly finds all the rows
that satisfy the query before it delivers them. The foreground process, which
delivers rows immediately, is not run as part of the BgrOnly strategy.

The optimizer selects the background only leaf strategy when one or more
indexes could be used for retrieval but none of them contain all the columns
required by the query.

The background only leaf strategy executes the following generalized steps:

1. Scans all useful indexes prioritized by their estimated selectivities. The
shortest index is scanned first.

2. Stores dbkeys in a dbkey list.

3. Abandons an index scan if the dbkey list length exceeds the length of a
dbkey list already built. The decision to abandon an unproductive index
is based on the actual length of the growing dbkey list, not on the error-
prone selectivity estimation. Additionally, the optimizer counts the actual
fetches (physical I/Os) for each index scan and limits experimentation to
some proportion of the cost of the best retrieval method available at a given
moment.

4. While scanning, weeds out dbkeys not contained in previously built dbkey
lists.

5. Enables row fetches by the Fin stage using dbkeys from the shortest
completed dbkey list.

5–36 The Query Optimizer

6. Sorts the shortest complete dbkey list before handing it to the Fin stage in
order to avoid duplicate reads of the same data pages.

The background process optimizes a total retrieval time by guaranteeing use
of the best subset of available indexes. You do not have to be concerned about
whether a query restriction covers a single row or 90 percent of a table’s
rows, or whether one or more indexes exist for the restriction. However, in a
low update environment, defining several few-segment indexes can be more
efficient than defining a single multisegment index.

Oracle Rdb allows you to specify a total time retrieval strategy in your query.
See Section 5.8.5 for more information.

5.7.2.2 Fast First Retrieval
In contrast to the total time retrieval strategy of the BgrOnly leaf, some
queries or applications need only look at the first or first several rows returned
by a query. For example, the EXISTS predicate only checks for the existence
of a single data row. Also, an interactive user typically looks at the first screen
or the first several screens of query results, not thousands of them, before
canceling the query. In this case, the optimizer uses the fast first (FFirst)
retrieval leaf strategy.

Fast first retrieval is used when the following conditions are true:

• At least one applicable index exists

• No index exists that enables index only retrieval

• No sort is needed

Because the background process cannot directly deliver rows, the optimizer
runs the foreground process in parallel with the background process for FFirst
retrieval. The foreground process can deliver rows immediately.

The FFirst leaf strategy executes the following generalized steps:

1. The background process opens the best index and begins scanning.
The background process passes each dbkey from the index scan to the
foreground process.

2. The foreground process begins delivering rows immediately and stores the
dbkeys of delivered rows in a foreground buffer. Sometimes when the fast
first strategy is selected for record retrieval, no records or very few records
are selected. In this case, the foreground process of the leaf node does
many record fetches in an attempt to deliver them, but they all (or almost
all) are rejected based on the selection criterion.

The Query Optimizer 5–37

3. If an explicit Close Leaf command is received by the leaf while background
and foreground activities are in progress, it indicates the user (or the
user’s program) or other parts of a query that called this leaf were satisfied
with the few rows already delivered by the foreground process and needed
no more rows. The fast first retrieval strategy employs the foreground
process precisely because of a high expectation of such a premature
retrieval termination. Upon premature termination, both background
and foreground processes stop and leaf controlled resources, including the
foreground buffer, are released.

4. A competition occurs between the foreground and background processes
in which foreground fetches are terminated and a switch is made to the
background only (BgrOnly) strategy when the cost of the foreground
fetches exceeds half of the projected background cost. This feature
reduces unnecessary foreground cost and chooses the guaranteed efficient
strategy as soon as the chance of success by the foreground process
becomes unreasonably low. This competition mechanism provides better
performance when the user has incorrectly chosen fast first optimization
or when the previously unknown data distribution makes the total time
optimization more efficient than the fast first optimization.

When the optimizer terminates the foreground process, it does not throw
away the foreground buffer. It still needs to know which rows have
been delivered so that the same row does not get delivered twice. The
background continues to obtain rows and pass the dbkeys to the Fin stage.
The Fin stage filters the dbkeys through the foreground buffer and delivers
the remaining rows.

5. If the background process finishes before an explicit Close Leaf command,
the foreground terminates. The background process switches to the Fin
stage and delivers the rows.

Oracle Rdb allows you to specify a fast first retrieval strategy in your query.
See Section 5.8.5 for more information.

5.7.2.3 Index Only Retrieval
The optimizer uses the index only (NdxOnly) leaf retrieval strategy when an
index exists that contains all the columns needed to satisfy a query. At least
one other index must also be available or the optimizer will use traditional
index only retrieval.

The index only leaf strategy executes the following generalized steps:

1. The optimizer starts both background and foreground processes. The
foreground process opens the index that contains all the columns necessary
to complete the query. The background process opens an index from the

5–38 The Query Optimizer

remaining available indexes that it estimates will yield the fewest dbkeys.
Upon opening, both processes advance with proportional speed of incurred
cost, measured in physical I/O operations.

2. The foreground process starts delivering rows immediately. When a row is
delivered, the optimizer records the row’s dbkey in a buffer. If the buffer
overflows, the background process ends and the index only scan continues
until completion. If the buffer does not overflow, when the background
dbkey list becomes available, it is used for the final row fetches (the
NdxOnly scan terminates at this point).

Consider what happens in the background process. The background slowly
builds a dbkey list for the best index or indexes by scanning them, the best
candidates first, and keeping no more than two indexes open at the same time.
If background processing completes its dbkey list before the foreground buffer
overflows, then the foreground process is terminated. Because the background
process cannot deliver rows, the optimizer moves to the Fin stage. To avoid
outputting the same data twice, the dbkeys from the background dbkey list are
checked against the list of already-output dbkeys recorded in the foreground
buffer. The rows that do not match those in the foreground buffer are delivered
to the caller.

5.7.2.4 Sorted Order Retrieval
The optimizer uses the sorted order leaf retrieval strategy when the following
conditions exist:

• The query specifies or implies a particular sort order, for example, when
aggregates, projections, or match strategies demand a specific sort order.

• Index only retrieval is not possible.

• An index with the correct order exists.

• At least one other index exists that can be used for dbkey filtering.

The sorted order leaf strategy executes the following generalized steps:

1. The optimizer starts both background and foreground processes. The
foreground process opens the sorted index and begins to deliver rows
immediately. The dbkeys of the delivered rows are not saved in a buffer.
The background process begins scanning other useful indexes in parallel
with the foreground process. The background does not race with the
foreground process; instead, it builds a dbkey list or bitmaps for filtering
purposes.

2. When the background process finishes, it releases all resources and retains
only the final dbkey list or the final bitmap filter.

The Query Optimizer 5–39

3. The rows that the foreground process continues to deliver are now checked
(filtered) against the background dbkey list or bitmap. If the dbkey
matches, the row is retrieved from the data page. Otherwise, the row
is not fetched, thus saving I/O.

5.8 Working with the Query Optimizer
This section describes ways to maximize the optimizer’s potential.

5.8.1 Views and Query Optimization
Views can assist the optimizer in developing the best retrieval strategy if the
view is well-defined.

Views present an opportunity to simplify the optimization task and thus reduce
the total time spent in determining a retrieval strategy. If a view of three
tables is joined with a fourth table in a query, the optimizer will derive a
retrieval strategy for the view and then derive a retrieval strategy for the
query (that is, a view join table). The view is treated as a single table whose
cardinality is the estimate of the resulting data stream of the view. In other
words, the view retrieval strategy is determined separately from the rest of the
query. To produce an efficient view retrieval strategy, any predicates that are
based on view columns but present outside of a view are also used. Similarly,
the cardinality estimate of the view is used when retrieval strategy for the
query is produced. Thus a view is optimized separately from the query, but
global information is used when appropriate.

Consider the following example. Four tables need to be joined: TAB_A, TAB_B,
TAB_C, and TAB_D. If TAB_A, TAB_B, and TAB_C are combined in a view,
the number of possible solutions that the optimizer must consider (assuming
no indexes and equal cardinality) is 3! plus 2! (or (3 � 2 � 1 + 2 � 1 = 8)) as
opposed to 4! (or (4 � 3 � 2 � 1 = 24)) if no view is used and all four tables are
of equal cardinality and no indexes are joined. However, the degree to which
each solution is considered will be different, because solution pruning will take
place. Because the number of possible solutions is reduced when a view is
used, the total time to optimize the query is also reduced.

Consider another example. There are four tables: TAB_A, TAB_B, TAB_C,
and TAB_D. If TAB_A and TAB_B are combined in VIEW_1, and TAB_C and
TAB_D are combined in VIEW_2 with no join between the views, the optimizer
derives a retrieval strategy for VIEW_1 (first join), a retrieval strategy for
VIEW_2 (second join), and then a retrieval strategy for cross-product of the
results from VIEW_1 and VIEW_2. But if all four tables are used in a query,
then the optimizer produces a retrieval strategy with a join of two tables,
followed by a cross-product with third table, and finally a join with fourth

5–40 The Query Optimizer

table. Because cross-product is not the last operation performed in the second
case, it is likely that the performance of such a retrieval strategy is worse than
the retrieval strategy produced for a query with views.

5.8.2 Concatenated Expressions and Query Optimization
Queries that include comparisons between concatenated expressions may
sometimes be decomposed into equivalent expressions that enable the use of an
index or indexes. The following are two possible cases:

SELECT * from table where a || b = c || d; (case A)

SELECT * from table where a || b > ’Some string’; (case B)

In each of these cases, if a is a fixed-width text column and an index is defined
on a, that index should be usable. In case A, the width of column a must be
identical to the width of column c.

If one or more indexes include a or b as the leading segment of the index,
you can use a fast index lookup. A fast index lookup is much faster than the
performance of a full index scan.

The following restrictions apply to the optimization of concatenated
expressions:

• The width of a and :aVar must be identical. (This restriction applies to
case A.)

• A usable index must be defined on column a. (This restriction applies to
case A.)

• Column a must be a fixed-width text column. (This restriction applies to
cases A and B.)

5.8.3 Queries Not Directly Based on the First Key Segment
A situation to avoid (or at least know the consequences of) is a query with the
following characteristics:

• Directly or indirectly uses OR logic

• Uses an index with segmented keys

• Does not directly depend on the first key segment

Queries that use AND logic always perform better than those that use OR
logic because using AND results in a much smaller subset of dbkeys. OR
logic concatenates OR lists and results in a list equal to the sum of two lists.
Table 5–2 shows the results of AND and OR logic.

The Query Optimizer 5–41

Table 5–2 AND and OR Logic Compared

Condition Number of Queries Dbkey Set Size

AND 1 Small

OR 2 Large, concatenated

For segmented keys, where two or more columns are used to uniquely identify
a row, you must be careful how you represent the segments in a query. For
example, consider the following three-part key named EMP_JOB_DEPT:

• The EMPLOYEE_ID column forms the first key segment.

• The JOB_CODE column forms the second key segment.

• The DEPARTMENT_CODE column forms the third key segment.

You should base a query on the first segment of the key and include the
second and third segments using OR logic. The best approach is to avoid the
detrimental OR condition. If you form a query that uses the first segment
of the key and the AND condition with the remaining two segments, both of
which have the OR condition, you can run into problems. To represent this
mathematically:

Where, S1=EMPLOYEE_ID, S2=JOB_CODE, and S3=DEPARTMENT_CODE

S1 = X AND ((S2 = Y AND S3 = Z) OR (S2 =Y1 AND S3 = Z1))

By representing the query in this way, the statement between the outer
parentheses, (S2 = Y AND S3 = Z) OR (S2 =Y1 AND S3 = Z1), is not directly
based on segment 1. Instead, you have an OR condition between segments 2
and 3 that results in an indexed search based on segment 1. To be certain that
segments 2 and 3 are directly based on segment 1, it is better to represent the
query in the following way:

(S1 = X AND S2 = Y AND S3 = Z) OR (S1 =X AND S2= Y1 AND S3 = Z1)

To summarize, it is best to avoid using queries that are not directly based on
the first key segment.

5–42 The Query Optimizer

5.8.4 Index Placement
Dynamic optimization assumes that data rows are clustered by some sorted
index only if the PLACEMENT VIA clause is specified in the CREATE
STORAGE MAP statement for the table, or if another sorted index has
one or more of its leading segments identical to the leading segments of
the PLACEMENT VIA index. All other non-PLACEMENT VIA indexes are
assumed to have no clustering effect; that is, random physical row fetches are
expected from such index scans, yielding at least one I/O operation for each
single fetched row. If you define a PLACEMENT VIA index and then drop it,
or if some non-PLACEMENT VIA index has a strong statistical correlation to
the PLACEMENT VIA index, or if the table just happens to be loaded in the
same sequence as some index order, then such an implicit clustering effect is
hidden from the optimizer.

To ensure better performance, you should specify a clustering order explicitly.
However, even with implicit clustering, the dynamic optimizer detects and
measures the clustering factor when more than one index scan of the same
index is performed. This means that with multiple executions of the same
compiled query or with multiple index retrievals within a single query run, the
optimizer adapts to arbitrary clustering and can approach the best performance
rate.

5.8.5 Specifying a Preferred Optimization Mode
Applications and 4GL tools can influence the retrieval strategy selected by the
query optimizer when you specify either fast first row retrieval or total time
retrieval.

• With fast first row retrieval, data is returned as soon as possible. This
strategy benefits applications that need to establish the existence of, or
look at, one or a few rows that satisfy the query. For example, interactive
applications can allow a user to abort a query after displaying several
screens of data without reading the entire set of rows. See Section 5.7.2.2
for more information on the fast first retrieval strategy.

• With total time retrieval, the optimizer determines the best strategy for
satisfying the entire query. This strategy benefits applications, such as
batch jobs, that are interested in minimizing total retrieval time and can
afford to wait for the first row of data to be returned. Total time retrieval is
always used by the background only retrieval strategy. See Section 5.7.2.1
for more information on the background only retrieval strategy.

The Query Optimizer 5–43

Note that, despite the presence of a preferred option, Oracle Rdb can override
a specific option when it detects a solid reason for doing so. For example, the
EXISTS predicate dictates fast first optimization, whether or not the total time
option was specified for the query. Aggregate expressions (AVG, COUNT, MAX,
MIN, and SUM) with no GROUP BY clause dictate total time optimization,
whether or not the fast first option was specified for the query.

SQL enables you to specify optimizer preferences using:

• The SELECT expression

• The singleton form of the SELECT statement

• The SQLOPTIONS qualifier on the precompiler command line

• The OPTIMIZATION_LEVEL qualifier on the module language command
line

• The SET OPTIMIZATION LEVEL statement

The SELECT expression and singleton form of the SELECT statement
are used to specify optimizer preferences for individual statements. The
SQLOPTIONS=OPTIMIZATION_LEVEL qualifier on the precompiler
command line is used to specify an optimizer preference for a majority of
the statements in a precompiler program. The OPTIMIZATION_LEVEL
qualifier on the module language command line is used to specify an optimizer
preference for a majority of the statements in a module language program.
The SET OPTIMIZATION LEVEL statement is used to specify an optimizer
preference for a majority of the statements in dynamic SQL or interactive SQL.

The rest of this section provides more information on specifying optimizer
preferences using SQL. Refer to the Oracle Rdb7 SQL Reference Manual for
syntax details.

• The SELECT expression

The OPTIMIZE FOR { DEFAULT | FAST FIRST | TOTAL TIME } clause
can be specified with the SELECT expression to specify the optimization
mode Oracle Rdb will use for the SELECT expression. Note that the
SELECT expression can be used with the DECLARE CURSOR statement,
with the INSERT statement, and with the interactive SELECT statement.

The following interactive SQL example shows two DECLARE CURSOR
statements that set the preferred optimization mode for a cursor. The first
DECLARE CURSOR statement sets the optimization mode for fast first
retrieval. The second DECLARE CURSOR statement sets the optimization
mode for total time retrieval:

5–44 The Query Optimizer

SQL> DECLARE CEMP TABLE CURSOR
cont> FOR
cont> SELECT *
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’01100’
cont> OPTIMIZE FOR FAST FIRST;
SQL>
SQL> DECLARE TEMP TABLE CURSOR
cont> FOR
cont> SELECT LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES
cont> OPTIMIZE FOR TOTAL TIME;

The following interactive SQL example shows how you can choose an
optimization strategy for a SELECT statement:

SQL> SELECT * FROM EMPLOYEES
cont> OPTIMIZE FOR FAST FIRST;
SQL>
SQL> SELECT * FROM EMPLOYEES
cont> OPTIMIZE FOR TOTAL TIME;

• The singleton form of the SELECT statement

The OPTIMIZE FOR { DEFAULT | FAST FIRST | TOTAL TIME }
clause can be specified with the singleton SELECT statement to specify
the optimization mode Oracle Rdb will use for the singleton SELECT
statement. Note that the singleton SELECT statement is valid only in SQL
module language and SQL precompiler programs.

• SQLOPTIONS=(OPTIMIZATION_LEVEL=DEFAULT | FAST_FIRST |
TOTAL_TIME)

The SQLOPTIONS=(OPTIMIZATION_LEVEL=DEFAULT | FAST_FIRST
| TOTAL_TIME) qualifier for the SQL precompiler command line specifies
the default optimizer strategy to be used for processing those statements
embedded in SQL precompiler programs that do not specify a particular
optimizer strategy with the OPTIMIZE FOR clause.

Use the SQLOPTIONS=(OPTIMIZATION_LEVEL=DEFAULT | FAST_
FIRST | TOTAL_TIME) qualifier to select the optimizer strategy that
is appropriate for the majority of the statements in your precompiler
program. Individual statements in a precompiler program that use the
OPTIMIZE FOR syntax to specify an optimizer strategy will be processed
with the optimizer strategy specified with the OPTIMIZE FOR syntax.

• OPTIMIZATION_LEVEL=(DEFAULT | FAST_FIRST | TOTAL_TIME)

The Query Optimizer 5–45

The OPTIMIZATION_LEVEL=(DEFAULT | FAST_FIRST | TOTAL_
TIME) qualifier for the SQL module language command line specifies the
default optimizer strategy to be used for processing those statements in
SQL module language programs that do not specify a particular optimizer
strategy with the OPTIMIZE FOR clause.

Use the OPTIMIZATION_LEVEL=(DEFAULT | FAST_FIRST | TOTAL_
TIME) qualifier to select the optimizer strategy that is appropriate for the
majority of the statements in your module language program. Individual
statements in a module language program that use the OPTIMIZE FOR
syntax to specify an optimizer strategy will be processed with the optimizer
strategy specified with the OPTIMIZE FOR syntax.

• SET OPTIMIZATION LEVEL { ’ DEFAULT’ | ’ FAST FIRST’ | ’ TOTAL
TIME’ }

The default optimization mode for statements in dynamic SQL is the
mode specified for the module in which the statement is prepared. The
SET OPTIMIZATION LEVEL statement is used to override the default
optimization mode that is set for the module.

For interactive SQL, the default optimization mode is DEFAULT. The SQL
SET OPTIMIZATION statement can be used in interactive SQL to override
the default optimization mode.

The following interactive SQL examples show how you can use the SET
OPTIMIZATION LEVEL statement to request the fast first retrieval
strategy or total time retrieval strategy for one or more queries.

Use the following statement if the majority of the queries in your
interactive session are not going to be closed before all the result records
are delivered:

SQL> SET OPTIMIZATION LEVEL ’TOTAL TIME’;

Use the following statement if the majority of the queries in your
interactive session are going to be terminated after examining the first
few records (that is, before all the result records are delivered):

SQL> SET OPTIMIZATION LEVEL ’FAST FIRST’;

The following statement sets the optimization back to the default behavior
(when no SET OPTIMIZATION LEVEL strategy has been specified). The
default behavior is to try the fast first retrieval strategy first, then select
the total time retrieval strategy if it will retrieve the records faster than
the fast first strategy:

SQL> SET OPTIMIZATION LEVEL ’DEFAULT’;

5–46 The Query Optimizer

If different portions of your interactive session need different optimization
levels, use the SQL SET OPTIMIZATION LEVEL statements to set the
desired level before each such portion.

Example 5–3 shows the use of the SET OPTIMIZATION LEVEL statement.
The example assumes that you have defined the RDMS$DEBUG_FLAGS
logical name or the RDB_DEBUG_FLAGS configuration parameter as S.

Example 5–3 Using the SQL SET OPTIMIZATION LEVEL Statement

$ SQL
SQL> ATTACH ’FILENAME personnel’;
SQL> --
SQL> -- No optimization level has been selected. The optimizer
SQL> -- selects the fast first (FFirst) retrieval strategy to
SQL> -- retrieve the rows from the EMPLOYEES table in the
SQL> -- following query:
SQL> SELECT EMPLOYEE_ID, LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID IN (’00167’, ’00168’);
Leaf#01 FFirst RDB$RELATIONS Card=19

BgrNdx1 RDB$REL_REL_NAME_NDX [1:1] Fan=8
Sort
Cross block of 2 entries

Cross block entry 1
Leaf#01 BgrOnly RDB$RELATION_FIELDS Card=71

BgrNdx1 RDB$RFR_REL_NAME_FLD_ID_NDX [1:1] Fan=8
Cross block entry 2

Get Retrieval by index of relation RDB$FIELDS
Index name RDB$FIELDS_NAME_NDX [1:1] Direct lookup

Leaf#01 FFirst EMPLOYEES Card=100
BgrNdx1 EMP_EMPLOYEE_ID [1:1...]2 Fan=17

EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash

2 rows selected
SQL> --
SQL> -- Use the SET OPTIMIZATION LEVEL statement to specify that you want
SQL> -- the total time (BgrOnly) retrieval strategy to be used. Note that
SQL> -- when the previous query is executed again, the total time (BgrOnly)
SQL> -- retrieval strategy is selected, instead of fast first:
SQL> SET OPTIMIZATION LEVEL ’TOTAL TIME’;
SQL> SELECT EMPLOYEE_ID, LAST_NAME

(continued on next page)

The Query Optimizer 5–47

Example 5–3 (Cont.) Using the SQL SET OPTIMIZATION LEVEL Statement
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID IN (’00167’, ’00168’);
Leaf#01 BgrOnly EMPLOYEES Card=100

BgrNdx1 EMP_EMPLOYEE_ID [1:1...]2 Fan=17
EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash

2 rows selected
SQL> --
SQL> -- When you specify the SET OPTIMIZATION LEVEL ’DEFAULT’ statement,
SQL> -- either the fast first or total time strategy will be selected.
SQL> -- The fast first strategy will be tried first, then total time
SQL> -- will be selected if it will retrieve the rows faster than the
SQL> -- fast first strategy.
SQL> SET OPTIMIZATION LEVEL ’DEFAULT’;
SQL> --
SQL> -- Because the fast first strategy is faster than the total
SQL> -- time strategy for this query, the fast first strategy
SQL> -- is used to retrieve the rows:
SQL> SELECT EMPLOYEE_ID, LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID IN (’00167’, ’00168’);
Leaf#01 FFirst EMPLOYEES Card=100

BgrNdx1 EMP_EMPLOYEE_ID [1:1...]2 Fan=17
EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash

2 rows selected
SQL>

If you use an initialization procedure (the sqlini.sql procedure that is
automatically executed in the beginning of each session), you can set the
most commonly used optimization level in the initialization procedure.

5.8.6 Using the Query Governor
In some database environments, interactive or application users can consume
excessive system resources by entering general queries that require multiple
table joins or that return every row in a table. By default, Oracle Rdb runs
every query to completion. You can prevent the overload caused by lengthy
queries by setting limits, within an application or environment, that restrict
query output. The mechanism that restricts output is called the query
governor. You can use the query governor to set one or more of the following
limits:

• You can restrict output by limiting the number of rows a query can
return. The optimizer counts each row returned by the query and stops

5–48 The Query Optimizer

execution when the row limit is reached. Note that the row limit value
is independent of the number of rows read by the application, such as
intermediate rows for a join or component rows for an aggregate. However,
avoid setting too low a value because the row limit value applies to all
database queries, including queries to system tables (for example, by SQL)
that fetch the metadata required to parse a query. If the row limit value
prevents access to the required metadata, the attempt to execute the query
will fail.

• You can restrict output by limiting the amount of elapsed time the
optimizer spends compiling a query. The time limit value is an integer
that specifies the number of elapsed seconds.

Note

Specifying a query compilation time limit can cause application failure
in certain circumstances. An application that runs successfully during
off-peak hours when the system load is light may time out when it is
run during peak hours.

• You can restrict the amount of CPU time used to optimize a query for
execution. The CPU time limit value is an integer that specifies the
number of CPU seconds. The default is unlimited CPU time for the query
compilation.

In all three cases, users receive an error message if a limit is exceeded. For
example, if a user exceeds the row limit, Oracle Rdb displays the following
message:

%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of records has been reached

You can set the row limit and time limit values by using any of the following
methods:

• For interactive SQL, use the SET QUERY LIMIT statement.

SQL> SET QUERY LIMIT TIME h
SQL> SET QUERY LIMIT ROWS i
SQL> SET QUERY LIMIT CPU TIME j

You can use the SHOW QUERY LIMIT statement to display the values set
for each limit.

The Query Optimizer 5–49

SQL> SHOW QUERY LIMIT
QUERY LIMIT TIME limit is h seconds
QUERY LIMIT ROWS limit is i rows
QUERY LIMIT CPU TIME limit is j seconds

• For the SQL precompiler, use the query limit parameter to the
SQLOPTIONS qualifier.

/SQLOPTIONS = (QUERY_TIME_LIMIT = h, QUERY_MAX_ROWS = i,
QUERY_CPU_TIME_LIMIT = j)

• For the SQL module language processor, use the following qualifiers:

/QUERY_TIME_LIMIT = h /QUERY_MAX_ROWS = i /QUERY_CPU_TIME_LIMIT = j

• For dynamic SQL, options are inherited from compilation qualifiers.

• Use the logical names RDMS$BIND_QG_TIMEOUT, RDMS$BIND_QG_
REC_LIMIT, and RDMS$BIND_QG_CPU_TIMEOUT or the configuration
parameters RDB_BIND_QG_TIMEOUT, RDB_BIND_QG_REC_LIMIT and
RDB_BIND_QG_CPU_TIMEOUT. Refer to Section A.85, Section A.84, and
Section A.83, respectively, for details.

OpenVMS
VAX

OpenVMS
Alpha

If you are using RDO, the only way you can set query limits is to define
these logical names. ♦

With all of the query governor options, you can set the time limit, the row
limit, and the CPU time limit. Whichever value is reached first stops the
output.

5.8.7 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS
You can use the logical name RDMS$DEBUG_FLAGS or the configuration
parameter RDB_DEBUG_FLAGS to examine how the optimizer executes a
query. By analyzing query statistics and query strategies, you may be able to
improve performance. This section describes some things to look for when you
use the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter. For a complete description and sample output, refer
to Appendix C.

Sequential Retrieval
To improve performance of a query, pay particular attention to the notation,
‘‘Retrieval sequentially,’’ in the RDMS$DEBUG_FLAGS or RDB_DEBUG_
FLAGS strategy display (S flag). This notation indicates that the optimizer
is sequentially searching an entire table. You may be able to improve
performance by defining an index for the column or columns the query is
based on. You should not assume, however, that simply defining indexes will
automatically speed up the query, or that the optimizer will use the index
you have defined. In some cases, the optimizer ignores the index because it

5–50 The Query Optimizer

is faster to access rows sequentially. Sequential access generally works best
for small tables that are stable and contain a small number of unique column
values with no duplicates. If you are unsure, define an index and test it using
RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS.

Sorting
You should also note the presence of any notation that indicates the optimizer
is performing a sort. Sorting rows before delivery usually slows down query
execution time. By defining the appropriate index, you can prevent row sorting,
thus speeding up query execution time.

Unless a query includes the ORDER BY clause, the optimizer does not
guarantee a specific row order. The optimizer simply finds all the rows that
satisfy the query. If you need to specify a particular order for any column,
always include an ORDER BY clause in your query.

Avoid descending sorts if no descending indexes exist, because the sort will
require an extra step. The order depends on which columns, if any, are
indexed. When you define an index for a column, Oracle Rdb arranges the
nodes in the index in ascending order of value. Therefore, the default sort
order for displayed indexed columns is ASCENDING.

Checking Query Cost
You can check the cost of a query to determine how many I/O operations
it requires by using the RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS
statistics display (O flag). See Section C.4 for details. This information can be
useful when you are developing a very complex query that joins many tables.
You can experiment with different forms of the query by defining indexes for
particular columns named in the select expression, or by separating the query
into smaller and simpler queries. Then, you can run the query using the S and
O flags and compare the access strategies the query optimizer chooses for each
form of the query with the cost. Use the form of the query that displays the
lowest relative cost. Usually the best solution is to simplify the query as much
as possible.

In general, you should be concerned with query execution cost only if
a particular query poses a problem. Because the database can change
considerably from one execution of a query to the next, the optimizer may
choose a different access strategy for each execution. Special cases involving
complex select expressions, however, may benefit from this kind of analysis
before you include them in your host language programs.

The Query Optimizer 5–51

5.8.8 Using Query Cost Estimates
You can access optimizer-generated information on the cost of a query and
use these cost estimates within an application or interactively. The returned
estimates indicate how many I/O operations the query will require and how
many rows will be delivered. These cost values are estimates, and are identical
to the values returned by defining RDMS$DEBUG_FLAGS or RDB_DEBUG_
FLAGS as O.

When you enter the interactive SQL statement SET QUERY CONFIRM and
then execute a query, SQL displays the cost of that query and then asks if you
wish to cancel the query. This is shown in Example 5–4.

Example 5–4 Using the SET QUERY CONFIRM Statement

SQL> SET QUERY CONFIRM
SQL> SELECT * FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’01100’;
Estimate of query cost: 567 I/Os, rows to deliver: 14
Do you wish to cancel this query (No)?

If the cost appears excessive, enter YES and press Return to cancel the query.
To continue query execution and display query results, press Return.

The optimizer also writes query cost information to the SQL Communications
Area (SQLCA) when you open a cursor. Example 5–5 shows the select
expression used in Example 5–4 used within an interactive SQL DECLARE
CURSOR statement.

Example 5–5 Accessing Cost Estimates Through the SQLCA

SQL> DECLARE CEMP TABLE CURSOR
cont> FOR
cont> SELECT *
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’01100’;

(continued on next page)

5–52 The Query Optimizer

Example 5–5 (Cont.) Accessing Cost Estimates Through the SQLCA
SQL> OPEN CEMP;
SQL> SHOW SQLCA
SQLCA:

SQLCAID: SQLCA SQLCABC: 128
SQLCODE: 0
SQLERRD: [0]: 0

[1]: 0
[2]: 35
[3]: 29
[4]: 0
[5]: 0

SQLWARN0: SQLWARN1: SQLWARN2:
SQLWARN3: SQLWARN4: SQLWARN5:
SQLWARN6: SQLWARN7:
SQLSTATE: 00000

SQL>

The cost estimates appear in the SQLERRD array.

• SQLERRD element [2] contains the estimated number of rows.

• SQLERRD element [3] contains the estimated number of I/O operations.

If the optimizer cannot provide estimates, the value –1 is returned to indicate
‘‘unknown.’’

To access the estimates using SQL$PRE or SQL$MOD, you must use the
QUERY_ESTIMATES qualifier on the command line.

For details on using SQLCA information in applications, refer to the Oracle
Rdb7 Guide to SQL Programming and the Oracle Rdb7 SQL Reference Manual.

Note

To use the new SQLCA array elements in precompiled or module
language programs, you must recompile.

If your application tries to access the SQLCA information in SQLERRD
elements [2] and [3] on a remote system that is running a version of
Oracle Rdb lower than 4.1, the query may not execute.

The Query Optimizer 5–53

5.8.9 Constraint BLR May Not Reflect Actual Execution Strategy
When Oracle Rdb compiles a primary or foreign key constraint query, the
constraint handling code in Oracle Rdb in most cases reformats the query
structure to enable the optimizer to generate the most efficient strategy for
constraint evaluation. The reformatting of a constraint query is internal
to Oracle Rdb and therefore is not visible to the user or to other software
products, such as Oracle Expert for Rdb.

As a result of internal reformatting of a constraint query, the actual execution
strategy used to evaluate the constraint may be much different from what it
would have been if no internal reformatting was done. The constraint binary
language representation (BLR) simply shows the standard format of a primary
or foreign key constraint query. It does not reflect any internal reformatting
performed by Oracle Rdb. Therefore, you cannot draw conclusions from a
constraint BLR about the execution strategy used by Oracle Rdb to evaluate
the constraint.

5.8.10 Miscellaneous Hints
The following list provides other hints to help maximize optimizer performance:

• Dynamic optimization depends on the table cardinality estimate
(RDB$CARDINALITY column in RDB$RELATIONS system table). This
estimate must not deviate much from its true value. Refer to Section 5.3.1
for information on correcting cardinality values.

• Use ANY or EXISTS rather than COUNT if you are attempting to check
an occurrence of a specific data value. ANY and EXIST stop as soon as a
true condition exists, while COUNT must read all the rows in the Select
expression (or at least read all the index values).

• Avoid using NOT, CONTAINING, or MATCHING because the selectivity
factor is low. The index may or may not be used, depending on the
remainder of the query.

• Do not over index in a heavy update environment. The biggest reason not
to over index is the length of time involved in storing a new row, deleting
a row, and modifying the key value of an existing row. An additional
hindrance caused by updating indexes, is locking at the index level.

However, in a read-only environment, proliferation of indexes does not
hurt, and actually improves, optimization. The only limiting factors are the
disk space utilization, the initial table load, and a possible slowdown of the
static optimization process.

• Avoid using VARCHAR data type columns in index segments. The
optimizer is unable to do index only retrieval for these index segments.

5–54 The Query Optimizer

• Do not overuse views or subqueries. This overuse keeps the optimizer
from doing its job. Both views and subqueries have their place. If you
have questions, try different strategies and use the debug flags to gather
information as to which solution fits your data and application.

5.9 Ensuring Query Stability, Controllability, and Performance with
Query Outlines

With versions of Oracle Rdb prior to V6.0, there was no direct way to control
the strategy the optimizer selected for a query. This meant that a lack of
stability and controllability was inherent in the query optimization process.

Stability refers to the maintenance of predictable performance for a query
across releases of Oracle Rdb. Changes are made to the optimizer with each
Oracle Rdb release. Sometimes these changes to the optimizer can cause a
small number of queries that performed acceptably with one version of Oracle
Rdb to perform worse with a newer version of Oracle Rdb.

Controllability refers to the ability to manually specify the join order, join
methods, and index usage for a query. With versions of Oracle Rdb prior to
V6.0, a query that performed unacceptably could be rewritten in the hope that
the changes to the query would influence the optimizer to use a different join
order, join method, or index when optimizing the query. However, because it
was not possible to directly specify the join order, join method, or index the
optimizer should use, the time-consuming process of rewriting a query did not
always bring about the desired improvement in performance.

Beginning with Oracle Rdb V6.0, you can directly control the strategy the
optimizer selects for a query by defining an outline for the query. A query
outline is an overall plan for how a query can be implemented. Outlines
originate from the query optimizer and can be extracted, edited, stored, used,
or ignored. Outlines can be defined that contain directives that control the join
order, join methods, or index usage (or all of these) the optimizer selects when
processing a query.

Outlines can be used to solve the stability and controllability problems that
were inherent in the query optimization process prior to Oracle Rdb V6.0. You
can obtain cross-release stability for a query by storing and reusing outlines
from a previous Oracle Rdb version. You can obtain controllability by editing
outlines to directly control the solution generated by the optimizer. In some
cases, you can obtain improved run-time performance by manually improving
the join order, join methods, or index selection decisions made by the optimizer.

The Query Optimizer 5–55

Outlines should be used sparingly. The retrieval strategies chosen by the
optimizer result in good performance for most queries; outlines should be
used only for the small percentage of queries that perform poorly due to poor
strategy decisions made by the optimizer, or when cross-release stability is
critical. End users and application programmers should not define query
outlines. The database administrator (DBA) or any other person experienced
in examining database performance issues should examine a query that is
considered a candidate for a query outline. In some cases (especially with new
queries), the performance of a query may be poor not because the optimizer
is choosing the wrong strategy, but because the query is written poorly. In
such a case, the solution is to rewrite the query so that it retrieves data more
economically, not to define an outline.

When an outline is needed, it should be defined by a DBA or another user
experienced in database performance issues. The optimizer selects retrieval
strategies based on the information available to it; in some cases a person
experienced in database performance has more knowledge than the optimizer
about data interrelationships, data distribution, or the partitioning of data,
and therefore can select a better strategy than the optimizer’s choice.

You can specify partial or complete outlines. Partial outlines enable the DBA
to specify a few critical decisions and have the optimizer fill in the remaining
details, thereby minimizing the effort required to generate the globally optimal
query plan. Complete outlines provide complete control over join order, join
methods, and index usage for a query. Both partial and complete outlines
provide a means of ensuring that the optimizer generates the optimal plan
for every query; users do not need to resort to ad hoc modifications of queries.
Section 5.9.4.2 describes complete outlines, and Section 5.9.4.3 describes
partial outlines.

It is also possible to create multiple outlines for the same query. This is useful
for addressing criteria that are not considered by the optimizer. For example,
consider a query that is executed during the day and at night. During the
day, when contention for resources is expected to be high, a different retrieval
solution may be appropriate for the query than at night, when there is little
or no resource contention. Section 5.9.4.1 describes how to create multiple
outlines for a query.

Outlines are most useful for large, critical applications and for very large
databases (in terabyte-sized databases, the effect of suboptimal query execution
is magnified).

5–56 The Query Optimizer

Oracle Rdb provides the Query Performance Tuner (QPT), a Windows
interface for creating and editing outlines. QPT also allows you to tune
individual queries for maximum performance. QPT generates a graphical
model of the optimization strategy for an SQL query, and enables you to modify
any aspect of the solution (join order, access paths, join methods, execution
strategy). The strategy may then be saved in the database and will be applied
on subsequent compilations and executions of the query. See the Windows help
for information about using QPT.

Section 5.9.1 through Section 5.9.9 describe how to create, modify, delete, and
use outlines.

5.9.1 Using Optimizer Output to Define an Outline to Be Stored
You define a new outline by using query outlines generated by the Oracle Rdb
optimizer.

OpenVMS
VAX

OpenVMS
Alpha

Example 5–6 shows how to use the RDMS$DEBUG_FLAGS and
RDMS$DEBUG_FLAGS_OUTPUT logical names on OpenVMS to capture
outlines generated by the Oracle Rdb optimizer in an output file. The query
in the example displays information on the educational degrees earned by all
employees over 65 years old.

Example 5–6 Capturing Outlines Generated by the Optimizer

$! Define RDMS$DEBUG_FLAGS to "Ss" so that outlines generated
$! by the optimizer are displayed.
$ DEFINE RDMS$DEBUG_FLAGS "Ss"
$!
$! Define RDMS$DEBUG_FLAGS_OUTPUT to be a file that will contain
$! the outlines generated during the session.
$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT degrees_for_emps_over_65.sql
$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SELECT E.LAST_NAME, E.FIRST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D
cont> WHERE E.BIRTHDAY < ’31-Dec-1928’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY E.LAST_NAME;

E.LAST_NAME E.FIRST_NAME E.EMPLOYEE_ID D.DEGREE D.YEAR_GIVEN
Babbin Joseph 00207 MA 1980
Babbin Joseph 00207 MA 1980
Bartlett Dean 00173 BA 1978
Clairmont Rick 00231 BA 1967
Herbener James 00471 BA 1981
Herbener James 00471 MA 1982

(continued on next page)

The Query Optimizer 5–57

Example 5–6 (Cont.) Capturing Outlines Generated by the Optimizer

Johnson Bill 00240 BA 1970
Kinmonth Louis 00177 BA 1982
Nash Walter 00183 BA 1977
Nash Walter 00183 PhD 1978
O’Sullivan Rick 00190 BA 1982
O’Sullivan Rick 00190 MA 1983
Reitchel Charles 00193 BA 1982
Ziemke Al 00200 MA 1971
Ziemke Al 00200 MA 1971

15 rows selected
SQL> ROLLBACK;
SQL> DISCONNECT DEFAULT;
SQL> EXIT;
$!
$! Display the output file generated by the optimizer:
$ TYPE degrees_for_emps_over_65.sql
Leaf#01 FFirst RDB$RELATIONS Card=19

BgrNdx1 RDB$REL_REL_NAME_NDX [1:1] Fan=8
-- Rdb Generated Outline : 8-JUN-1993 14:19 !
create outline QO_982C2D52C1D95DA2_00000000
id ’982C2D52C1D95DA2F46F0A7090B28309’
mode 0
as (

query (
subquery (

RDB$RELATIONS 0 access path index RDB$REL_REL_NAME_NDX
)

)
)

compliance optional ;
Sort
Cross block of 2 entries

Cross block entry 1
Leaf#01 BgrOnly RDB$RELATION_FIELDS Card=141

BgrNdx1 RDB$RFR_REL_NAME_FLD_ID_NDX [1:1] Fan=8
Cross block entry 2

Get Retrieval by index of relation RDB$FIELDS
Index name RDB$FIELDS_NAME_NDX [1:1] Direct lookup

-- Rdb Generated Outline : 8-JUN-1993 14:19 "
create outline QO_E8DB158FDFBD61CD_00000000
id ’E8DB158FDFBD61CDA331711179A010E6’
mode 0
as (

query (
subquery (

RDB$RELATION_FIELDS 0 access path index

(continued on next page)

5–58 The Query Optimizer

Example 5–6 (Cont.) Capturing Outlines Generated by the Optimizer
RDB$RFR_REL_NAME_FLD_ID_NDX

join by cross to
RDB$FIELDS 1 access path index RDB$FIELDS_NAME_NDX
)

)
)

compliance optional ;
Cross block of 2 entries

Cross block entry 1
Conjunct Get Retrieval by index of relation EMPLOYEES

Index name EMP_LAST_NAME [0:0]
Cross block entry 2

Leaf#01 FFirst DEGREES Card=165
BgrNdx1 DEG_EMP_ID [1:1] Fan=17

-- Rdb Generated Outline : 8-JUN-1993 14:19 #
create outline QO_284D6F269B44A56F_00000000
id ’284D6F269B44A56F6C2BC8998832FD1D’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_LAST_NAME
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional ;
♦

You can also use the RDB_DEBUG_FLAGS and RDB_DEBUG_FLAGS_
OUTPUT configuration parameters on Digital UNIX to capture outlines.
Note that you must specify "Ss" (an uppercase S followed by a lowercase s)
with the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter to display outlines generated by the optimizer.

In Example 5–6, the output file contains three generated outlines. Each outline
is preceded by the SQL comment string ‘‘– Rdb Generated Outline’’ and the
creation time, and terminates with a semicolon (;).

The following callouts are keyed to Example 5–6:

! The first outline generated by the optimizer shows the strategies the
optimizer chose when accessing system tables. This is not the outline the
optimizer generated for the SELECT statement.

The Query Optimizer 5–59

" The second outline generated by the optimizer also shows the strategies
the optimizer chose when accessing system tables. This is not the outline
the optimizer generated for the SELECT statement.

The third outline is the outline the optimizer generated for the SELECT
statement. This outline, which shows the EMPLOYEES and DEGREES
tables and EMP_LAST_NAME and DEG_EMP_ID indexes that the
optimizer uses when processing the query, is the generated outline to store
in the database.

In Oracle Rdb, views are implemented as stored queries. When a query uses
a view, the outline generated for the query expands the view reference into a
subquery that shows the tables that comprise the view.

OpenVMS
VAX

OpenVMS
Alpha

Example 5–7 shows how views are represented in outlines that are generated
by the optimizer. The query in Example 5–7 uses the CURRENT_JOB view
and the EMPLOYEES table to display information on employees over 65 years
old that have been in the same job since January, 1982.

Example 5–7 Representation of Views in Outlines Generated by the
Optimizer

$! Define RDMS$DEBUG_FLAGS to "Ss" so that outlines generated by
$! the optimizer are displayed.
$ DEFINE RDMS$DEBUG_FLAGS "Ss"
$!
$! Define RDMS$DEBUG_FLAGS_OUTPUT to be a file that will contain
$! the outlines generated during the session.
$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT over_65_10_years_in_job.sql
$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> SELECT CJ.EMPLOYEE_ID, CJ.LAST_NAME, CJ.FIRST_NAME,
cont> E.BIRTHDAY, CJ.JOB_START
cont> FROM CURRENT_JOB CJ, EMPLOYEES E
cont> WHERE CJ.EMPLOYEE_ID = E.EMPLOYEE_ID AND CJ.JOB_START > ’31-Dec-1981’
cont> AND E.BIRTHDAY < ’31-Dec-1928’;

CJ.EMPLOYEE_ID CJ.LAST_NAME CJ.FIRST_NAME E.BIRTHDAY CJ.JOB_START
00190 O’Sullivan Rick 12-Jan-1923 25-Feb-1982

1 row selected
SQL> --
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;
SQL> EXIT
$ DEASSIGN RDMS$DEBUG_FLAGS
$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT

(continued on next page)

5–60 The Query Optimizer

Example 5–7 (Cont.) Representation of Views in Outlines Generated by the
Optimizer

$!
$! Display the section of the over_65_10_years_in_job.sql output
$! file that was generated for the query:
$ TYPE over_65_10_years_in_job.sql

.

.

.
Cross block of 2 entries

Cross block entry 1
Conjunct Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [0:0]
Cross block entry 2

Cross block of 2 entries
Cross block entry 1

Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup

Cross block entry 2
Conjunct Conjunct Get
Retrieval by index of relation JOB_HISTORY

Index name JOB_HISTORY_HASH [1:1]
-- Rdb Generated Outline : 22-JUN-1993 16:22
create outline QO_B0B5EFA1486E0447_00000000
id ’B0B5EFA1486E0447C3B41C6E842558B6’
mode 0
as (

query (
subquery (

EMPLOYEES 2 access path index EMP_EMPLOYEE_ID
join by cross to

subquery (

EMPLOYEES 1 access path index EMPLOYEES_HASH !
join by cross to

JOB_HISTORY 0 access path index JOB_HISTORY_HASH "
)

)
)

)
compliance optional ;
$
♦

The following callouts are keyed to Example 5–7:

! The EMPLOYEES table is used in the definition of the CURRENT_JOBS
view.

" The JOB_HISTORY table is used in the definition of the CURRENT_JOBS
view.

The Query Optimizer 5–61

Because the outlines generated by the optimizer are already in extended SQL
CREATE OUTLINE statement format, you can use a text editor to remove
all the text from the output file except the outline you are interested in, and
then use the edited output file as an SQL command procedure to store the
outline (assuming your output file has a file type of .sql). In Example 5–8, all
the text is removed from the degrees_for_emps_over_65.sql file except the third
generated outline. When you are editing the output file to remove extraneous
text, you can also supply a more meaningful outline name than the outline
name generated by the optimizer. For example, you could change the outline
name for the third generated outline in Example 5–6 to degrees_for_emps_
over_65, resulting in the edited output file shown in Example 5–8.

Example 5–8 Changing the Outline Name Generated by the Optimizer

-- Rdb Generated Outline : 8-JUN-1993 14:19
create outline DEGREES_FOR_EMPS_OVER_65 !

id ’284D6F269B44A56F6C2BC8998832FD1D’ "
mode 0
as (

query (
subquery (

EMPLOYEES 0 # access path index EMP_LAST_NAME
join by cross to

DEGREES 1 # access path index DEG_EMP_ID
)

)
)

compliance optional
comment is ’Created by Fred Smith’ ; $

The following callouts are keyed to Example 5–8:

! The generated outline name (QO_284D6F269B44A56F_00000000 from
Example 5–6) has been changed to the more meaningful outline name
degrees_for_emps_over_65.

" Be sure not to modify the outline id when you edit the file. If you do, the
association between the outline and the original query is destroyed, and
the outline will be unusable after it is stored.

Do not modify the table instance numbers that the optimizer generates for
tables used in the query. If a table appears more than once in an outline, a
unique table instance number is generated for each reference to the table
in the outline. The table instance number is 0 for the EMPLOYEES table.
The table instance number is 1 for the DEGREES table.

5–62 The Query Optimizer

$ You can add the COMMENT IS clause to provide a comment for the
outline.

Section 5.9.4 describes the modifications that you can make to a generated
outline.

You store the outline for the query by attaching to the database and executing
the degrees_for_emps_over_65.sql command file from SQL. After it is stored,
the outline can be displayed with the SHOW OUTLINES statement, as shown
in Example 5–9.

Example 5–9 Storing an Outline Generated by the Optimizer

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> @degrees_for_emps_over_65.sql
SQL> --
SQL> -- Display the outline using the SHOW OUTLINES statement:
SQL> SHOW OUTLINES degrees_for_emps_over_65

DEGREES_FOR_EMPS_OVER_65
Comment: Created by Fred Smith
Source:

create outline DEGREES_FOR_EMPS_OVER_65
id ’284D6F269B44A56F6C2BC8998832FD1D’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_LAST_NAME
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional ;

When you define the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter to be "Ss" and the RDMS$DEBUG_
FLAGS_OUTPUT logical name or the RDB_DEBUG_FLAGS_OUTPUT
configuration parameter to be an output file, the outline that the optimizer
generates for each database query is written to the output file. The optimizer
generates outlines for any front-end product (such as Oracle Rally 1) that
can query an Oracle Rdb database. Outlines that are generated for a layered
product accessing the database can be stored in the database in the same way
as outlines generated by SQL statements.

1 On OpenVMS systems only

The Query Optimizer 5–63

Outlines that are stored for a view are not applied when that view is embedded
in another query.

Outlines generated by the optimizer are in extended SQL CREATE OUTLINE
statement format. To store an outline, you must have the SQL CREATE
privilege for every table referenced by the outline. The CREATE OUTLINE
statement is an online operation (other users can be attached to the database
when an outline is created).

5.9.2 Specifying Outline Directives
By using the SQL CREATE OUTLINE statement, you can define outlines that
contain directives that control decisions the optimizer makes when processing
a query. The following list is an overview of the outline directives that can
be specified with a CREATE OUTLINE statement. The complete syntax for
these outline directives can be found in the CREATE OUTLINE statement
description in the Oracle Rdb7 SQL Reference Manual.

• Join order

The join order is the order in which table instances, view instances, or
subqueries (join items) are joined together during optimization. With an
outline, you can specify:

The order that the optimizer will impose for the groupings of join items
accessed during the query.

That the optimizer will not impose an order on the groupings of join
items accessed during the query.

That the optimizer will not impose an order on specific join items
within the same subquery level. When the optimizer is allowed to
group certain join items at the same level in any order, those join items
are said to be floating.

Although the CREATE OUTLINE syntax lets you specify join items in
different orders, the optimizer may not be able to use the join order
specified in an outline. For example, contexts in a subquery that need
values from an outer context cannot be placed before the outer context in
the join order. If this occurs, the optimizer will not be able to use the join
strategy specified in the outline.

• Join method

The join method is the algorithm used by the optimizer to associate records
in a join. In an outline, you can specify that the optimizer use the cross
join strategy, match join strategy, union strategy, or any method to join two
data sources.

5–64 The Query Optimizer

Although there are several syntactically valid join methods that can be
specified with the CREATE OUTLINE statement, the optimizer may not be
able to use the join method specified in the outline. For example:

The match join strategy requires that an equivalent join column exist
between the inner and outer context of the join order. If the query for
which the outline is created does not have an equivalent join column,
then the optimizer cannot use the match join strategy specified in the
outline.

The union strategy is valid only for queries that use the UNION
operator, and all queries that specify the UNION operator must use the
union strategy.

• Access path

The access path is the method used to retrieve table rows. You can specify
that the optimizer return rows by database key (dbkey), sequential reads,
index (you can specify the index you want the optimizer to use), without
using an index, or by any method.

You can create a syntactically valid outline that specifies an access path
that the optimizer cannot use. For example, if you specify access by dbkey
when the dbkeys are not available, the optimizer cannot use the outline’s
specified access path. See Example 5–14 for an example of a syntactically
valid outline that specifies an access path that the optimizer cannot use.

• Compliance level

An outline can be defined to have a compliance level of mandatory or
optional.

When the compliance level for an outline is defined as mandatory, all the
outline directives (such as the join order, join methods, and index usage)
must be followed as outlined. See Section 5.9.4.4 for more information on
mandatory outlines.

When the compliance level for an outline is defined as optional, all the
outline directives are optional. If the optimizer cannot follow all the
directives specified in an optional compliance outline, it can select other
strategies to process the query. See Section 5.9.4.5 for more information on
optional outlines.

• Execution options

These are dynamic optimization options that the optimizer should take into
account at run time. The valid execution options are FAST FIRST, TOTAL
TIME, ANY, and NONE.

The Query Optimizer 5–65

The FAST FIRST execution option specifies that the optimizer is permitted
to use fast first dynamic optimization when appropriate. In some cases,
fast first retrieval cannot be used. For example, total time retrieval must
be used if an aggregate expression (AVG, COUNT, MAX, MIN, and SUM)
is used without a GROUP BY clause in the query.

The TOTAL TIME execution option specifies that the optimizer is permitted
to use total time dynamic optimization when appropriate. In some cases,
total time retrieval cannot be used. For example, fast first retrieval must
be used if the EXISTS predicate is used in the query.

The ANY option specifies that the optimizer is free to choose any
optimization method.

The NONE option specifies that no optional run-time optimization be used.
Specifying the NONE option causes the query to be very stable across
versions of Oracle Rdb. However, this stability is likely to come at the
expense of performance.

The default execution option is ANY, which means that dynamic
optimization is enabled and any dynamic optimization strategy can be
used.

See the CREATE OUTLINE statement description in the Oracle Rdb7 SQL
Reference Manual for more information on the syntax for specifying outline
directives.

5.9.3 Defining and Storing an Outline for a Stored Procedure
When a stored procedure has been stored in the database, you can use the
CREATE OUTLINE statement to define and store an outline for that stored
procedure. The Oracle Rdb7 Guide to SQL Programming describes how stored
procedures are defined and stored in a database.

Example 5–10 shows how to use the SQL CREATE OUTLINE statement
with the ON PROCEDURE NAME clause to define an outline for a stored
procedure.

Example 5–10 Defining an Outline for a Stored Procedure

SQL> -- Store the procedure in the database:
SQL> CREATE MODULE my LANGUAGE sql AUTHORIZATION rick
cont> --

(continued on next page)

5–66 The Query Optimizer

Example 5–10 (Cont.) Defining an Outline for a Stored Procedure

cont> PROCEDURE p1 (:x CHAR(14), :y SMALLINT);
cont> BEGIN
cont> SELECT last_name INTO :x FROM employees LIMIT TO 1 ROW;
cont> END;
cont> END MODULE;
SQL>
SQL> -- Create an outline for the new stored procedure:
SQL> CREATE OUTLINE LAST_NAME_OUTLINE ON PROCEDURE NAME P1
cont> MODE -1 COMPLIANCE OPTIONAL;
SQL> SHOW OUTLINES LAST_NAME_OUTLINE

LAST_NAME_OUTLINE
Source:

-- Rdb Generated Outline : 21-DEC-1993 09:15
create outline LAST_NAME_OUTLINE
id ’F7542B8932D2B8232131DCB52EAE205F’
mode -1
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_LAST_NAME
)

)
)

compliance optional ;
SQL>

The procedure-id must be a valid procedure id for an existing stored procedure
already stored in the database. See the Oracle Rdb7 SQL Reference Manual
for the complete syntax for the CREATE OUTLINE statement.

5.9.4 Modifying an Existing Outline
You can modify an existing outline by using the RMU Extract command and
the SQL CREATE OUTLINE statement.

OpenVMS
VAX

OpenVMS
Alpha

Use the RMU Extract command to extract the outlines for a database into an
output file, as shown in Example 5–11.

The Query Optimizer 5–67

Example 5–11 Extracting Existing Outlines into a File

$ RMU/EXTRACT/ITEM=(OUTLINES)/LANGUAGE=SQL -
_$ /OUTPUT=degrees_for_emps_over_65.sql mf_personnel
$!
$! Show the RMU Extract output in degrees_for_emps_over_65.sql:
$ TYPE degrees_for_emps_over_65.sql
-- RMU/EXTRACT for Oracle Rdb V6.0-0 8-JUN-1993 17:14:36.21
--
-- Database Definition File
--
-- Source Database Name: SQL_DISK1:[RICK.V60]MF_PERSONNEL.RDB;1
--
set verify
set language ENGLISH
set default date format ’SQL92’;
set quoting rules ’SQL92’;
set date format DATE 001, TIME 001
attach ’pathname MF_PERSONNEL’;

-- RMU/EXTRACT for Oracle Rdb V6.0-0 8-JUN-1993 17:14:36.21
--
-- Query Outline Definitions
--
--
create outline DEGREES_FOR_EMPS_OVER_65
id ’284D6F269B44A56F6C2BC8998832FD1D’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_LAST_NAME
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional
execution options (any);

$
♦

As shown in Example 5–11, the RMU Extract command extracts outlines in
CREATE OUTLINE statement format. Edit the output file (degrees_for_emps_
over_65.sql in our example) to remove any text not associated with the outline
to be modified and to make the desired changes to the outline.

When the edited output file contains a CREATE OUTLINE statement with the
desired modifications to the existing outline, attach to the database and delete
the existing outline (using the SQL DROP OUTLINE statement shown in
Section 5.9.9). Because each outline stored in a database must have a unique
name and outline mode, the modified version of the outline that has the same

5–68 The Query Optimizer

outline name and outline mode as the existing version cannot be stored until
the existing outline is deleted.

After deleting the existing outline, you can store the modified outline by
attaching to the database and executing the modified output file as an SQL
command procedure.

See the Oracle RMU Reference Manual for more information on the RMU
Extract command.

5.9.4.1 Creating Multiple Outlines for a Single Query
Because the optimizer cannot consider all criteria when it generates a solution
to a query, sometimes you may want to define more than one outline for a
query. For example, the optimizer cannot determine whether contention for
resources is high or low when it processes a query. It is not unusual for some
queries to execute much faster at night (when there is less contention for
resources) than during the day. For this situation, the DBA can create one
outline for daytime processing and another outline for nighttime processing.

If contention is high for the EMPLOYEES and DEGREES tables during the
day, and lower at night, you can define a second outline as an alternative to
the one defined in Example 5–9 for use at night. After extracting the degrees_
for_emps_over_65 outline into the output file degrees_for_emps_over_65.sql
as shown in Example 5–11, you can modify the extracted outline to create a
definition for another outline that will be used for the same query.

If the query is part of a batch job that runs at night, you could change the
original degrees_for_emps_over_65 outline to require the total time method
of retrieval, which might improve performance of the query at night. Fast
first retrieval (the method selected by the optimizer for the original degrees_
for_emps_over_65 outline) optimizes retrieval time for the first few records
that satisfy a query. Fast first optimization is a good choice if a query will be
executed interactively and it is likely to be terminated before all the records
satisfying the query are returned (by a user pressing Ctrl/C, for example).

When the query is run at night as part of a batch job, the query is not likely to
be stopped until all the records are retrieved. Because the total time retrieval
method optimizes total retrieval time, it could be the most appropriate retrieval
method for this query when it is run at night. This change is made by changing
‘‘execution options (any)’’ in the extracted outline to ‘‘execution options (total
time)’’. See Section 5.9.2 for more information on specifying retrieval methods.

When you are defining an outline for a query for which one or more other
outlines are stored in the database, the outline being defined must have a
unique outline name and outline mode. The existing outline in this example
has an outline name of degrees_for_emps_over_65 and the default outline mode

The Query Optimizer 5–69

of 0, as shown in Example 5–11. An outline mode is a signed integer; valid
values for the outline mode are –2,147,483,648 to 2,147,483,647. The new
outline for the query is given the outline name degrees_for_emps_over_65_
night and an outline mode of –1, as shown in Example 5–12. Positive mode
values are reserved for future use by Oracle Corporation, so it is recommended
that you specify a value betweeen 0 and –2,147,483,648 for the mode value.
The outline mode value you specify for an outline should be a value that is
shared by other outlines that will be used at the same time. For example, you
could decide that any outline that will run only at night should be given an
outline mode value of –1. In Example 5–12, the degrees_for_emps_over_65_
night outline is given an outline mode value of –1 for this reason.

After all the changes are made, the modified output file, degrees_for_emps_
over_65.sql, looks like this:

create outline DEGREES_FOR_EMPS_OVER_65_NIGHT
id ’284D6F269B44A56F6C2BC8998832FD1D’
mode -1
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_LAST_NAME
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional
execution options (TOTAL TIME);

The degrees_for_emps_over_65.sql file can be used to store the outline, as
shown in Example 5–12.

Example 5–12 Creating Multiple Outlines for a Query

SQL> --
SQL> -- The output file is used as an SQL command procedure to define
SQL> -- and store the outline:
SQL> @DEGREES_FOR_EMPS_OVER_65.SQL
SQL> --

(continued on next page)

5–70 The Query Optimizer

Example 5–12 (Cont.) Creating Multiple Outlines for a Query
SQL> -- Display the outline:
SQL> SHOW OUTLINES DEGREES_FOR_EMPS_OVER_65_NIGHT

DEGREES_FOR_EMPS_OVER_65_NIGHT
Source:

create outline DEGREES_FOR_EMPS_OVER_65_NIGHT
id ’284D6F269B44A56F6C2BC8998832FD1D’
mode -1
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_LAST_NAME
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional
execution options (total time) ;

Outlines support multi-octet characters in:

• Outline names

• Index and table names specified in the outline

• Descriptions and comments specified in the outline

The section on character sets in the Oracle Rdb7 SQL Reference Manual
provides more information about multi-octet characters.

5.9.4.2 Complete Outlines
In a complete outline, the outline directives specify everything about the
strategy the optimizer should use for every table and join combination in the
query. That is, a complete outline specifies each of the directives described in
Section 5.9.2.

The outlines generated by the optimizer are always complete outlines.

Complete outlines are especially useful to ensure that the performance of
a query remains stable from one release of Oracle Rdb to another, despite
changes made to the optimizer. With a complete outline, the optimizer is
constrained to always select the join orders, access paths, join methods, and
execution options specified by the outline.

The Query Optimizer 5–71

The optimizer can follow all directives in a complete outline only when all
tables and indexes specified in the outline exist in the database. If an index or
table specified in a complete outline is deleted, Oracle Rdb marks the outline as
invalid and the optimizer is not able to follow all the directives in the outline
when the query is processed. See Section 5.9.8 for information on invalidated
outlines.

5.9.4.3 Partial Outlines
In a partial outline, the outline directives do not specify everything about
the strategy the optimizer should use for every table and join combination in
the query. That is, a partial outline does not specify each of the directives
described in Section 5.9.2.

A partial outline affords a degree of freedom to the optimizer so it can choose
alternatives. This means that a partial outline is less likely to become invalid
than a complete outline. An outline is partial if:

• The ANY option is specified for the join method, access path, or execution
options

• The FLOATING or UNORDERED clause is used anywhere in the outline
definition

• Any subquery, join, or table that takes part in the query is omitted from
the outline

In some cases, a partial outline can be better than a complete outline. In a
partial outline, it is most important to correctly specify collections of join items
that the optimizer should keep together, and whether those join items should
be ordered or unordered. You can avoid overconstraining the optimizer by
specifying a join method of ANY, an access path of ANY, and omitting tables
that are not critical to the solution. This allows the optimizer to adjust for
changes in data distribution and run-time variable bindings.

When defining an outline for a query, you can refine the outline in steps. The
first step is to constrain the start of the join order, letting the optimizer figure
out the details. You can then make further refinements to the outline if this
first step does not result in acceptable run-time performance for the query after
the outline has been stored.

With a partial outline, the noncritical elements of the outline are not specified.
If you modify a complete outline by removing references to noncritical tables
and indexes, the resulting partial outline has less dependence on specific
tables and indexes than the previous complete outline. This means that if a
noncritical index or table is deleted from the database, the new partial outline
will not be invalidated by the deletion. However, as with complete outlines,
if a table or index that is specified in a partial outline is deleted, Oracle Rdb

5–72 The Query Optimizer

marks the outline as invalid and cannot use it when the query is processed.
See Section 5.9.8 for information on invalidated outlines.

See the CREATE OUTLINE statement description in the Oracle Rdb7 SQL
Reference Manual for the complete syntax for specifying outline directives.

5.9.4.4 Mandatory Outlines
For outlines defined with a compliance level of mandatory, the optimizer is
required to follow all of the outline directives such as the join order, join
methods, and index usage. If the optimizer cannot follow all of the outline
directives in a mandatory outline, the query fails.

OpenVMS
VAX

OpenVMS
Alpha

Example 5–13 shows the error message that is displayed when a query fails.

Example 5–13 Error Message Displayed When the Optimizer Cannot Follow
a Directive in a Mandatory Outline

$! Define the appropriate logical names so that outlines generated
$! by the optimizer can be logged to an output file.
$ DEFINE RDMS$DEBUG_FLAGS "Ss"
$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT employees_outline.sql
$ SQL$
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Execute a query for which an outline will be defined.
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES WHERE EMPLOYEE_ID BETWEEN
cont> ’00150’ AND ’00175’;

EMPLOYEE_ID
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175

12 rows selected
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;

(continued on next page)

The Query Optimizer 5–73

Example 5–13 (Cont.) Error Message Displayed When the Optimizer Cannot
Follow a Directive in a Mandatory Outline

SQL> EXIT;
$ DEASSIGN RDMS$DEBUG_FLAGS_OUTPUT
$!
$! Display the portion of the generated optimizer output for
$! the query for which the outline will be defined. The output
$! shows that the optimizer used the sorted index EMP_EMPLOYEE_ID
$! to retrieve the range of EMPLOYEE_ID column values specified by
$! the SELECT query.
$ TYPE employees_outline.sql

.

.

.
-- Rdb Generated Outline : 11-JUN-1993 12:15
create outline QO_FAF0A23CF87C0FEE_00000000
id ’FAF0A23CF87C0FEE840D9BCA37A236B5’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)

)
)

compliance optional ;
$!
$! Edit the generated outline, changing the generated outline name
$! for the query to FIND_EMPLOYEE_IDS, the index used to EMPLOYEES_HASH,
$! and the compliance level to mandatory.
$ EDIT employees_outline.sql

.

.

.
$!
$! Display the modified output file.
$ TYPE employees_outline.sql
-- Rdb Generated Outline : 11-JUN-1993 12:15
create outline FIND_EMPLOYEE_IDS
id ’FAF0A23CF87C0FEE840D9BCA37A236B5’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance mandatory ;
$ DEASSIGN RDMS$DEBUG_FLAGS
$!

(continued on next page)

5–74 The Query Optimizer

Example 5–13 (Cont.) Error Message Displayed When the Optimizer Cannot
Follow a Directive in a Mandatory Outline

$! Define and store the outline, using the modified output file as an
$! SQL command procedure:
$ SQL$
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> @employees_outline.sql
SQL> SHOW OUTLINES FIND_EMPLOYEE_IDS

FIND_EMPLOYEE_IDS
Source:

create outline FIND_EMPLOYEE_IDS
id ’FAF0A23CF87C0FEE840D9BCA37A236B5’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance mandatory ;
SQL> COMMIT;
SQL> --
SQL> -- When the query is issued now, it fails because the outline
SQL> -- directives specified as mandatory cannot be followed (the
SQL> -- hashed index EMPLOYEES_HASH cannot be used for the range
SQL> -- retrieval of EMPLOYEE_ID column values required by the query).
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES WHERE EMPLOYEE_ID BETWEEN
cont> ’00150’ AND ’00175’;
%RDMS-F-OUTLINE_FAILED, could not comply with mandatory query outline directives
SQL>
♦

If your priority for a query is that a particular optimizer strategy always
be used when the query is processed, then specifying a compliance level of
mandatory for the outline is probably appropriate. If the optimizer cannot
follow all of the outline directives, the query will fail and this will tell you that
you need to see why the outline is invalid.

5.9.4.5 Optional Outlines
For outlines defined with a compliance level of optional, the optimizer is not
required to follow all of the outline directives. If the optimizer cannot follow
all directives specified in an optional compliance outline, it can select other
strategies to process the query.

Example 5–14 shows that when the optimizer cannot follow one of the outline
directives for an outline defined with a compliance level of optional, the
optimizer chooses an alternate strategy to process the query.

The Query Optimizer 5–75

OpenVMS
VAX

OpenVMS
Alpha

Example 5–14 also shows that for an outline with a compliance level of
optional, Oracle Rdb informs you that the outline directives have not been
fully complied with only when you have defined the RDMS$DEBUG_FLAGS
logical name to be " Ss" .

Example 5–14 Determining Whether or Not an Optional Compliance Level
Outline Has Been Fully Complied With

$! The RDMS$DEBUG_FLAGS logical name is not set to "Ss".
$ SHOW LOGICAL RDMS$DEBUG_FLAGS
%SHOW-S-NOTRAN, no translation for logical name RDMS$DEBUG_FLAGS
$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Note that the compliance level for the outline is optional
SQL> -- in this example.
SQL> SHOW OUTLINES FIND_EMPLOYEE_IDS

FIND_EMPLOYEE_IDS
Source:

create outline FIND_EMPLOYEE_IDS
id ’FAF0A23CF87C0FEE840D9BCA37A236B5’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;
SQL> --
SQL> -- Issue the query for which the outline was defined. When the
SQL> -- RDMS$DEBUG_FLAGS logical name is not set to "Ss", Oracle Rdb
SQL> -- gives no indication that the directives in the outline
SQL> -- were not fully complied with.
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES WHERE EMPLOYEE_ID BETWEEN
cont> ’00150’ AND ’00175’;

EMPLOYEE_ID
00166
00167

(continued on next page)

5–76 The Query Optimizer

Example 5–14 (Cont.) Determining Whether or Not an Optional Compliance
Level Outline Has Been Fully Complied With

00173
00169
00175
00172
00164
00168
00165
00171
00170
00174

12 rows selected
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;
SQL> EXIT;
$!
$! Define RDMS$DEBUG_FLAGS as "Ss".
$ DEFINE RDMS$DEBUG_FLAGS "Ss"
$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Issue the original query again. Notice that with the
SQL> -- RDMS$DEBUG_FLAGS logical name set to "Ss", Oracle Rdb informs
SQL> -- you that the FIND_EMPLOYEE_IDS outline was used, but full
SQL> -- compliance with the outline was not possible. The display
SQL> -- also shows that the optimizer used sequential retrieval to
SQL> -- return the requested EMPLOYEE_ID column values (because
SQL> -- the EMPLOYEES_HASH index specified in the outline is not
SQL> -- able to retrieve a range of values).
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES WHERE EMPLOYEE_ID BETWEEN
cont> ’00150’ AND ’00175’;

.

.

.

~S: Outline FIND_EMPLOYEE_IDS used
~S: Full compliance with the outline was not possible
Conjunct Get Retrieval sequentially of relation EMPLOYEES

(continued on next page)

The Query Optimizer 5–77

Example 5–14 (Cont.) Determining Whether or Not an Optional Compliance
Level Outline Has Been Fully Complied With

-- Rdb Generated Outline : 11-JUN-1993 13:04
create outline QO_FAF0A23CF87C0FEE_00000000
id ’FAF0A23CF87C0FEE840D9BCA37A236B5’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path sequential
)

)
)

compliance optional ;
EMPLOYEE_ID
00166
00167
00173
00169
00175
00172
00164
00168
00165
00171
00170
00174

12 rows selected
SQL>
♦

Example 5–14 shows that sometimes when a user complains of poor optimizer
performance, the DBA should determine whether the strategy was chosen by
the optimizer or if it was the result of complying with an outline. The strategy
output for the query contains the ‘‘~S Outline outline-name used’’ string if an
outline is used.

If your priority for a query is that the query should always succeed, then
specifying a compliance level of optional is probably appropriate. If the
optimizer cannot follow all of the outline directives for an optional outline,
it can attempt to use other strategies to process the query.

5–78 The Query Optimizer

5.9.5 Using the OPTIMIZE Clause to Choose an Outline for a Query
Oracle Rdb generates an outline and an outline ID for each query executed.
The outline is generated by the optimizer, and the outline ID is based on the
compilation of the entire query. When a query is compiled and the outline
ID for the query is generated, Oracle Rdb looks for an outline with the same
outline ID as the query. If Oracle Rdb finds an outline with the same outline
ID as the query, it uses the directives in that outline to execute the query.
When you define the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter as "Ss", Oracle Rdb displays the
outline and outline ID for each query it executes.

SQL may compile the same query slightly differently when the query is
executed interactively and in a program. When this happens, the outline ID
generated for the interactive query is different than the outline ID generated
for the same query in a program. In this scenario, if an outline exists for the
interactive query, Oracle Rdb will not automatically use that outline for the
query when it is used in a program because the query and outline will have
different outline IDs.

Similarly, a query may be compiled differently with different versions of Oracle
Rdb due to changes made to SQL. When this happens, the outline ID generated
for the query with one version of Oracle Rdb is different than the outline ID
generated for the query with another version of Oracle Rdb. In this scenario,
if an outline exists for the query that was created with one version, Oracle
Rdb will not automatically use the outline when the query is executed using a
different version because the query and outline will have different outline IDs.

Beginning with Oracle Rdb Version 6.1, you can use the OPTIMIZE USING
clause of a SELECT statement to explicitly specify the outline that you want
to be used with a query. This means that you can specify that a particular
outline be used with a query and Oracle Rdb will attempt to use the outline
you specify, even if the outline IDs for the query and the outline are different.

For example, suppose you have created an outline called WOMENS_DEGREES
for the following query, which finds the degrees earned by women employees:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D
cont> WHERE E.SEX = ’F’ AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME

The Query Optimizer 5–79

The following SHOW OUTLINE statement displays the outline created earlier
using the outline and outline ID that Oracle Rdb generated for the query:

SQL> SHOW OUTLINE WOMENS_DEGREES
WOMENS_DEGREES

Source:

create outline WOMENS_DEGREES
id ’D3A5BC351F507FED820EB704FC3F61E8’ <-- outline id for original query
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional ;
SQL>

If you specify a query that is similar to the original query (in this example,
the LIMIT TO operator is the only change), the compilation of the query may
change. With the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_
FLAGS configuration parameter defined as "Ss", the output shows that Oracle
Rdb generates a different outline ID for the new query:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D
cont> WHERE E.SEX = ’F’ AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME
cont> LIMIT TO 10 ROWS;

.

.

.
-- Rdb Generated Outline : 21-JUN-1994 15:41
create outline QO_74C62CA1A8532543_00000000
id ’74C62CA1A8532543D57668C8F5BCDB92’ <--- different outline id
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional ;

5–80 The Query Optimizer

E.LAST_NAME E.EMPLOYEE_ID D.DEGREE D.DEGREE_FIELD D.YEAR_GIVEN
Boyd 00244 MA Elect. Engrg. 1982

.

.

.
Clinton 00201 MA Applied Math 1978

10 rows selected
SQL>

The optimizer selects the same strategy for the new query as it did for the
original query, but Oracle Rdb compiles the new query differently than the
original query and generates a different outline ID.

By using the OPTIMIZE USING clause and specifying the WOMENS_
DEGREES outline, you can ensure that Oracle Rdb will attempt to use
the WOMENS_DEGREES outline to execute a query:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D
cont> WHERE E.SEX = ’F’ AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME
cont> LIMIT TO 10 ROWS
cont> OPTIMIZE USING WOMENS_DEGREES;
~S: Outline WOMENS_DEGREES used <-- the query uses the WOMENS_DEGREES outline

.

.

.
E.LAST_NAME E.EMPLOYEE_ID D.DEGREE D.DEGREE_FIELD D.YEAR_GIVEN
Boyd 00244 MA Elect. Engrg. 1982

.

.

.
Clinton 00201 MA Applied Math 1978

10 rows selected
SQL>

The output in this example shows that Oracle Rdb uses the WOMENS_
DEGREES outline to execute the query.

Oracle Rdb uses the outline you specify with the OPTIMIZE USING clause
unless one or more of the directives in the outline cannot be followed (for
example, if the compliance level for the outline is mandatory and one of the
indexes specified in the outline directives has been deleted, the outline is not
used and an error message is issued).

If you specify the name of an outline that does not exist, Oracle Rdb compiles
the query, ignores the outline name you specified, and searches for an existing
outline with the same outline ID as the query. If it finds an outline with the
same outline ID, it attempts to execute the query using the directives in that
outline. If it does not find an outline with the same outline ID as the query,

The Query Optimizer 5–81

the optimizer selects a strategy for the query and uses that strategy for query
execution.

If you specify the name of an outline that was not defined for a query, Oracle
Rdb attempts to use the outline you specified and returns an error message if
the outline cannot be used successfully.

You can also specify a name for a query using the OPTIMIZE AS clause.
If the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is defined as "Ss", Oracle Rdb uses the query name as
the outline name in the generated outline for the query. For example:

SQL> ATTACH ’FILENAME mf_personnel’;
.
.
.

SQL> -- Specify the query name WOMENS_DEGREES for the query:
SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D
cont> WHERE E.SEX = ’F’ AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME
cont> OPTIMIZE AS WOMENS_DEGREES;
~Query Name : WOMENS_DEGREES <---- query name is displayed

.

.

.
create outline WOMENS_DEGREES <---- query name is used as outline name

.

.

.
compliance optional ;

E.LAST_NAME E.EMPLOYEE_ID D.DEGREE D.DEGREE_FIELD D.YEAR_GIVEN
Boyd 00244 MA Elect. Engrg. 1982

.

.

.
Watters 00186 BA Arts 1975

61 rows selected
SQL>

See the Oracle Rdb7 SQL Reference Manual for more information on specifying
the OPTIMIZE USING and OPTIMIZE AS clauses in select expressions.

5–82 The Query Optimizer

5.9.6 Using Logical Names to Control Which Outlines the Optimizer Uses
Section 5.9.4.1 describes how to create multiple outlines for a query. When
multiple outlines exist for a query, you must set the RDMS$BIND_OUTLINE_
MODE logical name or the RDB_BIND_OUTLINE_MODE configuration
parameter to the value of the outline mode for the outline you want the
optimizer to use.

Suppose, for example, two outlines are stored for a particular query. Assume
that one outline has the default outline mode value of 0 and the other outline
has an outline mode value of –1. If you want the optimizer to use the outline
with the outline mode value of 0 for the query, the RDMS$BIND_OUTLINE_
MODE logical name or the RDB_BIND_OUTLINE_MODE configuration
parameter should be set to 0 (zero). If you want the optimizer to use the other
outline for the query, the RDMS$BIND_OUTLINE_MODE logical name or the
RDB_BIND_OUTLINE_MODE configuration parameter should be set to –1.

If you want the optimizer to ignore any outlines that may be stored for a
query, define the RDMS$BIND_OUTLINE_FLAGS logical name or the RDB_
BIND_OUTLINE_FLAGS configuration parameter to the value " I" . When a
process has defined the RDMS$BIND_OUTLINE_FLAGS logical name or the
RDB_BIND_OUTLINE_FLAGS configuration parameter as " I" , the optimizer
ignores any stored outlines when it processes the query.

Table 5–3 shows the values that should be set.

Table 5–3 Logical Name and Configuration Parameter Values That Specify
the Outlines to Be Used for a Query

Logical Name
Configuration Parameter Value Meaning

RDMS$BIND_OUTLINE_FLAGS
RDB_BIND_OUTLINE_FLAGS

"I" Ignore outline, if it exists.

RDMS$BIND_OUTLINE_MODE
RDB_BIND_OUTLINE_MODE

valid mode Specifies the mode of the
outlines that should be
chosen.

5.9.7 Visible Effects of Outlines to Users
Users are only aware that outlines are stored in a database if they:

• Use the SHOW OUTLINES statement or RMU Extract command to display
or extract stored outlines.

• Have RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS set to " Ss" and
notice in the strategy dump that an outline was used for a query.

The Query Optimizer 5–83

• Receive an error message from Oracle Rdb when a query they issued fails
because a mandatory outline for the query could not be fully complied with.

5.9.8 Invalidation of Stored Outlines
Various changes within the database (such as metadata changes) may cause an
outline that is stored in the database to be unusable. For example, when a user
commits the deletion of an index or table specified in an outline, the outline is
marked as invalid and the invalidated outline will no longer be considered by
the optimizer as a candidate outline when the query is processed.

There are two ways to determine the names of the invalid stored outlines in a
database:

• SHOW OUTLINES statement

To see whether or not a particular outline is invalid, use the SHOW
OUTLINES statement and specify the name of the outline, as shown in
Example 5–15.

Example 5–15 Using the SHOW OUTLINES Statement to Check the Validity
of a Specific Outline

SQL> SHOW OUTLINES NEW_JOB_STARTS_SINCE_1982
NEW_JOB_STARTS_SINCE_1982

*** Query outline marked as invalid ***
Source:

create outline NEW_JOB_STARTS_SINCE_1982
id ’96231ABDD4A30FC73ABE782B14762028’
mode 0
as (

query (
subquery (

EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
join by cross to

JOB_HISTORY 1 access path index JOB_HISTORY_HASH
)

)
)

compliance optional ;
SQL>

If you issue the SHOW OUTLINES statement without the name of a
specific outline, the names of all the outlines stored in the database are
displayed, but the invalid outlines are not marked as invalid.

• RMU Extract command

5–84 The Query Optimizer

If you are interested in checking all of the stored outlines to determine
which of them are invalid, do the following:

1. Extract all stored outlines into a file using the RMU Extract command.

$ RMU/EXTRACT/ITEM=OUTLINES/OUTPUT=extracted-outlines.log db-name

$ rmu -extract -item=outlines -output=extracted-outlines.log db-name

2. Using a text editor, search for the string "invalid" in the output file
from the RMU Extract command. Then note the names of the invalid
outlines.

You cannot revalidate a stored outline after it becomes invalid. Instead, you
must delete the invalid outline using the DROP OUTLINE statement and then
create a new outline. The following steps can simplify the creation of a new
version of an invalidated outline:

1. Extract the invalidated outline to an output file.

2. Make the necessary changes to the extracted outline in the output file
using a text editor.

3. Delete the invalidated outline using the DROP OUTLINE statement.

4. Store the new version of the outline using the output file as an SQL
command procedure.

Each stored outline requires a few hundred bytes of disk space for the storage
of the outline and the index or indexes used to search through the outlines
efficiently.

The DBA should check all stored outlines regularly to determine whether any
outlines have been marked as invalid.

5.9.9 Deleting an Outline
Example 5–16 shows how to use the SQL DROP OUTLINE statement to delete
an outline.

Example 5–16 Using the SQL DROP OUTLINE Statement to Delete an
Outline

SQL> DROP OUTLINE DEGREES_FOR_EMPS_OVER_65;

To delete an outline, you must have the SQL DROP privilege for every table
referenced by the outline. The DROP OUTLINE statement is an online
operation (other users can be attached to the database when an outline is
deleted).

The Query Optimizer 5–85

6
Using Oracle Rdb in a VMScluster

Environment

OpenVMS
VAX

OpenVMS
Alpha

Oracle Rdb in a VMScluster environment allows concurrent, multiple-processor
database access. Oracle Rdb automatically recovers your database if a
processor in your VMScluster system fails and provides optional after-image
journaling to further protect the integrity of your VMScluster database.

In a properly configured VMScluster environment, Oracle Rdb can give you
almost constant availability to your database.

Note

Discussions in this chapter that refer to VMScluster environments
apply to both VAXcluster systems that include only VAX nodes and
VMScluster systems that include at least one Alpha node, unless
indicated otherwise.

This chapter describes:

• VMScluster terms and concepts important to Oracle Rdb

• How Oracle Rdb works in a VMScluster environment

• How Oracle Rdb works in a local area VMScluster environment

• How to configure your VMScluster database properly

• How to convert your single-node database to a VMScluster database

• How to monitor and maintain your VMScluster database

In addition, this chapter provides examples that:

• Create the mf_personnel database in a VMScluster environment

• Convert the mf_personnel database to a VMScluster database

Using Oracle Rdb in a VMScluster Environment 6–1

Before you use your Oracle Rdb database in a VMScluster environment, you
should carefully read this entire chapter. If you are not familiar with the
VMScluster environment, refer to the OpenVMS documentation set for more
information.

If you have questions about how to install Oracle Rdb in a VMScluster
environment, see the Oracle Rdb7 Installation and Configuration Guide. ♦

6.1 Overview of a VMScluster Environment
OpenVMS
VAX

OpenVMS
Alpha

This section presents a brief overview of VMScluster terms and concepts
important to Oracle Rdb, but is not intended as a substitute for a full
explanation of the VMScluster environment. Refer to the OpenVMS
documentation set for more information about VMScluster terms and concepts.

This section includes the following topics:

• General definition of a VMScluster environment

• Methods of sharing disk file access

• Dual-ported disks

• Dual pathing between CPUs and disks

• Device-naming conventions

• Common system disk

• OpenVMS lock manager

• Distributed transactions

• Client/server computing

• Partitioned data access and shared data access ♦

6.1.1 Definition of a VMScluster Environment

OpenVMS
VAX

OpenVMS
Alpha

A VMScluster system is a highly integrated organization of software, VAX and
Alpha computers, and storage devices. With VMScluster software running on
your clustered VAX and/or Alpha processors, users and applications have a
single, highly integrated computing environment in which processors, storage
devices, batch and print queues, and other resources are shared in the most
efficient manner possible.

VMScluster systems provide a flexible way to configure computers of all
sizes (desktop to data center). A VMScluster system requires the OpenVMS
VAX and/or the OpenVMS Alpha operating system. VMScluster software
operates in system configurations that handle cluster communications through

6–2 Using Oracle Rdb in a VMScluster Environment

CI, Ethernet, DSSI, FDDI, or any combination of these link options. The
OpenVMS documentation set describes the different types of VMScluster
configurations. ♦

6.1.2 Shared Storage Devices

OpenVMS
VAX

OpenVMS
Alpha

The most important feature of VMScluster software is its ability to provide
transparently shared devices and files across multiple systems, which increases
availability for the cluster.

In a traditional configuration of networked systems, a single system is directly
attached to its I/O devices, even though it may be networked with other
systems. The result is that when a system is inaccessible, no other system
on the network has access to its disks (or any other devices attached to it). A
traditional configuration, such as the one shown in Figure 6–1, provides poor
availability.

Using Oracle Rdb in a VMScluster Environment 6–3

Figure 6–1 Traditional Configuration of Networked Systems

A failed computer
renders its disk
storage inaccessible
by other computers
on the network.

NU−2966A−RA

Network

CPU

CPU

Rather than using the traditional model of connecting I/O devices directly
to systems, VMScluster configurations connect devices to communication
interconnects that can be accessed by multiple systems. When one system
shuts down, the remaining systems still have access to its devices. Four
communication interconnects can be used by VMScluster software: CI, DSSI,
Ethernet, and FDDI. The CI and DSSI are unique because they permit direct
connections by disks and tape storage subsystems. For example, in a typical
VMScluster configuration, a DSSI might be configured with several computer
systems and several storage subsystems. Each computer system has direct
access to every storage subsystem. The shutdown or failure of any system
has no effect on the abilities of the other systems to access the storage. This
feature, shown in Figure 6–2, results in high availability of systems and
storage.

6–4 Using Oracle Rdb in a VMScluster Environment

Figure 6–2 A VMScluster Configuration

NU−2967A−RA

A failed computer
has no impact on
data availability.

DSSI

Network

CPU CPU

In a VMScluster environment, there are two basic types of disk devices:

• Restricted access disks

Only the node or nodes to which restricted access disks are connected can
access those disks. In a VMScluster environment, OpenVMS treats each
disk device as a restricted access disk, unless the disk has been mounted
clusterwide, making it a cluster-accessible disk.

• Cluster-accessible disks

Any node in the VMScluster configuration can access cluster-accessible
disks.

A disk is a cluster-accessible disk when the MOUNT/CLUSTER command is
issued by every node in the VMScluster to mount the disk clusterwide. See the
OpenVMS documentation set for more information on the MOUNT command.
♦

6.1.3 Shared Disk Files

OpenVMS
VAX

OpenVMS
Alpha

VMScluster software also provides the ability to share files, as shown in
Figure 6–3. Every system in a VMScluster can access files on any disk that is
mounted clusterwide. Also, multiple systems in a VMScluster can write to a
shared file simultaneously in a fully coordinated fashion. This coordination is
provided by the OpenVMS lock manager. Multiple systems can even share a
single system disk; multiple systems can boot off the disk and share operating
system files and utilities. This feature saves disk space and greatly simplifies
system management.

Using Oracle Rdb in a VMScluster Environment 6–5

Figure 6–3 Disk and File Sharing

NU−2968A−RA

Files

Network

The lock manager coordinates
shared access.

User User User

. . .

CPUCPU

Lock Manager

Application

Application Application

Lock Manager

♦

6.1.4 Dual-Ported Disks

OpenVMS
VAX

OpenVMS
Alpha

Although the typical VMScluster system is configured with storage systems
on a DSSI or CI bus, it is also possible to connect storage directly to a
specific system. In the traditional network configuration, this provides lower
availability due to the reliance on the host system. However, VMScluster
software can enhance availability of these configurations by allowing dual
porting, in which a disk drive has independent connections to two separate
systems (see Figure 6–4). Then, if at least one system is available, the disk is
accessible by all other systems in the VMScluster. Disks can also be shadowed
in shadow sets with other disks located in the VMScluster, thereby providing
enhanced availability.

The automatic recovery from system failure provided by dual porting is
transparent to users and does not require any operator intervention. The
OpenVMS operating system automatically switches a disk file access
request from one path to another if a node through which one of the paths
is established fails.

6–6 Using Oracle Rdb in a VMScluster Environment

Figure 6–4 Dual-Ported Disks

NU−2969A−RA

Network

CPU

CPU

CPU failure
does not prohibit
access to data.

Shadowed
Disks

Dual−Ported
Disks

♦

6.1.5 Dual Pathing

OpenVMS
VAX

OpenVMS
Alpha

Dual pathing is a VMScluster term for the existence of multiple paths between
CPUs and disks, as shown in Figure 6–5. The dotted lines show that there
is more than one path. If one path to a device fails, OpenVMS automatically
fails over to an alternate path. This feature also makes it possible to build
high-availability systems.

Using Oracle Rdb in a VMScluster Environment 6–7

Figure 6–5 Dual-Pathed Disks

Ethernet

DSSI

CPU CPU

NU−2971A−RA

Disks

High−Availability
Server Nodes

Client
Nodes

♦

6.1.6 Device-Naming Conventions

OpenVMS
VAX

OpenVMS
Alpha

The three device-naming conventions in the OpenVMS operating system are:

• Device names

The device-naming conventions you use in the operating system. For
example:

DUA1:

This refers to an RA90 disk connected to your node.

• Node class device names

The name of the node appended to the device name. For example:

SHEMP$DUA1:

This refers to an RA90 disk connected to node SHEMP. This node class
device name allows the OpenVMS operating system to distinguish between
DUA1 connected to node SHEMP and DUA1 connected to different nodes.

• Allocation class device names

6–8 Using Oracle Rdb in a VMScluster Environment

A common device name for disks that are connected to two nodes. For
example:

2DUA1:

This device name refers to an RA90 disk connected to two nodes. Each
node has been assigned an allocation class identifier of 2. The OpenVMS
operating system can then choose an access path to files on this disk
through either node to which it is connected. If one of the nodes fails,
the OpenVMS operating system can automatically switch the access to a
path through the other node. Correct use of the allocation class identifier
provides the advantage of the automatic failover feature of the OpenVMS
operating system. You can then use the allocation class name or the node
class name when you refer to your database files.

However, if you are using dual-ported disks, you should use a logical
name that translates to the allocation class name when referring to your
database files (as shown in Example 6–6). The OpenVMS operating system
recognizes the allocation class name when it otherwise may not recognize
the node class name. This occurs, for example, when one of the nodes to
which a disk is connected is not booted. ♦

6.1.7 Common System Disk

OpenVMS
VAX

OpenVMS
Alpha

VMScluster configurations allow multiple nodes to use the same system disk.
In a VMScluster with both Alpha and VAX processors, the Alpha processors
must be booted from an Alpha system disk and the VAX processors must be
booted from a VAX system disk. However, VAX and Alpha processors can
mount and share access to files on any disk.

If two or more processors in a cluster use a common system disk, you can also
use a common SYSUAF.DAT file. A common SYSUAF.DAT file allows users
to log in to any node that uses the same system disk and use the same user
name, password, and default account. If you establish a common SYSUAF.DAT
file for database users, make sure their default directories are on shared disk
devices accessible from any node to which they can log in. Note that the
default values for a number of SYSUAF process limits and quotas are higher
on Alpha computers than they are on VAX computers. In general, the values
in a common SYSUAF.DAT file should accommodate the largest requirements
in the cluster. Then, on nodes that require smaller quotas, edit the local
MODPARAMS.DAT file to adjust the system parameters to more appropriate
values. See the OpenVMS system management documentation for help in
determining process quotas for Alpha and VAX computers. ♦

Using Oracle Rdb in a VMScluster Environment 6–9

6.1.8 OpenVMS Lock Manager

OpenVMS
VAX

OpenVMS
Alpha

The OpenVMS lock manager provides clusterwide synchronization of resources.
Oracle Rdb uses the lock manager to synchronize clusterwide updates to the
root portion of the database file, to initiate the automatic recovery process
when a node fails, and to coordinate concurrent updates to the same database
from processes running on different nodes. ♦

6.1.9 Distributed Transactions

OpenVMS
VAX

OpenVMS
Alpha

The OpenVMS operating system provides a set of services known as DECdtm
services to facilitate transaction processing. DECdtm system services enable an
application designer to implement atomic transactions that may span multiple
nodes of a cluster or network. The services use a two-phase commit protocol.
This support allows multiple resource managers, such as Oracle CODASYL
DBMS and Oracle Rdb software, to be combined in a single transaction. See
the Oracle Rdb7 Guide to Distributed Transactions for information on using
DECdtm system services with Oracle Rdb. ♦

6.1.10 Client/Server Computing

OpenVMS
VAX

OpenVMS
Alpha

VMSclusters can be used for client/server applications. Application designers
can construct server applications that run on each node and accept requests
from clients running on nodes in the VMScluster system or elsewhere in a
wider network.

If the node running the application fails, the clients of that server can switch
to another server running on a surviving node. The new server can access the
same data on disk or tape that was being accessed by the server that failed.
Also, OpenVMS volume shadowing software eliminates data unavailability in
the event of a disk controller or media failure. The VMScluster is thus very
available to client applications. ♦

6.1.11 Partitioned Data Access and Shared Data Access

OpenVMS
VAX

OpenVMS
Alpha

In a VMScluster, disk storage devices can be accessed from all nodes. The
application designer can choose whether the access is from one node at a time
(partitioned data access) or simultaneous from multiple nodes (shared data
access).

Using a partitioned data model, the application designer can construct an
application that limits data access to a single node or subset of the nodes. The
application runs as a server on a single node and accepts requests from other
nodes in the network. Because the application runs on a single node, there is
no need to synchronize data access with other nodes. Eliminating the overhead
associated with synchronizing data access among nodes can improve the
performance of many applications. Also, if synchronization is not required, the

6–10 Using Oracle Rdb in a VMScluster Environment

application designer can make the best use of buffer caches on the node and
can aggregate larger amounts of data for write operations, thus minimizing I/O
activity.

An application that uses partitioned data access lends itself to many types
of high-performance database and transaction processing environments.
VMScluster systems provide such applications with the advantage of having
a storage medium that is available to all nodes even when they are accessing
the data files. Thus, if the server node fails, another server running on a
surviving node can assume the work and be able to access the same files. For
this type of application design, VMSclusters offer the performance advantages
of a partitioned data model without the problems associated with the failure of
a single server.

Using a shared data model, the application designer can create an application
that runs simultaneously on multiple nodes in a VMScluster, which naturally
share data in a file. This type of application can prevent the bottlenecks
associated with a single server and take advantage of opportunities for
parallelism on multiple processors. OpenVMS RMS software can transparently
share files between multiple nodes in a VMScluster. Oracle Rdb and Oracle
CODASYL DBMS provide the same data sharing capability. Servers running
on multiple nodes of a VMScluster system can accept requests from clients in
the network and access the same files or databases. Because there are multiple
servers, the application continues to function if a single server node fails. ♦

6.2 Oracle Rdb in a VMScluster Environment
OpenVMS
VAX

OpenVMS
Alpha

Refer to the Oracle Rdb7 Installation and Configuration Guide for information
on how to install Oracle Rdb in a VMScluster environment. Since Version
4.1 of Oracle Rdb, it has been possible to install and run multiple versions of
Oracle Rdb on single nodes or one or more nodes in a VMScluster. For each
node that will use a particular version of Oracle Rdb, you must install the
shareable images for that Oracle Rdb version on the node.

This section compares the operation of Oracle Rdb in a VMScluster
environment to the operation of Oracle Rdb in a single-node environment.
♦

Using Oracle Rdb in a VMScluster Environment 6–11

6.2.1 Single-Node Environments and VMScluster Environments

OpenVMS
VAX

OpenVMS
Alpha

When you access the same database from more than one node at a time, you
are using Oracle Rdb in a VMScluster environment. In this environment,
Oracle Rdb establishes distributed root file access between two (or more) nodes,
and establishes communications through the OpenVMS lock manager, among
the monitor processes running on each node. This ensures that each node’s
monitor process is aware of database users on other nodes.

For the purposes of Oracle Rdb, your database can be defined as follows:

• In a single-node environment if all your database users are on a single
node

• In a VMScluster environment if your database users are on more than one
node at the same time ♦

6.2.2 Making a Database Accessible and Available in a VMScluster
Environment

OpenVMS
VAX

OpenVMS
Alpha

When you use Oracle Rdb in a VMScluster environment, you want to make the
database as accessible and available as possible. Take the following steps to
make the database accessible:

1. Place all the database files (.rdb, .rda, .snp, .ruj, and .aij) on cluster-
accessible disk devices (disks mounted with the MOUNT/CLUSTER
command). Any node in a cluster can access cluster-accessible disks,
regardless of the node to which the disks are attached. See Section 6.2.6
for more guidelines on where to place Oracle Rdb database files.

2. Make sure that the appropriate version or versions of Oracle Rdb are
properly installed on each node of the VMScluster that needs to access the
database. See the Oracle Rdb7 Installation and Configuration Guide for
information on installing and starting Oracle Rdb on VMScluster nodes.

3. Specify an appropriate value with the NUMBER OF CLUSTER NODES
option of the SQL CREATE DATABASE, ALTER DATABASE, or IMPORT
statement. See Section 6.2.3 for information on specifying the NUMBER
OF CLUSTER NODES value for a database.

4. Make Oracle CDD/Repository available (if you plan to use the Oracle
CDD/Repository with the database). See Section 6.2.7.

5. If you plan to use Oracle Rdb in a local area VMScluster configuration,
see the special considerations for local area VMScluster configurations in
Section 6.6.1.

6–12 Using Oracle Rdb in a VMScluster Environment

Take the following steps to make a database available:

1. Use dual-ported HSC disks whenever possible for database files (.rdb, .rda,
.snp, .ruj, and .aij files). See Section 6.2.6 for more recommendations on
device configurations for Oracle Rdb database files.

2. Place .aij files on separate disks from other database files. For example, do
not place .aij files on disks that contain .rdb, .rda, .snp, or .ruj files. See
Section 8.1.2.2 for more information. ♦

6.2.3 Specifying Maximum VMScluster Nodes

OpenVMS
VAX

OpenVMS
Alpha

Use the NUMBER OF CLUSTER NODES option in the SQL CREATE
DATABASE, ALTER DATABASE, and IMPORT statements to:

• Control the size of the .rdb file (1 block increase for each VMScluster node
added; see the examples later in this section)

• Set the upper limit on the number of VMScluster nodes from which users
can access the database

The range for the NUMBER OF CLUSTER NODES option is 1 to n VMScluster
nodes, where n is the current OpenVMS software limit. If you select a value
that is higher than the OpenVMS limit, it will be used to calculate an initial
size for the database file, and will be displayed in the Performance Monitor
General Information screen. Again, the actual limit is the maximum number
of nodes permitted by the current VMScluster software based on the type of
VMScluster configuration.

A database created with the NUMBER OF CLUSTER NODES IS 17 option will
be larger than the same database created with the NUMBER OF CLUSTER
NODES IS 10 option. For each node in a VMScluster environment from which
Oracle Rdb users might access a shared Oracle Rdb database, additional data
structures are required in the .rdb file.

If you omit the NUMBER OF CLUSTER NODES option from the SQL
CREATE DATABASE, ALTER DATABASE, and IMPORT statement, the
default remains 16. You can use this option on the IMPORT statement to set a
new value for a database created with an earlier version of Oracle Rdb.

If you use the NUMBER OF CLUSTER NODES option with the SQL CREATE
DATABASE and ALTER DATABASE statements, a subsequent SQL EXPORT
and IMPORT operation will retain this value as it was in the .rbr file following
the SQL EXPORT statement because it saves the parameter’s value in the .rbr
file.

Using Oracle Rdb in a VMScluster Environment 6–13

If you attempt to access a database from a VMScluster node and, in doing
so, exceed the maximum nodes parameter, an error occurs as shown in
Example 6–1.

Example 6–1 Exceeding the Maximum Nodes Parameter

SQL> -- VMScluster max nodes value is 5,
SQL> -- and database is already at the limit:
SQL> ATTACH ’FILENAME 222DUA12:[TOP]mf_personnel’;
%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-NORTUPB, no more user slots are available in the database
SQL>

Example 6–2 creates a single-file personnel database and defines a value
of 20 for the number of VMScluster nodes using the NUMBER OF CLUSTER
NODES IS option. This change from a default of 16 to 20 VMScluster nodes
would be made if the database was to reside on a shared disk in a 20-node local
area VMScluster configuration. Example 6–3 shows a Performance Monitor
General Information screen that displays the new value of the node count.

Example 6–2 Specifying the NUMBER OF CLUSTER NODES Value

SQL> CREATE DATABASE FILENAME personnel NUMBER OF CLUSTER NODES IS 20;
SQL> EXIT

6–14 Using Oracle Rdb in a VMScluster Environment

Example 6–3 Displaying the Maximum NUMBER OF CLUSTER NODES Value

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 24-JUN-1996 14:15:32
Rate: 3.00 Seconds General Information Elapsed: 00:00:16.86
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]PERSONNEL.RDB;1 Mode: Online
--

Database created at 24-JUN-1996 14:14:46.13
Maximum user count is 50
Maximum node count is 20 <------------ Notice
Database open mode is Automatic
Database close mode is Automatic
Snapshot mode is Automatic
Statistics collection is enabled
Default recovery-unit journal filename is "Not Specified"
Date of last backup is 17-NOV-1858 00:00:00.00
Fast incremental backup is enabled

--
Exit Help Menu Options Refresh Set_rate Write !

Example 6–4 uses the NUMBER OF CLUSTER NODES option to the SQL
IMPORT statement to decrease the node count parameter to a value of 15. For
multifile databases, you can use the SQL ALTER DATABASE statement and
specify a new value in the NUMBER OF CLUSTER NODES option.

Example 6–4 Changing the NUMBER OF CLUSTER NODES Value

$ SQL
SQL> EXPORT DATABASE FILENAME personnel.rdb INTO personnel_test.rbr
cont> WITH EXTENSIONS;

SQL> IMPORT DATABASE FROM personnel_test.rbr
cont> FILENAME personnel_test.rdb
cont> NUMBER OF CLUSTER NODES 15; <---- Decrease to 15.

Exported by Oracle Rdb V7.0-00 Import/Export utility
A component of SQL V7.0-00
Previous name was personnel.rdb
It was logically exported on 28-MAY-1996 15:29

.

.

.

(continued on next page)

Using Oracle Rdb in a VMScluster Environment 6–15

Example 6–4 (Cont.) Changing the NUMBER OF CLUSTER NODES Value

Database NUMBER OF CLUSTER NODES was 20, now is 15
.
.
.

♦

6.2.4 Multiple Monitor Processes

OpenVMS
VAX

OpenVMS
Alpha

In a single-node environment, Oracle Rdb uses a detached monitor process to
control database recovery, coordinate database open and close operations, and
maintain a list of active database users.

Because VMScluster configurations do not allow processes to be shared among
nodes, Oracle Rdb uses a database monitor process on each processor in the
VMScluster system from which an Oracle Rdb database can be accessed. The
monitor processes communicate with each other through the OpenVMS lock
manager. A monitor process on one node in a VMScluster environment is
aware of database users on other nodes.

You must include the line @SYS$STARTUP:RMONSTART in the system
startup file for each processor that will access an Oracle Rdb database.
Because each version of Oracle Rdb has a monitor process, in a multiversion
environment there is a separate RMONSTART.COM file for each version
of Oracle Rdb installed. In the multiversion environment, therefore, you
start the monitor for a particular version of Oracle Rdb by specifying the
appropriate RMONSTART.COM file for that version of Oracle Rdb (for example,
@SYS$STARTUP:RMONSTART61 to start the monitor for Oracle Rdb V6.1).
See the Oracle Rdb7 Installation and Configuration Guide for more information
on starting Oracle Rdb using RMONSTART.COM.

When a processor fails in a VMScluster environment, the OpenVMS lock
manager alerts Oracle Rdb monitor processes on other nodes where users
of the same database exist. One of these monitor processes then initiates
the Oracle Rdb recovery procedure to roll back the transactions that were
in progress for users on the failed node. Refer to Section 6.5 for further
information on the Oracle Rdb database recovery procedure. ♦

6–16 Using Oracle Rdb in a VMScluster Environment

6.2.5 Partitioned Lock Trees

OpenVMS
Alpha

By default, the active locks for all the resources in an Oracle Rdb database
belong to a single resource tree rooted under the database lock for that
database. In a VMScluster environment, all the locks and resources in a
database’s resource tree are mastered by OpenVMS on one of the nodes in the
VMScluster.

OpenVMS chooses the VMScluster node on which all the locks and resources
are mastered; this choice can be influenced by the usage of the various locks.
Because only one node can master a database resource tree at a time, the other
nodes in the VMScluster have to exchange messages with the mastering node
for every lock request. When a single node handles all the messages related
to lock requests in a VMScluster environment with high transaction rates, a
performance bottleneck can result.

If your database is an Oracle Rdb for OpenVMS Alpha database, you can
alleviate the performance bottleneck caused by a single resource tree per
database by using the LOCK PARTITIONING IS ENABLED clause of the SQL
CREATE or ALTER DATABASE statement, as shown in Example 6–5.

Example 6–5 Enabling Lock Partitioning

SQL> CREATE DATABASE FILENAME pers_test
cont> LOCK PARTITIONING IS ENABLED;

When partitioned lock trees are enabled for a database, there is no longer one
resource tree per database that includes all the resources in the database.
Instead, area locks are separated from the database resource tree and are
independently mastered on the VMScluster node that has the highest traffic
for that resource. OpenVMS determines the node that is using each resource
the most and moves the resource hierarchy (area lock and underlying page and
record locks) to that node.

The performance gain from enabling partitioned lock trees is especially
significant for partitioned applications that use the database. For example,
if you have a partitioned application in which the VMScluster node NODE1
is the only node accessing storage area AREA1, NODE1 does not have to
handle any lock requests from other VMScluster nodes for AREA1. Because
NODE1 does not have to handle lock requests from other nodes for AREA1, the
application runs faster when partitioned lock trees are enabled.

You can disable partitioned lock trees by using the LOCK PARTITIONING IS
DISABLED clause of the ALTER or CREATE DATABASE statement.

Using Oracle Rdb in a VMScluster Environment 6–17

For more information about the SQL syntax, see the CREATE DATABASE
statement and the ALTER DATABASE statement in the Oracle Rdb7 SQL
Reference Manual. ♦

6.2.6 Deciding Where to Place Oracle Rdb Files in a VMScluster Environment

OpenVMS
VAX

OpenVMS
Alpha

This section provides recommendations to help you decide where to place
your Oracle Rdb files in a VMScluster environment. The goals of these
recommendations are to:

• Provide access to database files from appropriate nodes in a VMScluster
environment

• Allow automatic database recovery in the event of a node failure

• Ensure virtually uninterrupted availability of your database

For the Oracle Rdb recovery process to work correctly in a VMScluster
environment, all Oracle Rdb database and journal files must be placed on disks
that are always accessible to all the nodes in the cluster using the database.
If you do not place all your database and journal files on cluster-accessible
devices, Oracle Rdb may not be able to initiate and complete the database
recovery procedure when a node fails. If Oracle Rdb is not able to recover
the database, all access to the database is suspended until the recovery is
completed.

After Oracle Rdb recovers the database, users on a failed node can log in to
another node and continue using the database. Therefore, you should ensure
that users have accounts on surviving nodes or that your VMScluster uses
a common SYSUAF.DAT file. See Section 6.5 for further information on the
transaction rollback.

You can choose among various options for VMSclusters that provide you with
high performance access and with high availability:

• Dual-ported HSC disks

Provide you with both high performance and an available alternate path to
your files, should one of the HSC subsystems fail.

• Single-ported HSC disks

Provide you with high performance, but do not automatically provide an
alternate path to your files.

• Dual-ported served disks

A served disk is a locally connected disk that has been explicitly set up
as cluster-accessible using the MSCP server. See the OpenVMS system
management documentation for more information on served disks.

6–18 Using Oracle Rdb in a VMScluster Environment

A dual-ported served disk automatically provides an alternate path to
your files, should one VAX or Alpha processor fail. However, served
disks provide high performance only for the processors to which they are
connected.

• Single-ported served disks

Can be used to make your Oracle Rdb files available to all processors in the
VMScluster environment. However, they provide high performance only for
the processor to which they are connected, and do not provide an alternate
path to your files.

To ensure continuous database access by surviving nodes when a node in
the VMScluster configuration fails, do not place any Oracle Rdb files on disk
devices that are cluster-mounted on single-ported, served disks. If you place
any Oracle Rdb files on single-ported disks, and the node to which the disks
are connected fails, the Oracle Rdb recovery procedure cannot access those
files. Activity on the database ceases until the failed node can be restarted.

To reduce the chances of losing access to your database due to node failure,
consider the following facts:

• If you place your files on dual-pathed HSC disks, you lose access to your
database only when both HSC subsystems fail at the same time.

• If you place your files on dual-pathed served disks, you lose access to your
database only when both processors fail at the same time.

• If you place your files on a single-pathed HSC disk, you lose access to your
database when that HSC subsystem fails.

• If you place your files on a single-pathed disk that is not an HSC
subsystem, you lose access to your database when that VAX or Alpha
processor fails.

When you use dual-pathed disks, always use a logical name for the allocation
class name whenever you refer to your database files. See Section 6.1.6
for information on allocation class names for disks and Example 6–6 for
information on using logical names for allocation class names.

Note

In a local area VMScluster configuration, if one of the boot nodes fails,
cluster operations are suspended until the node rejoins the cluster.
This condition is normal and ensures the integrity of shared cluster
resources.

Using Oracle Rdb in a VMScluster Environment 6–19

The following guidelines can help you decide where to place the database files:

• Database root (.rdb), storage area (.rda), and snapshot (.snp) files

In a single-node environment, Oracle Rdb maps the root portion of the
database file, or root header, as a global section of memory. Because
VMScluster configurations do not allow memory to be shared between
nodes, Oracle Rdb in a VMScluster environment maintains copies of the
root header in a page-file section on each node that uses a database.

The root file itself remains on the disk where you created it. Therefore,
this disk must be accessible from all nodes in the VMScluster system that
will access the database. If the root file of a database is not available to a
node, that database cannot be used by that node.

The OpenVMS lock manager ensures that all root file copies are identical.

The root, storage area, and snapshot files must be accessible from every
node that intends to access the database. Oracle Rdb must be able to
create and maintain VMScluster distributed root file access.

• Recovery-unit journal (.ruj) files

Oracle Rdb must be able to complete its automatic recovery procedure
should a node fail. Recovery can complete only if all .ruj files are accessible
from every node that accesses the database. To ensure that all .ruj files are
accessible, follow these rules:

Define the RDMS$RUJ logical name in the system table to refer to a
common directory.

Define the RDMS$RUJ logical name for each process to refer to a
common directory.

If you permit .ruj files to reside on the user’s default directory, that
directory’s device must be on a cluster-accessible disk.

• After-image journal (.aij) files

The .aij files must be accessible from every node that accesses the database.
This ensures that all processes that access the database will be able to
write to the .aij files.

To learn about reducing I/O contention in multiuser database access, read
Section 3.2 and Section 8.1.1, which describe disk I/O operations and
the corresponding effects on database performance. Placing the .aij files
on different devices than the database files is one way to minimize I/O
contention on the database disks.

6–20 Using Oracle Rdb in a VMScluster Environment

Note that all the recommendations made in this section are based on the
assumption that you want the database to be accessible from several or all
of the nodes in your VMScluster, that you want it to be a high-availability
database, and that you want Oracle Rdb to automatically recover the database
in the event of a node failure. For some databases, high availability might
not be as important as security. For example, if your database is a private
database or a sensitive database on a public system, you may be more
concerned about database security than about having the database available
from other nodes in a VMScluster. In this case, you could put the database
files on disks on your local node that are not mounted clusterwide, which
will prevent users from other VMScluster nodes from accessing these files.
Performance should also be better if the database files are on the local node,
because your database requests will not have to travel over the network to
access the database files and because locks will be mastered on the local node.
However, you sacrifice database availability because if your node or one of the
disks containing database files fails, you will not be able to access the database
until the problem with your local node is resolved. When the local node fails,
Oracle Rdb will recover the database automatically when the node reboots. ♦

6.2.7 Oracle CDD/Repository Requirements

OpenVMS
VAX

OpenVMS
Alpha

Your repository definitions must be available to all processes on all nodes that
need them, if you have Oracle CDD/Repository, the data repository, installed.
The types of processes that access the repository include:

• Procedures, command files, and interactive user operations that execute
data definition statements that affect the repository

• Programs that require the repository for database definitions

Before you create an Oracle Rdb database in a VMScluster environment, you
must ensure that your main repository files are on a device accessible to all
users.

In general, you should always place your main repository and your
compatibility repository on a shareable cluster disk that is always accessible
to users from any node in the VMScluster configuration. Placing these files
on a shareable cluster disk and establishing a single logical repository has the
following advantages:

• It allows users in your organization access to the repository even if their
particular system fails.

Using Oracle Rdb in a VMScluster Environment 6–21

• It enables your organization to share data definitions across the entire
cluster. A single repository limits redundant data storage and helps ensure
consistency among all database entity definitions. If you maintain separate
repositories on different systems, you risk discrepancies in data definition
and inconsistencies in updating data.

The following three commands define a logical name for the shareable disk on
which the repository will reside, establish a single logical repository, and place
the repository files on a shareable VMScluster disk.

$ DEFINE/SYSTEM CDD_DISK 2DUA11:
$ DEFINE/SYSTEM/EXECUTIVE_MODE CDD$COMPATIBILITY CDD_DISK:[CDD]
$ DEFINE/SYSTEM CDD$DICTIONARY CDD_DISK:[DMU]

These commands place your main dictionaries on an HSC disk called
2DUA11.

These logical names, as well as others necessary to access Oracle
CDD/Repository repositories, are defined by the procedure CDDSTRTUP.COM,
which should be invoked by each SYSTARTUP_V5.COM or SYSTARTUP_
VMS.COM that starts up a node that will use these main repository files.

You may place your main repository files on a restricted-access disk. However,
you must ensure that all processes that require data definitions are able to
access them at that location. ♦

6.3 Creating the mf_personnel Database in a VMScluster
Environment

OpenVMS
VAX

OpenVMS
Alpha

This section presents an example that shows how you can distribute the
mf_personnel database in a VMScluster environment to allow access from any
node. The necessary database files for this example include the following:

cdd.dic mf_personnel.rdb empids_low.rda

empids_mid.rda empids_over.rda salary_history.rda

departments.rda emp_info.rda jobs.rda

resume_lists.rda resumes.rda empids_low.snp

empids_mid.snp empids_over.snp salary_history.snp

departments.snp emp_info.snp jobs.snp

resume_lists.snp resumes.snp mf_personnel.aij (optional)

The configuration includes the following hardware:

• Ten RA90 disks, dual-pathed to two HSC subsystems

• Three VAX processors

6–22 Using Oracle Rdb in a VMScluster Environment

• Additional VMScluster hardware requirements include CI buses, CI
controllers, and a star coupler

The SQL CREATE DATABASE statement and its qualifiers place these files on
HSC disks that have assigned allocation class names. Figure 6–6 shows the
disks that contain the database files in a VMScluster environment.

Figure 6–6 Sample Placement of Database Files

Star
Coupler

CI Bus

VAX

CI Controller

VAX

CI Controller

CI BusCI Bus

CI Controller

RA90s

NU−2094A−RA

PERS.RUJPERS.STOR
2DUA7:2DUA4:

DBS.ROOT

PERS.AIJ
2DUA9:

2DUA10:

Alpha

PERS.STOR
2DUA3:

PERS.STOR
2DUA6:

PERS.STOR
2DUA5:

PERS.STOR
2DUA2:

PERS.AIJ
2DUA8:

PERS.STOR
2DUA1:

Class
Allocation

2
HSC

CI Controller

Class
Allocation

2
HSC

CI Controller

Because the VMScluster manager assigned the number 2 as the allocation
class identifier for each HSC subsystem, the allocation class names for the
10 RA90 disks are 2DUA1, 2DUA2, 2DUA3, 2DUA4, 2DUA5,
2DUA6, 2DUA7, 2DUA8, 2DUA9, and 2DUA10.

In Example 6–6, logical names are defined for the disks referred to in
Figure 6–6.

Using Oracle Rdb in a VMScluster Environment 6–23

Example 6–6 Defining Logical Names for the Disks Used for the Database
Files

$ DEFINE/SYSTEM DB_DISK 2DUA10:
$ DEFINE/SYSTEM DISK1 2DUA1:
$ DEFINE/SYSTEM DISK2 2DUA2:
$ DEFINE/SYSTEM DISK3 2DUA3:
$ DEFINE/SYSTEM DISK4 2DUA4:
$ DEFINE/SYSTEM DISK5 2DUA5:
$ DEFINE/SYSTEM DISK6 2DUA6:
$ DEFINE/SYSTEM RUJ_DISK 2DUA7:
$ DEFINE/SYSTEM AIJ_DISK1 2DUA8:
$ DEFINE/SYSTEM AIJ_DISK2 2DUA9:

In Example 6–7, the directories for the database files are defined.

Example 6–7 Creating Directories for the Database Files

$ CREATE/DIRECTORY DB_DISK:[DBS.ROOT]
$ CREATE/DIRECTORY DISK1:[PERS.STOR]
$ CREATE/DIRECTORY DISK2:[PERS.STOR]
$ CREATE/DIRECTORY DISK3:[PERS.STOR]
$ CREATE/DIRECTORY DISK4:[PERS.STOR]
$ CREATE/DIRECTORY DISK5:[PERS.STOR]
$ CREATE/DIRECTORY DISK6:[PERS.STOR]
$ CREATE/DIRECTORY RUJ_DISK:[PERS.RUJ]
$ CREATE/DIRECTORY AIJ_DISK1:[PERS.AIJ]
$ CREATE/DIRECTORY AIJ_DISK2:[PERS.AIJ]

You can define the RDMS$RUJ logical name for each process to refer to a
cluster-accessible device that contains all the .ruj files. For example, the
command in Example 6–8 defines the RDMS$RUJ logical name to refer to the
RUJ_DISK:[PERS.RUJ] directory, which contains .ruj files for all processes
that access the database.

Example 6–8 Defining the RDMS$RUJ Logical Name for the Directory for the
.ruj Files

$ DEFINE/SYSTEM RDMS$RUJ RUJ_DISK:[PERS.RUJ]

If you plan to use a systemwide directory for your .ruj files, include this
command in your SYSTARTUP_V5.COM or SYSTARTUP_VMS.COM file.
Define this directory on a device other than the database files. You can also
use the default, SYS$LOGIN, to place .ruj files per process in each user’s
default directory. If you do not define the logical name, RDMS$RUJ, to refer

6–24 Using Oracle Rdb in a VMScluster Environment

to a common directory, make sure that all database users log in to accounts
whose default directories are on cluster-accessible disks.

Example 6–9 shows the use of the SQL CREATE DATABASE statement using
the defined logical names.

Example 6–9 Defining the Sample Database

SQL> CREATE DATABASE FILENAME ’DB_DISK:[DBS.ROOT]mf_personnel’
cont> PATHNAME ’SYS$COMMON[HEADQUARTERS]mf_personnel’
cont> NUMBER OF USERS IS 50
cont> NUMBER OF BUFFERS IS 20
cont> NUMBER OF CLUSTER NODES IS 16
cont> NUMBER OF RECOVERY BUFFERS IS 20
cont> BUFFER SIZE IS 6 BLOCKS
cont> SNAPSHOT IS ENABLED
cont> DICTIONARY IS REQUIRED;
cont> DEFINE STORAGE AREA DEPARTMENTS
cont> FILENAME DISK3:[PERS.STOR]departments.rda
cont> ALLOCATION IS 25 PAGES
cont> PAGE FORMAT IS MIXED
cont> SNAPSHOT FILENAME DISK4:[PERS.STOR]departments.snp
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> END DEPARTMENTS STORAGE AREA;
SQL>

The statements in Example 6–9 create the database files, mf_personnel.rdb,
departments.rda, and departments.snp on a dual-pathed HSC disk
device and directory using the directory names DB_DISK:[DBS.ROOT],
DISK3:[PERS.STOR], and DISK4:[PERS.STOR]. The mf_personnel database
can be accessed by any node in the cluster.

The SQL ALTER DATABASE statement names the .aij files and their location,
as shown in Example 6–10.

Example 6–10 Specifying the Locations of the .aij Files

SQL> ALTER DATABASE ’DB_DISK:[DBS.ROOT]mf_personnel’
cont> ADD JOURNAL AIJ_ONE
cont> FILENAME ’AIJ_DISK1:[PERS.AIJ]aij1.aij’

Using Oracle Rdb in a VMScluster Environment 6–25

cont> ADD JOURNAL AIJ_TWO
cont> FILENAME ’AIJ_DISK2:[PERS.AIJ]aij2.aij’;
SQL>

If a node in the VMScluster system fails, a monitor process on a surviving node
can access the database, .ruj, and .aij files necessary to recover the database.

Because this VMScluster configuration uses a common system disk with a
common SYSUAF.DAT file, if one of the nodes fails, users can log in to one of
the surviving nodes and continue to use the database.

If one HSC subsystem fails, access to the database files automatically switches
to the path through the other HSC.

Use this list of steps to guide you through the process of creating your Oracle
Rdb database in a VMScluster environment:

1. Decide which nodes require access to the database. You should ensure
that:

a. Oracle Rdb can be run on each node

b. The Oracle Rdb shareable images are installed on each node

c. The @SYS$STARTUP:RMONSTART.COM procedure is in the
SYSTARTUP_V5.COM or SYSTARTUP_VMS.COM file each node uses

d. The logical name RDMS$RUJ is defined for each node that requires
database access

e. All user accounts log in to default directories on cluster-accessible
devices (where appropriate)

2. Determine which disks are accessible from the user nodes that you
determined needed access. You should choose the best paths and devices
options when:

a. High availability is your priority

b. High performance is your priority

3. Decide whether or not your users can log in to another node if the node
they normally use fails. In the event of node failure, you must ensure one
of the following conditions is true:

a. Users have accounts on the other node or nodes.

b. All nodes share a common SYSUAF.DAT file. You may want to use
different SYSUAF.DAT files for Alpha processors and VAX processors
to allow for the different memory management working set quotas
(SYSUAF process limits and quotas are higher on Alpha processors).

6–26 Using Oracle Rdb in a VMScluster Environment

4. Decide where to place the .ruj files by either:

a. Defining a system logical to refer to a single directory

b. Creating your database users’ default directories on cluster-accessible
disks

c. Defining process logicals to refer to a user directory located on one of
the cluster-accessible disks

5. Decide where to place the database file. The database file must be
accessible from all nodes using the database.

6. Issue the SQL CREATE DATABASE and ALTER DATABASE statements
to create the database on the specified devices and to create an .aij file on a
device other than where the .rdb file resides. ♦

6.4 Converting a Single-Node Database to a VMScluster Database
OpenVMS
VAX

OpenVMS
Alpha

This section describes how to convert a single-node database to a database that
runs efficiently in a VMScluster environment. The steps listed in Section 6.3
that describe how to create a multifile database also apply in this case except
for the last step. You can make your current, single-node database available to
users in the following ways:

• Use the RMU Backup and RMU Restore commands.

Refer to the Oracle Rdb7 Guide to Database Maintenance for information
on using the RMU Backup and RMU Restore commands for this procedure.
This method is preferred because it is the fastest. You will need to specify
the Directory, Root, File, and Snapshots qualifiers with the RMU Restore
command. The Oracle RMU Reference Manual describes the syntax and
qualifiers for this command.

• Alternatively, use the SQL EXPORT and IMPORT statements.

Example 6–11 shows the use of the SQL EXPORT and IMPORT statements
to convert a single-node database to a database that will be accessible in
a VMScluster. This method usually takes longer to execute than an RMU
Backup and RMU Restore operation and therefore is not the preferred
method to accomplish this particular task. Refer to the Oracle Rdb7 Guide
to Database Maintenance for additional information on applications that
use the SQL EXPORT and IMPORT statements. See the Oracle Rdb7 SQL
Reference Manual for information on syntax and arguments for these two
statements.

Using Oracle Rdb in a VMScluster Environment 6–27

Section 3.2 and Section 8.1.1 provide information that can help you improve
database performance by distributing I/O operations across several storage
devices. Section 6.2.6 describes placement of Oracle Rdb files.

With the SQL EXPORT and IMPORT statements, you can take the following
actions:

• Issue an SQL EXPORT statement to create an interchange file of your
database.

• Issue an SQL IMPORT statement to distribute your database and journal
files on shareable disk devices.

Converting your database from a single node to a VMScluster environment is
not difficult. However, you must carefully evaluate the alternatives available
to you before you begin this task.

The logical names DB_DISK, DISK3, DISK4, AIJ_DISK1, and AIJ_DISK2 in
Example 6–11 are defined in Example 6–6. Use these logical names to place
the mf_personnel database files on the appropriate disk devices. Example 6–11
shows how to use the SQL EXPORT and IMPORT statements to convert a
single-node database to a VMScluster database.

Example 6–11 Using the SQL EXPORT and IMPORT Statements to Convert a
Single-Node Database to a VMScluster Database

$ SQL
SQL> EXPORT DATABASE FILENAME DB_DISK:[DBS.ROOT]mf_personnel
cont> INTO DISK11:[DBS.EXP]mf_personnel.rbr WITH EXTENSIONS;
SQL>
SQL> IMPORT DATABASE FROM DISK11:[DBS.EXP]mf_personnel.rbr
cont> FILENAME DB_DISK:[DBS.ROOT]mf_personnel.rdb
cont> PATHNAME "SYS$COMMON:[HEADQUARTERS]mf_personnel"
cont> NUMBER OF USERS IS 50
cont> NUMBER OF BUFFERS IS 20
cont> NUMBER OF CLUSTER NODES IS 16
cont> NUMBER OF RECOVERY BUFFERS IS 20
cont> BUFFER SIZE IS 6 BLOCKS
cont> SNAPSHOT IS ENABLED
cont> DICTIONARY IS REQUIRED
cont>
cont> CREATE STORAGE AREA DEPARTMENTS
cont> FILENAME DISK3:[PERS.STOR]departments.rda

(continued on next page)

6–28 Using Oracle Rdb in a VMScluster Environment

Example 6–11 (Cont.) Using the SQL EXPORT and IMPORT Statements to
Convert a Single-Node Database to a VMScluster
Database

cont> ALLOCATION IS 25 PAGES
cont> PAGE FORMAT IS MIXED
cont> SNAPSHOT FILENAME DISK4:[PERS.STOR]departments.snp
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> END IMPORT;
SQL> FINISH;
SQL>
SQL> ALTER DATABASE ’DB_DISK:[DBS.ROOT]mf_personnel’
cont> ADD JOURNAL AIJ_ONE
cont> FILENAME ’AIJ_DISK1:[PERS.AIJ]aij1.aij’
cont> ADD JOURNAL AIJ_TWO
cont> FILENAME ’AIJ_DISK2:[PERS.AIJ]aij2.aij’;
SQL>

The following summary describes the steps necessary to convert your existing,
single-node database to a cluster-accessible database:

1. Issue an SQL EXPORT statement to create an interchange file of your
database.

2. Decide where to place the database files.

Make sure all Oracle Rdb files, including the .rdb, .rda, .snp, .ruj, and .aij
files, are located on devices accessible from all nodes that require access to
the database.

3. Issue an SQL IMPORT statement to restore your database and distribute
the database and journal files on cluster-accessible disk devices. Define
database parameters again using the SQL IMPORT statement clauses.

4. Test your new database to ensure that data definitions are available from
both the database itself and the repository, and that the database and its
data are accessible from each node.

5. Delete the old database. ♦

Using Oracle Rdb in a VMScluster Environment 6–29

6.5 Automatic Recovery Procedure
OpenVMS
VAX

OpenVMS
Alpha

When a node in a VMScluster configuration fails, Oracle Rdb performs an
automatic recovery of the database to bring the database to a consistent state.

The normal operating state of an Oracle Rdb database in a VMScluster
environment includes an Oracle Rdb monitor process that runs on each node
from which a database can be accessed. When a node fails, all processes on
it are aborted. If any of the aborted processes were accessing a database, the
OpenVMS lock manager grants a special lock (called a deadman) to a monitor
on one of the surviving nodes from which one or more users is accessing the
database. When a monitor on a surviving node is granted a deadman lock to a
database that was accessed from a failed node, that surviving node suspends
all activity in the database for all the nodes in the VMScluster. The surviving
node that was granted the deadman lock then starts a database recovery
process (DBR process).

The DBR process brings the database to a consistent state. The steps in the
database recovery are different depending on whether or not fast commit
processing is enabled for the database. When a node fails and a database that
was being accessed on the failed node has fast commit processing enabled, the
DBR process first uses the .aij file to recover all the committed transactions
in the database since each user’s last checkpoint. This recovery of committed
transactions is known as a redo operation. Then the DBR process rolls back
the uncommitted transactions recorded in the .ruj files. This rollback of
uncommitted transactions is known as an undo operation.

When a node fails and a database that was being accessed on the failed node
does not have fast commit processing enabled, the DBR process rolls back the
uncommitted transactions recorded in the .ruj file, but no redo operation is
necessary because the committed updates have already been written to the
database area files.

If a monitor process on a surviving node cannot access all the required .ruj files
for a database, the database is shut down. To complete recovery, the database
must be recovered from a node that has access to the .ruj files.

After the database has been recovered, users from the failed node can log in
to a surviving node in the VMScluster configuration and resume using the
database (if these users have accounts on the surviving nodes).

This scenario illustrates the importance of creating and maintaining your
database and journal files on shareable disk devices.

6–30 Using Oracle Rdb in a VMScluster Environment

Note that when more than one version of Oracle Rdb is installed on a
VMScluster, there will be a version-specific monitor process on each node for
each version of Oracle Rdb that is installed. In an Oracle Rdb multiversion
environment, each node has more than one monitor process. If a node fails in
a multiversion environment, the recovery procedure occurs for each version of
Oracle Rdb that is installed.

If a database is accessed only by the node that fails, the recovery procedure
is the same as for any single-node database. The recovery process will be
initiated the next time a process attaches to the database. The failure of
an HSC subsystem is treated differently by Oracle Rdb than the failure of a
processor. No recovery procedure is initiated because no user processes are
aborted. The effect on your database depends on the configuration of your
VMScluster environment:

• If your HSC disks are dual-pathed, the OpenVMS operating system
automatically switches your database access path through an alternate
HSC subsystem. Access to your database is not interrupted.

• If your HSC disks are single-pathed, and any of your database files are on
an HSC disk, database access is discontinued until the HSC subsystem
is again operational. The next time a process attaches to the database, a
recovery procedure will be started.

Section 6.5.1 and Section 6.5.2 describe the Performance Monitor database
recovery screens. ♦

6.5.1 Performance Monitor Recovery Statistics Screen

OpenVMS
VAX

OpenVMS
Alpha

The Performance Monitor provides the Recovery Statistics screen, which
identifies various recovery phases and shows information on how long each
phase took to complete.

The Recovery Statistics screen is useful for identifying an excessive number
of abnormal process failures. In addition, the screen is useful for determining
the proper database attribute and parameter settings to maximize run-time
performance and minimize recovery downtime.

Note that the Recovery Statistics screen provides global information on all
failed process recoveries, not on individual process recoveries.

You access the Recovery Statistics screen from the Journaling Information
submenu. The following example shows a Recovery Statistics screen:

Using Oracle Rdb in a VMScluster Environment 6–31

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 3-FEB-1996 08:04:27
Rate: 1.00 Second Recovery Statistics Elapsed: 00:26:45.95
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
process attaches 0 0 0.0 4 1.0
process failures 0 0 0.0 1 0.2
DB freeze len x100 0 0 0.4 684 171.0
Tx REDO count 0 0 0.0 1 0.2

redo time x100 0 0 0.2 389 97.2
Tx UNDO count 0 0 0.0 1 0.2

undo time x100 0 0 0.0 9 2.2
No UNDO needed 0 0 0.0 0 0.0
Tx committed 0 0 0.0 0 0.0
Tx rolled back 0 0 0.0 0 0.0
No resolve needed 0 0 0.0 1 0.2
AIJ recover x100 0 0 0.0 6 1.5
GB recover x100 0 0 0.0 0 0.0
Cache recover x100 0 0 0.0 0 0.0
RUJ file reads 0 0 0.0 1 0.2
AIJ file reads 0 0 0.0 9 2.2
--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

See the Performance Monitor help for information about this screen. ♦

6.5.2 Performance Monitor DBR Activity Screen

OpenVMS
VAX

OpenVMS
Alpha

The Performance Monitor provides the DBR Activity screen, which allows you
to obtain information on active DBR processes on the current node. The DBR
Activity screen provides one line of information for each DBR process that is
active on the node from which the Performance Monitor is invoked. Note that
if there are no active DBR processes on the node, the screen is empty.

You access the DBR Activity screen from the Process Information submenu.

If this screen is not used, the only method available to users to determine if
the DBR process is running is to use the RMU Show Users utility. However,
the RMU Show Users utility indicates only that the DBR process is running;
it does not indicate what type of progress DBR is making in the recovery
operation. The following example shows a DBR Activity screen:

6–32 Using Oracle Rdb in a VMScluster Environment

Node: TRIXIE Oracle Rdb V7.0-00 Performance Monitor 28-MAY-1996 16:01:59
Rate: 3.00 Seconds DBR Activity Elapsed: 05:41:05.72
Page: 1 of 1 SQL_DISK1:[RICK.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Activity... VBN.... Operation.......................... Lock.ID.
12345678:1 TX redo Reading page 1:2

--
Exit Help LockID Menu >next_page <prev_page Set_rate Write Zoom !

See the Performance Monitor help for information about this screen. ♦

6.6 Maintaining and Monitoring Your Database
OpenVMS
VAX

OpenVMS
Alpha

This section describes the normal operation and maintenance of an Oracle Rdb
database in a VMScluster environment.

Most operations performed on Oracle Rdb databases in a VMScluster
environment are the same as those performed on Oracle Rdb databases in
a single-node environment. ♦

6.6.1 Local Area VMScluster Configuration Considerations

OpenVMS
VAX

OpenVMS
Alpha

A typical local area VMScluster configuration consists of a large processor
and several small processors. You must ensure that each smaller processor
in your configuration has enough memory to run your applications. Because
creating databases requires more memory than other applications, you may
have to dedicate one processor to the task of database creation. You may want
to consider using the local processors in your local area VMScluster system for
paging and swapping files.

Monitor the following AUTOGEN parameters closely:

• PAGEDYN

• NPAGEDYN

• GBLSECTIONS

• GBLPAGES

Using Oracle Rdb in a VMScluster Environment 6–33

Make sure the values of each of these parameters are large enough to
accommodate the number of interactive users and anticipated batch job
load, if any, for your application.

The boot node or nodes in a local area VMScluster environment incur a
performance penalty because they must act as disk servers for the satellite
nodes. A satellite node is any processor that is started up remotely from
a boot node’s system disk. Generally, these nodes consume the cluster’s
resources, although they can be set up to provide disk serving and batch
processing resources.

If a boot node in a local area VMScluster fails, cluster operations are suspended
until the node rejoins the cluster. This condition is normal and ensures the
integrity of shared cluster resources. ♦

6.6.2 Monitoring Your Database

OpenVMS
VAX

OpenVMS
Alpha

You can display information about the database from any node in the cluster.
The RMU Show Users and RMU Show System commands display information
about the users on the node from which the command is issued.

To display information about the database, use:

• RMU Analyze Areas

• RMU Analyze Lareas

• RMU Analyze Indexes

• RMU Analyze Placement

To display information about users on your node, use:

• RMU Show Users

• RMU Show System

These commands execute only for a single node at a time. This restriction is
due to the distributed root file access and multiple monitor processes required
to implement Oracle Rdb in a VMScluster environment. You will have to
execute the RMU Show Users and RMU Show System commands on each node
in the VMScluster system on which database user processes reside, to obtain
a full picture of activity for that database. You can do this by placing these
commands into command procedures. These procedures can then be submitted
simultaneously to batch queues on each node from which users have access
to a database. Use the SQL SET OUTPUT full-file-spec statement to direct
the output to disk files in a single directory. You can then display or print the
contents of the files.

6–34 Using Oracle Rdb in a VMScluster Environment

You can use the RMU Dump Users command to display information for all the
database user processes for a cluster:

$ RMU/DUMP/USERS mf_personnel

You can also use the Performance Monitor to monitor database activity. See
Section 2.2 for details on monitoring your database. ♦

Using Oracle Rdb in a VMScluster Environment 6–35

7
Tuning Concepts and Methodology

System tuning is not a new concept in time-sharing environments. A
well-tuned computer system biases resource distribution towards the types
of workloads for which the machine is intended. This chapter explores how
system tuning can affect database performance. Although this chapter uses a
manufacturing environment as a model, the database tuning concepts that are
developed apply to all database environments.

In computer-integrated manufacturing (CIM) environments, the ability to
quickly store and access information is critical to the process requirements
found on the shop floor. In addition, manufacturing plants cannot always
justify more powerful hardware to improve response time. In this situation,
tuning the system for optimal database performance affects the whole
operation and provides a low-cost solution to the problem.

7.1 What Is Tuning?
Tuning is adjusting system or database parameters to obtain an overall
optimum resource usage for the target workloads without adding additional
central processing unit (CPU), memory, or input/output (I/O) capacity. Note
that adding more memory or another disk drive to the environment is not
tuning; tuning enables you to manage with the available resources. The trick
is to figure out what workloads are using the resources and which of these
workloads are most important. You then set up the system so that the most
important workloads always have resources available when they need them.

7.2 Determining When to Tune
Tuning is not normally an action that needs to occur continuously within
your environment. Instead, system monitoring should occur regularly. Tuning
normally takes place when response time degrades or when system monitoring
shows a resource shortage.

Tuning Concepts and Methodology 7–1

You must understand your workload and resource usage to determine when
tuning is necessary. If your application is less responsive than expected, the
need for a critical resource may be causing the problem. Additional research is
necessary.

If the workload has changed over time, you should again consider tuning.
This situation is common in a manufacturing environment where volume
fluctuations or product ramping may cause the workloads to change gradually.
System and database parameters that worked fine at 10 percent product
volumes may not work as well for higher percentages. When performance
degradation becomes noticeable, investigate. Figure 7–1 emphasizes this
situation.

Figure 7–1 Tuning Because of Change in Workloads

NU−2016A−RA

Product A
Product B

Legend

1 2 3 4 5 86 7

Performance

Number of Weeks

Performance OK

Performance
degrades

Number
of

Parts

7–2 Tuning Concepts and Methodology

Increased hardware capacity is the most common reason for you to tune your
environment. For example, if you double the memory capacity of your machine,
the working sets established for your old hardware configuration may no longer
be optimal. Adjusting the working sets to take advantage of the additional
memory may improve performance dramatically for those applications that
have large memory requirements. Similarly, if you add another disk to the
configuration, modifying the database schema to spread the data over the
additional device could help eliminate an I/O or contention problem. Tuning
enables you to use the new capacity to its fullest advantage.

7.3 Types of Resources
Oracle Rdb uses two types of resources, exclusive and shared.

Fortunately, Oracle Rdb uses few resources that must be used exclusively by
the workload that requires it. When an exclusive resource must be used, a
less important workload may prevent an important workload from accessing
the resource and thus delay critical work. This may degrade performance. For
example, when an index is defined for a table, the table (the resource) must be
used exclusively by the definer. This increases contention for workloads that
need access to the table.

The other type of resource is the shared resource. This is the more common
resource found in the database environment. The usual problem involving
this resource type is that the resource becomes over-shared. To illustrate this
problem, let an apple represent a resource in your environment. If you slice
the apple into several pieces and give those pieces to people (who represent
the workloads), the slice may not be enough to satisfy their hunger. They may
have to wait for another slice. If some workloads are more important than
others, you will want to tune the computer system to ensure that those more
important workloads immediately receive the percentage of the resource that
they require.

Tuning is a complex process, with many factors that can affect the outcome
of the proposed environment change. Section 7.5 offers a database tuning
methodology to help you to deal with this complexity.

7.4 Sample Database Application
This chapter uses examples to illustrate tuning concepts. Many of these
examples are based on a manufacturing resource planning (MRP II) database
application named PRODUCT_DB. As you read the examples, imagine that
you designed the PRODUCT_DB application.

Tuning Concepts and Methodology 7–3

An MRP II application is a system designed to manage and execute a variety
of business functions that apply to manufacturing planning and control of
material and capacity resources. MRP II is a transaction-driven system, and it
is highly dependent on record accuracy. It also requires strict discipline from
its users, who place heavy demands on the system for response and flexibility.

A typical MRP II application, such as PRODUCT_DB, contains information
about a manufacturing plant. It includes the information (bill of materials)
needed to track the different subcomponents of an assembled unit, as well
as the different parametric data generated during testing to ensure a quality
product. The applications that run on the database are used by advanced
development engineers to refine the manufacturing process, by quality
engineers to ensure that a good product is being built, and by manufacturing
to track information on the shop floor.

Table 7–1 lists and briefly describes each table in the PRODUCT_DB
database.

Table 7–1 PRODUCT_DB Database Tables

Table Name Description

LOT_INFORMATION Tracks material through the shop floor.

SHIPPING_INFORMATION Tracks when and where the completed product
has been shipped.

PARTS Links a part to a given lot name.

PART_DEFECT Identifies why a given part was defective.

DEFECT_DESCRIPTIONS Translates the defect codes into a description
that can be sent back to the vendor identifying
why the part was rejected.

LOT_DATA Stores parametric test data associated with a
lot.

PROCESS_SPECIFICATIONS Controls the test limits for the product at a
given process step.

7.5 Tuning Methodology
This section describes a database tuning methodology. It provides a six-
step sequence that you can use to approach any database tuning problem.
Frequently, when a potential problem is identified, the cause of the problem
is unknown and the information concerning the problem is vague. Take the
following scenario, for example:

7–4 Tuning Concepts and Methodology

Users performing data entry on a MRP II application notice that performance
has degraded over a period of months. They complained to the system
manager, who called in the database expert (you). Where do you start?

Figure 7–2 Analyze Resource Use

Utilization

NU−2015A−RA

0

W

10

W

20

30

40

50

60

70

90

100

80

(%)

Disk
Memory
CPU

Legend

Mo Tu Th Fr Sa Su Mo Tu Th Fr Sa Su

1. Understand the workloads running in the environment.

The first step is to understand the workloads in your environment. Does
an application that generally has a 2-second response now suddenly have a
5-second response? Has the environment changed recently? (For example,
has a new version of the software or a layered product been installed?)
Does the problem occur only at certain hours of the day or on certain days
of the week, as shown in Figure 7–2?

Tuning Concepts and Methodology 7–5

It is useful to have performance reports available for study during
this phase of the process. Tools such as the OpenVMS Monitor utility
(MONITOR) can be used to collect this information. Begin by looking daily
at groups of system resources to understand when minimum and maximum
resource utilization occurs. For example, in a manufacturing environment,
resource utilization might slowly increase during the week and peak on
the day that shipment quotas are due. Understanding this, you would not
attempt to diagnose a performance problem on a Monday, when utilization
is at a minimum. Instead, you would schedule your tuning analysis for
a Saturday, when resources are more strained and your analysis is likely
to be more effective. (Limiting resources are more evident during peak
periods.) You might also notice increased utilization at the end-of-quarter
ship deadlines and the end-of-year ship deadlines.

Transaction and volume analysis information (transaction volumes, type of
transaction, length of transaction) is useful if it is available. The more you
know about the applications running in the environment, the more insight
you will have into the cause of the problem.

2. Check for hardware problems.

The users who are experiencing the problem may not be aware of, or
understand, the computing environment in which they are working.
Before you undertake any tuning, check to ensure that no major hardware
problems exist on the system. If you are running in a cluster environment,
check to see that the normal number of machines is running. (If a machine
is off line, it might account for the user’s perception that response is slow.)

OpenVMS
VAX

OpenVMS
Alpha

Use the SHOW ERROR command from DIGITAL Command Language
(DCL) to check for problems that could be affecting your environment or
workloads. For example, are there many errors on the database disk?

The SHOW ERROR command will not indicate all hardware problems,
however. For example, if a large number of database disks are spread
across several HSC subsystems and one HSC fails, then all database disks
might switch to the same HSC. This switch to a single HSC subsystem
would slow things down. One way to diagnose this problem is to use the
DCL SHOW DEVICES command to determine which HSC subsystem
the disks are on. (If the disk is on an HSC, the HSC name appears in
parentheses after the device name.) ♦
It is also a good idea to check with the system manager to ensure that
the hardware configuration has not changed recently. It is possible that a
faulty piece of hardware was removed from the system until a replacement
can be found. A user accustomed to the additional capacity of the original
configuration would notice the change as a response time problem.

7–6 Tuning Concepts and Methodology

3. Focus on the problem area.

Carefully examine I/O, memory, CPU, and lock utilization trends to focus
on the problem area. To ensure that you do not make conclusions from
data that does not reflect the normal operation of the workloads in the
environment, you should try to review several weeks of information. If
several weeks of data are not available, use what you have. The risk
involved with using smaller samples is that you may base your conclusions
on an off-peak period when the cause of the performance degradation is not
exhibited. Note that any resource that is more than 65 percent busy may
start to degrade performance. Your goal is to spread the work to other less
utilized resources that have the capacity for it.

4. Determine the cause of the problem.

Once you have categorized the problem as being in one of the four basic
areas (I/O, memory, CPU, or locks), you can look in depth at system level
parameters, database parameters, or at the application itself to determine
the options that are available to remove the bottleneck.

5. Choose a viable solution and execute the change.

This step involves selecting the best available solution and applying the
change to the environment. Issues that you should consider when you
choose a solution include cost, time to implement, risk, and potential for
improvement.

6. Monitor the results.

After a change has been made, the environment should be monitored to
ensure that the situation improves.

7.6 Determining What to Tune
Before you explore the tuning methodology in greater detail, you need to
determine what to tune. Section 7.5 noted that you should focus on four basic
areas of tuning resources: I/O, memory, CPU, and locks. The potential for
performance degradation exists any time that utilization of any one of these
resources gets above 65 percent.

Once you have selected an area to focus on, you must consider several factors
before you decide on a tuning solution. Figure 7–3 illustrates this concept.

Tuning Concepts and Methodology 7–7

Figure 7–3 Areas of Potential Improvement

Greatest
potential for
performance
improvement

Smallest
amount of time
needed to
implement
change

NU−2021A−RA

Database

Application

System

7.6.1 Tuning the System
Figure 7–3 shows a breakdown by environmental component. The three
components that you can concentrate on to improve performance are system,
database, and application. This breakdown should help you address such
issues as risk and cost.

OpenVMS
VAX

OpenVMS
Alpha

The system tuning component consists of the parameters found in the
OpenVMS System Generator utility (SYSGEN), the OpenVMS Authorize
utility (AUTHORIZE), and other dynamic parameters like RDM$BIND_
BUFFERS. ♦

If you look at the pyramid in Figure 7–3, you will notice that the system has
the smallest area. This shows that system tuning has the smallest potential
for performance gain.

Although the potential performance improvement for tuning at the system level
may be smaller than the other areas, beginning a tuning session at this level
offers some advantages. First of all, the time required to implement a change
at this level is small. A number of the affected parameters are dynamic, and
can be modified right away. Other parameters take effect during the next login
or the next time the system is rebooted. Another advantage is that the risk is
smaller when a change can be undone almost immediately. In a manufacturing
environment, where system downtime can directly affect product volumes,
low-risk tuning changes that improve performance without affecting production
during their implementation phase are valuable enhancements. If the changes
required the plant to shut down, they might not be looked upon as favorably.

7–8 Tuning Concepts and Methodology

Cost is another advantage of tuning at the system level. Expensive
programmer and database administrator resources are usually not required to
make changes at this level. The problems encountered here are typically more
global than a single application, so internal understanding of the application
code is not required. This leads to a final point. Tuning at the system level is
less complex because less application-specific information is necessary.

7.6.2 Tuning the Database
The database tuning component contains the database definition language,
which performs such functions as specifying file placement, number and size
of database buffers, and initial file allocation. This component contains all the
nonsystem parameters that can be used to solve a problem without requiring
modification to the application code. The database area in Figure 7–3 falls
between the system and application areas. This shows that tuning at the
database level can have a larger effect than system tuning but has less
potential effect than modifying the application.

Modifications to the parameters at the database level are in general more
complex than at the system level. More explicit knowledge of the data and how
it is being used is required. Normally database tuning must be coordinated
and implemented through a database administrator. This can lead to longer
delays than a change at the system level.

Few of the database parameters can be changed dynamically. Most changes
require exclusive access to the database. Others require the database to be
exported and then imported for the change to have maximum effect. The
drawback of this is higher risk and cost. If the environment in which the
database operates requires 7X24 uptime, then tuning at the database level
has an unavoidable impact. The cost is higher because the additional expense
of the idle plant must be factored in. The risk is higher because there may
be unexpected delays in getting the database back on line. Development
environments are sometimes set up to reduce the risk of making the changes
on line. All proposed database changes are tested in the development database
before they are implemented in the production environment. Unfortunately,
because most development databases are not the same size as the production
database, the risk is not removed altogether. When trying to decide whether
to use a development database, issues such as the cost of setting up the
development database, the cost of the required hardware, and the cost of
making all changes twice must be weighed against the cost of an unexpected
problem that keeps the database off line longer.

Tuning Concepts and Methodology 7–9

7.6.3 Tuning the Application
The application tuning component contains the application code, the
transaction information, and the interaction with the user. The application
area, the biggest of the three areas in Figure 7–3, is at the base of the
pyramid. This illustrates that tuning at the application level can have the
largest potential impact on overall performance.

Modifications at the application level are the most complex, as they require
detailed knowledge of the application code, the types and sizes of the
transactions, and the environment in which the application is working. In
a large environment, this can involve multiple applications and programmers.
Changes at the application level often take much longer to implement than at
the other levels.

Typical changes at the application level require modification and restructuring
of application code. The possibility exists that new bugs may be introduced
when application code is modified. This has all sorts of ramifications on risk
and cost. The same argument for a test environment that was discussed in
Section 7.6.2 can be made here. The next paragraph gives an example of a
problem that would be resolved at this level.

Assume that you have determined that the user’s response time problem only
occurred during certain periods of the day and that it appeared to be caused
by excessive locking at the PARTS table. Using the Performance Monitor, you
have determined from the Stall Messages screen that a large percentage of the
users are waiting for a database page to be freed. To determine the root cause
of the problem, you trace the process IDs of the applications that are running,
and find one of the running applications sitting at a Modify Part display, with
the operator on a break. A quick look at the application code shows that the
application was written so that user input is required from the middle of
a write transaction. One way to avoid the locking problem is to recode the
application to get the required information from the user before the transaction
is started. This keeps the actual write transaction to the database as short as
possible, which reduces contention.

7–10 Tuning Concepts and Methodology

8
Diagnosing a Database Resource Bottleneck

A database application is normally I/O-intensive, so this chapter suggests that
you analyze resources in the following order:

• I/O

• Memory

• CPU

• Locking

Each decision tree in this chapter provides an organized approach that you can
use to isolate, identify, analyze, and solve a particular performance problem.
Figure 8–1, for example, shows one approach to analyzing an I/O resource
bottleneck. As in all decision trees in this manual, solutions appear in boxes
with a heavy border. Go to boxes indicate that you should proceed to a figure
depicting a decision tree with that label. The remaining boxes are transitional;
they ask specific questions intended to guide you to a solution. Other decision
trees follow these same conventions. Each figure is intended to help you to
recommend tuning solutions that can be easily implemented with low risk.
Wherever possible, the decision trees are set up so that low-risk solutions are
reached before other more difficult options are considered.

Note

As you read this chapter, note that the SQL term table is used in the
text, although the RMU output in this chapter and elsewhere displays
the equivalent term relation.

Diagnosing a Database Resource Bottleneck 8–1

8.1 Analyzing I/O Resources
When you review I/O resources, you should concentrate on detecting I/O
resource bottlenecks, balancing I/O load, and reducing I/O operations.
Section 8.1.1, Section 8.1.2, and Section 8.1.3 provide details of how you can
perform these tasks.

8.1.1 Detecting I/O Resource Bottlenecks
As Figure 8–1 shows, the best place to start investigating your system for a
potential I/O resource bottleneck is at the disk devices. If the utilization is
over 65 percent, performance is likely to be affected to some extent.

Figure 8–1 Decision Tree: Check for an I/O Resource Bottleneck

No

Yes

No

No

NU−2022A−RA

Yes

Yes

No

No

Yes No

Direct I/O rate

applications high?
for 1 or more

of locks
enqueued?

High number

Database type
single−file?

Database disks
equally utilized?

No

Yes

Additional
disks available?

Yes

Yes

Any database
disks >65%

utilized?

decision tree

Go to
check memoryUtilize

additional disks

Convert to
multifile

database

Go to balance
I/O load

decision tree

Go to
reduce I/O

decision tree

Go to
reduce I/O

decision tree

Go to
check locks
decision tree

Database disk
queue length

>0.5?

If you have a single-file database and performance is a bigger concern than
reduced database complexity, your first step is probably to change it to a
multifile database. You can determine the approximate maximum throughput

8–2 Diagnosing a Database Resource Bottleneck

for a transaction in a single-file database to see whether it is worthwhile to
change the database to a multifile database. The formula for determining the
maximum throughput for a given transaction in a single-file database is shown
in Example 8–1.

Example 8–1 Formula for Determining the Throughput Possible for a
Transaction in a Single-File Database

Disk I/Os Performed per Second
Transactions per Second = ---------------------------------

N + L

To determine the maximum possible throughput for a transaction in your
single-file database, you first need to know approximately how many I/Os
per second can be performed by the database disks. Example 8–2 assumes
the disks can perform 30 I/Os per second. Second, you need to know the
number of I/Os that must be performed by the transaction (a value of 7 in our
example for variable N) and the number of I/Os to write to the .rdb, .ruj, and
.aij files (a value of 3 in our example for variable L) for the transaction. So,
for our example, the maximum possible throughput for the transaction is 3
transactions per seconds (tps), as shown in Example 8–2.

Example 8–2 Determining the Throughput Possible for a Given Transaction
in a Single-File Database

30
3 Transactions per Second = ---------------

7 + 3

If 7 I/O operations are performed by the transaction, the best throughput you
can expect in a single-file database is 3 transactions per second (tps). If you
want to improve the throughput, you should change the database to a multifile
database. Note that just making the database multifile does not yield large
performance gains. Rather, the multifile option gives you the potential to
explore more options during the tuning process. If a bottleneck develops in a
multifile database, you still must analyze and understand where the bottleneck
is, and make the appropriate changes to remove it.

If a database is a multifile database, one tuning option is to spread it across
multiple disks to reduce I/O contention on the single device. If you find that
one of your database disks is still highly utilized, you have several options. If
additional disks are available, spread the database out more to take advantage

Diagnosing a Database Resource Bottleneck 8–3

of them. If this is not an option, then you need to improve the balance of the
I/O load across the existing disk resources. When you spread or rebalance your
database, remember that the database root and .aij files can become database
hot spots in a high transaction environment. The root file hot spot can be
alleviated by using fast commit transaction processing and commit to journal
optimization, if applicable, as described in Section 4.1.5 and Section 4.1.5.3.
Also, the root file and .aij file should each be on its own disk. If the root file
cannot be placed on its own disk, place it on a disk that is not highly utilized.
If you are operating in an environment that has different types of disk devices,
you should place the root file and .aij file on the fastest devices.

If the disk devices do not seem to be a problem, another area to check for I/O
resource bottlenecks is the application. If an application has a high average
direct I/O rate, it is possible that performance is being affected by the disk that
services the requests. Because disk requests are relatively slow compared to
memory requests, high direct I/O rates for an application are a potential area
for tuning.

If careful review establishes that you do not have an I/O resource problem,
then the next area to examine is memory. See Section 8.2 for information
about how to review memory resources.

8.1.2 Balancing I/O Load
Once you have a multifile database, check to see that it is spread equally
across the available disks, which can help reduce database hot spots. Also, if
the default directories for database users are spread equally across the user
disks, this can help prevent contention problems. Figure 8–2 summarizes the
steps in balancing I/O load. If the system disk is highly utilized, moving the
default Oracle Rdb monitor log file location to another disk may help to reduce
contention.

8–4 Diagnosing a Database Resource Bottleneck

Figure 8–2 Decision Tree: Balance I/O Load

NU−2023A−RA

Yes

used?

Yes

decision tree

Go to
check AIJ

decision tree

Go to
check AIJ

decision tree

System disk
highly utilized?

Yes

Yes

No

No

No

Yes Yes

No

No

No

Any user disks
highly utilized?

Move the monitor
log file to a
less utilized

disk

Have you placed
the monitor log
files in another

location?

CDD/Repository

CDD/Repository

Database files and
users equally spread
over available disks?

Is Oracle

Go to check Oracle

Balance users
more equally

over avaliable
disks

*RUJ, *BIND_SORT_WORKFILES,
and *BIND_WORK_FILE defined

to offload I/O on user disk?

Legend

* = RDMS$ for OpenVMS
 or RDB_ for Digital UNIX

Define the logical
names or configu−
ration parameters

to offload user disks

If the users’ disks are highly utilized, you can define the logical names
RDMS$BIND_SORT_WORKFILES, RDMS$RUJ, and RDMS$BIND_WORK_
FILE or the configuration parameters RDB_BIND_SORT_WORKFILES, RDB_
RUJ, and RDB_BIND_WORK_FILE to help reduce contention. These logical
names and configuration parameters deal with default placement of Oracle Rdb
temporary files.

Diagnosing a Database Resource Bottleneck 8–5

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, the RDMS$BIND_SORT_WORKFILES logical name defines the
number of temporary files used by the OpenVMS Sort utility (SORT). Oracle
Rdb uses SORT for all sorting operations that the optimizer decides are too
large to be done in memory, for example, large SORTED BY queries and large
index builds. RDMS$BIND_SORT_WORKFILES has a maximum value of 10
(files). The default value is 2.

While RDMS$BIND_SORT_WORKFILES controls the number of sort work
files that are used, SORTWORK0 through SORTWORK9 control the placement
of the sort work files. Distributing these files over a number of disks reduces
contention during the sort operation. ♦

You can also define RDMS$BIND_SORT_WORKFILES or RDB_BIND_SORT_
WORKFILES and its related sort work files for each application for finer
granularity. For detailed information, refer to Section A.89.

The RDMS$RUJ logical name and the RDB_RUJ configuration parameter
control the default placement of the .ruj file. Defining this name is another
way to reduce contention on a user disk. The following example shows how to
redirect the .ruj file on OpenVMS:

$ DEFINE RDMS$RUJ RUJ$DISK:[OFFLOADED_RUJS]

Finally, you can use the RDMS$BIND_WORK_FILE logical name or the
RDB_BIND_WORK_FILE configuration parameter to redirect temporary files
created by Oracle Rdb to another location. You can also use this logical name
or configuration parameter to reduce contention on the user disk. The following
example shows how to redirect the location where these temporary files are
created on OpenVMS:

$ DEFINE RDMS$BIND_WORK_FILE WORK$DISK:[OFFLOADED_TEMP_FILES]

If the system disk remains a bottleneck after all the database files and
repository files have been moved to other devices, it is possible that high page
file activity is causing the bottleneck. If there is evidence of a high hard page
fault rate and only a single page file is used, adding a secondary page file on
another device may alleviate the bottleneck. This situation sometimes occurs
in a database environment when process virtual memory requirements are
much higher than their working set quotas. The database buffer parameters
have the largest influence on process virtual memory needs.

8–6 Diagnosing a Database Resource Bottleneck

8.1.2.1 Checking Oracle CDD/Repository

OpenVMS
VAX

OpenVMS
Alpha

If Oracle CDD/Repository is being used extensively, and the disk where the
anchor directory is located is highly utilized, one option to reduce contention
on that disk is to move the location of the CDD anchor to another disk. See
Figure 8–3.

Figure 8–3 Decision Tree: Check Oracle CDD/Repository

NU−2024A−RA

NoYes

Does Oracle CDD/Repository anchor
reside on system disk?

(SYS$COMMON:[CDDREPOSITORY])

If Oracle CDD/Repository is not
contributing to contention problem
on system disk, continue analysis

Move anchor to another
disk to reduce contention

on system disk

For information on using Oracle CDD/Repository in a VMScluster environment,
see Section 6.2.7, Oracle CDD/Repository Requirements. ♦

8.1.2.2 Checking AIJ
If after-image journaling is enabled, and the disk to which the .aij file is being
written is highly utilized, one tuning possibility is to move the .aij file to a
less utilized disk (see Figure 8–4). You cannot change the .aij file location
using logical names or configuration parameters. Instead, use the SQL ALTER
DATABASE statement to move the .aij file. Use the JOURNAL ALLOCATION
IS and JOURNAL EXTENT IS clauses to further enhance performance of AIJ
writes. These clauses ensure that the initial allocation of the journal file is
large enough so that transactions do not need to wait for extents to occur.

Diagnosing a Database Resource Bottleneck 8–7

Figure 8–4 Decision Tree: Check AIJ

NU−2025A−RA

AIJ enabled?

Yes No

Go to check
data distribution

decision tree
AIJ necessary?

Go to check
data distribution

decision tree

Are most database
transactions update

intensive with <
10% rate of failure?

Disable

Enable

Turn off AIJ

Go to check
data distribution

decision tree

No

Yes

Yes

No

No

No

No

Yes

Yes

Are transactions
short, or do multi−

ple transactions
often update the

same rows?

fast commit
processing

fast commit
processing

Is fast commit
processing
enabled?

Enable AIJ log
server and, if nec−
essary, AIJ cache
on electronic disk.

Yes
Move .aij files to
a disk without

these files
on them

Yes
.aij files placed on
same disk as .rda
.rdb, or .snp files

for database?

Is .aij file
a bottleneck?

No

Another reason to move the .aij file to its own disk or to a nondatabase disk
is that doing this makes your database more reliable. The .aij file allows the
database administrator (DBA) to roll forward the database from the point of
the last backup when a disk failure has occurred on one of the disks where
an .rda, .rdb, or .snp file resided. For this reason, the .aij file should be on
a separate disk from the .rda, .rdb, and .snp files for the database. If you

8–8 Diagnosing a Database Resource Bottleneck

use multiple .aij files for your database, each .aij file should be on a separate
disk from the database’s .rda, .rdb, and .snp files. Otherwise, if a disk failure
occurs, you may not be able to recover.

It is usually a good idea to enable after-image journaling. Oracle Rdb
recommends that AIJ journaling be enabled unless the database is read-only or
it does not need to be recovered in case of failure.

You can improve database performance in some environments by enabling
fast commit processing. When you enable fast commit, Oracle Rdb keeps
updated pages in the buffer pool and does not write the pages to disk when
a transaction commits. Updated pages remain in the buffer pool until they
are written to the database as part of an asynchronous batch-write operation.
Also, when a user-specified threshold (called a checkpoint) is reached, all the
updated pages for multiple transactions are flushed to disk. If a transaction
fails, all the previous transactions back to the last checkpoint must be redone
because their updated pages have not been written to disk. Oracle Rdb uses
information written to the .aij file to redo these transactions.

You should consider enabling fast commit transaction processing when
you have a stable transaction processing environment and the following
conditions exist: a process updates the same rows for multiple transactions; or,
transactions are short and do not update many pages. Typically, these types of
transactions tend to have few buffer pool overflows. The I/Os to the database
are reduced for these types of transactions, which means the redo operation
performed when a transaction fails and fast commit transaction processing
is enabled will be shorter than the redo operation for long transactions that
update many pages. See Section 4.1.5 for more information on fast commit
transaction processing.

When you enable fast commit transaction processing, you can also enable
journal optimization. This option can provide a significant increase in commit
processing speed by eliminating the majority of I/O to the database root.
This option enhances performance in database environments that are update-
intensive.

For details on fast commit processing and AIJ optimization, refer to
Section 4.1.5.

Diagnosing a Database Resource Bottleneck 8–9

8.1.2.3 Checking Data Distribution
Figure 8–5 summarizes the steps you can take to check data distribution.

Figure 8–5 Decision Tree: Check Data Distribution

Yes No

No

NU−2026A−RA

I/Os equally
distributed over
storage areas?

Go to
check constraints

decision tree

Yes

Use PLACEMENT
VIA INDEX for

greater horizontal
partitioning

Indexes stored in
same storage area

as table?

Does problem
area contain

multiple tables?

Consider moving
tables to area on
a less utilized disk

Do highly utilized
storage areas

reside on highly
utilized disks?

No

No

better distribute I/O

Move indexes to
storage area on

different device to

Can table in pro−
blem area use hor−
izontal partitioning
to distribute I/O?

No

Yes

Yes

Yes
Reevaluate

storage strategy
to better

distribute I/O

One way to help determine I/O distribution across the database storage areas
is to use the IO Statistics screen in the Performance Monitor. This gives you
a general idea of how evenly distributed your I/O activity is across the storage
areas and disks for a given time period. One way to measure this is to run
the Performance Monitor for a period of time, enter the IO Statistics (by file)
option, then bring up the Option menu and write a report. This generates a
file (STATISTICS.RPT) that contains ASCII output of all the menus for that
period.

8–10 Diagnosing a Database Resource Bottleneck

You can edit this file using your favorite editor, or print it on any printer. In
the STATISTICS.RPT file, you will find a section similar to the one shown in
Example 8–3.

Example 8–3 IO Statistics (By File) Screen

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 14:24:45
Rate: 3.00 Seconds File IO Statistics Elapsed: 03:04:56.88
Page: 1 of 1 USER18:[PRODUCTION.DATABASE]PRODUCT_DB.RDB;1 Mode: Online
--

For File: All data/snap files
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
total I/Os 24 39152 76.5

(Synch. reads) 48 10 22.0 35254 68.9
(Synch. writes) 16 14 2.4 3898 7.6
(Extends) 0 0 0.0 0 0.0
(Asynch. reads) 0 0 0.0 0 0.0
(Asynch. writes) 0 0 0.0 0 0.0

statistic........... blocks.transferred......... stall.time.(x100)...........
name................ avg.per.I/O.. total........ avg.per.I/O... total........
total I/Os 5.3 209348 3.5 137914

(Synch. reads) 5.7 199280 3.8 133681
(Synch. writes) 2.6 10068 1.1 4233
(Extends) 0.0 0 0.0 0
(Asynch. reads) 0.0 0 0.0 0
(Asynch. writes) 0.0 0 0.0 0

--
Exit Help Menu Options Reset Set_rate Unreset Write !

The total I/Os section, namely the maximum and average per second, and the
total count values, can be used to determine the percentage of I/Os that are
going to each area. If the Total I/O numbers are small, further optimization
may yield only marginal results. Section 4.2.1.4 also provides information on
the IO Statistics (by file) screen.

You also should look at the stall time values on the IO Statistics screen because
long stall times cause the response time of an application to increase. When
you are displaying statistics for all data files with the IO Statistics screen (as
in Example 8–3), the value for the ‘‘stall time avg per I/O’’ field may not be
what you expect if you have displayed the average stall time per I/O for the
individual .rda and .snp files in the database. For example, it is possible for
the value in the ‘‘stall time avg per I/O’’ field for the all data files screen to be
lower than the average of the values for the ‘‘stall time avg per I/O’’ fields for
the individual .rda and .snp files. Oracle Rdb issues write I/O operations in
parallel, asynchronously (this is a batch-write mechanism). This means that
the average stall time per I/O for the all data files screen is not the ‘‘average

Diagnosing a Database Resource Bottleneck 8–11

of the averages’’ shown for the individual .rda and .snp files; this would imply
that the I/Os completed serially. Rather, the total I/O stall time is ‘‘the average
of the averages divided by the number of I/Os’’; the average for the all data
files screen is usually a fraction of the individual file averages because the stall
time is amortized across all I/Os issued in parallel.

For example, assume that Oracle Rdb does a batch-write operation to four
storage areas (all in parallel, of course). Assume that each individual storage
area’s I/O operation takes 20 milliseconds. If the I/Os were done serially, then
the average stall time for all storage areas would be 20 milliseconds. However,
because the I/Os are done in parallel, the average for all areas is actually 5
milliseconds (20 milliseconds divided by 4 I/O operations).

If asynchronous batch-write operations are enabled, Oracle Rdb performs write
operations to the database, and does not have to wait for the write operation to
complete. The I/Os for asynchronous writes are recorded on the IO Statistics
(by file) screen, but no stall time is recorded on the IO Statistics (by file) screen
for most of these writes because stalls are eliminated for most asynchronous
batch-write operations. See Section 3.2.5 for more information on asynchronous
batch-write operations.

If a disk takes 30 milliseconds for an I/O operation, then you should consider
trying to improve (reduce) the stall times only when the average stall time
per I/O on the IO Statistics (by file) screen is greater than 30 milliseconds.
When the average stall time for an I/O operation is less than 30 milliseconds,
this is attributable to the parallel writes performed by batch-write operations,
as described earlier. You can examine disk performance statistics to monitor
changes in disk performance.

Figure 8–6 shows the percentage of total read I/Os being generated by each
storage area. This was calculated by dividing the total count read I/Os for
each area by the total count read I/Os and multiplying the result by 100.
The following table shows the total count read I/Os for all database files (see
Example 8–3); the two storage areas (SYSTEM_DB and AREA1), which appear
in Example 8–4 and Example 8–6, respectively; and other files, including .rdb,
.snp, .ruj, and .aij files. The Other file I/O is calculated by subtracting all
storage area total count read I/Os from the total.

Read I/Os % of Total Read I/Os

Total 35254

System Area 23835 67.61

Area1 8289 23.51

Other 3130 8.88

8–12 Diagnosing a Database Resource Bottleneck

Figure 8–6 Percentage Read I/Os by Storage Area

8.88%

23.51%

System
23835.0

AREA1
8289.0

67.61%

Other
3130.0

NU−2004A−RA

The total stall time column from all examples (Example 8–3 to Example 8–7) is
useful for determining if read or write I/Os or both are a concern. The bigger
the stall time, the slower the response time will be from the application. By
enabling the asynchronous prefetch feature for a database, you can eliminate
stall time for sequential read operations, as explained in Section 3.2.4.

The reports in Example 8–4 to Example 8–7 show data and snapshot file I/O
measurements for those storage areas that are generating the greatest I/O.
Because the system area is generating over 67% of the read I/Os, and the
maximum values are high, the current storage structure could be causing a
bottleneck. Further investigation into disk utilization with a view toward a
better balance of I/Os across disks is necessary. Example 8–4 displays I/O
statistics for the system storage area.

Diagnosing a Database Resource Bottleneck 8–13

Example 8–4 I/O Statistics for the System Storage Area

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 14:29:37
Rate: 3.00 Seconds File IO Statistics Elapsed: 00:00:12.17
Page: 1 of 1 USER18:[PRODUCTION.DATABASE]PRODUCT_DB.RDB;1 Mode: Online
--

For File: USER07:[PRODUCTION.DATABASE.SYSTEM]SYSTEM_DB.RDA;1
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
total I/Os 10 25078 49.0

(Synch. reads) 48 4 14.9 23835 46.6
(Synch. writes) 6 6 0.8 1243 2.4
(Extends) 0 0 0.0 0 0.0
(Asynch. reads) 0 0 0.0 0 0.0
(Asynch. writes) 0 0 0.0 0 0.0

statistic........... blocks.transferred......... stall.time.(x100)...........
name................ avg.per.I/O.. total........ avg.per.I/O... total........
total I/Os 5.5 138208 4.6 115420

(Synch. reads) 5.7 135490 4.4 105137
(Synch. writes) 2.2 2718 8.3 10283
(Extends) 0.0 0 0.0 0
(Asynch. reads) 0.0 0 0.0 0
(Asynch. writes) 0.0 0 0.0 0

--
Exit Help Menu Options Reset Set_rate Unreset Write !

8–14 Diagnosing a Database Resource Bottleneck

Example 8–5 displays I/O statistics for the system snapshot file.

Example 8–5 I/O Statistics for the System Snapshot File

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 14:35:21
Rate: 3.00 Seconds File IO Statistics Elapsed: 00:05:55.96
Page: 1 of 1 USER18:[PRODUCTION.DATABASE]PRODUCT_DB.RDB;1 Mode: Online
--

For File: USER19:[PRODUCTION.DATABASE.SYSTEM]SYSTEM_DB.SNP;1
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
total I/Os 4 1215 2.4

(Synch. reads) 2 2 0.3 547 1.1
(Synch. writes) 3 2 0.4 668 1.3
(Extends) 0 0 0.0 0 0.0
(Asynch. reads) 0 0 0.0 0 0.0
(Asynch. writes) 0 0 0.0 0 0.0

statistic........... blocks.transferred......... stall.time.(x100)...........
name................ avg.per.I/O.. total........ avg.per.I/O... total........
total I/Os 4.9 5914 4.6 5631

(Synch. reads) 6.0 3266 3.3 1809
(Synch. writes) 4.0 2648 5.7 3822
(Extends) 0.0 0 0.0 0
(Asynch. reads) 0.0 0 0.0 0
(Asynch. writes) 0.0 0 0.0 0

--
Exit Help Menu Options Reset Set_rate Unreset Write !

Diagnosing a Database Resource Bottleneck 8–15

Example 8–6 displays I/O statistics for the AREA1 storage area.

Example 8–6 I/O Statistics for the AREA1 Storage Area

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 14:37:55
Rate: 3.00 Seconds File IO Statistics Elapsed: 00:08:29.96
Page: 1 of 1 USER18:[PRODUCTION.DATABASE]PRODUCT_DB.RDB;1 Mode: Online
--

For File: USER16:[PRODUCTION.DATABASE.AREA1]AREA1.RDA;1
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
total I/Os 7 9313 18.2

(Synch. reads) 39 3 5.2 8289 16.2
(Synch. writes) 5 4 0.6 1024 2.0
(Extends) 0 0 0.0 0 0.0
(Asynch. reads) 0 0 0.0 0 0.0
(Asynch. writes) 0 0 0.0 0 0.0

statistic........... blocks.transferred......... stall.time.(x100)...........
name................ avg.per.I/O.. total........ avg.per.I/O... total........
total I/Os 5.3 49702 2.7 25104

(Synch. reads) 5.7 47654 2.2 18545
(Synch. writes) 2.0 2048 6.4 6559
(Extends) 0.0 0 0.0 0
(Asynch. reads) 0.0 0 0.0 0
(Asynch. writes) 0.0 0 0.0 0

--
Exit Help Menu Options Reset Set_rate Unreset Write !

8–16 Diagnosing a Database Resource Bottleneck

Example 8–7 displays I/O statistics for the AREA1 snapshot file.

Example 8–7 I/O Statistics for the AREA1 Snapshot File

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 14:41:26
Rate: 3.00 Seconds File IO Statistics Elapsed: 00:12:00.67
Page: 1 of 1 USER18:[PRODUCTION.DATABASE]PRODUCT_DB.RDB;1 Mode: Online

For File: USER29:[PRODUCTION.DATABASE.AREA1]AREA1.SNP;1
statistic........... rate.per.second............. total....... average......
name................ max..... cur..... avg....... count....... per.trans....
total I/Os 2 797 1.6

(Synch. reads) 1 1 0.2 254 0.5
(Synch. writes) 3 1 0.3 543 1.1
(Extends) 0 0 0.0 0 0.0
(Asynch. reads) 0 0 0.0 0 0.0
(Asynch. writes) 0 0 0.0 0 0.0

statistic........... blocks.transferred......... stall.time.(x100)...........
name................ avg.per.I/O.. total........ avg.per.I/O... total........
total I/Os 4.1 3306 5.9 4701

(Synch. reads) 6.0 1524 4.0 1005
(Synch. writes) 3.3 1782 6.8 3696
(Extends) 0.0 0 0.0 0
(Asynch. reads) 0.0 0 0.0 0
(Asynch. writes) 0.0 0 0.0 0

--
Exit Help Menu Options Reset Set_rate Unreset Write !

8.1.3 Reducing I/O Operations
One way to reduce the number of direct I/O operations is to prevent the need
for them. This can be done by making changes at the system, database, or
application level. See Figure 8–7.

Diagnosing a Database Resource Bottleneck 8–17

Figure 8–7 Decision Tree: Reduce I/O

No

Yes

Are global
buffers enabled?

No

No

Do users frequently
access the same

pages?

Enable global
buffers

Enable local
buffers

NU−2027A−RA

Go to
check constraints

decision tree

Go to
check constraints

decision tree

Does application
use segmented

strings?

Does application
primarily perform
range retrievals?

Are most records
being accessed

clustered?

Increase number
of buffers

Increase number
of buffers

Reduce number
of buffers

evaluated for each
application?

evaluated for each
application?

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Yes

YesMemory available
on the system?

Yes

Yes

Yes

No No Is

Evaluate
to find
optimal
value

Increase
allocate set sizeallocate set size

too small?

Yes

YesIs buffer pool
too small?

No

Increase number
of buffers

Are local buffers
in effect?

*BIND_BUFFERS

*BIND_WORK_VMEvaluate
to find
optimal
value

Legend

*BIND_SEGMENTED_STRING_BUFFER
evaluated for each application?

* = RDMS$ for OpenVMS
 or RDB_ for Digital UNIX

8–18 Diagnosing a Database Resource Bottleneck

One way to control disk I/O is through buffer management. Oracle Rdb enables
you to use local or global buffers. Refer to Section 4.1.2 for a general discussion
of buffer management and the relative advantages of local and global buffers.
The remainder of this section describes the use of local buffers and global
buffers and how to tune them.

The most frequently used way to reduce I/O from the system level is to make
the buffer pool size bigger, so that the disk I/Os are replaced by extra memory
references. To do this, additional memory capacity must exist on the system.
Because access to the buffer is much faster than access to the disk, this
approach can cause substantial improvements in response time, especially
when the access is on either slow or highly utilized disk devices.

One way to control the I/O buffer pool size is to change the number of buffers
that the database maintains. This can be done in the database using the
NUMBER OF BUFFERS clause of the SQL ALTER DATABASE statement, or
from the system level through the RDM$BIND_BUFFERS logical name or the
RDB_BIND_BUFFERS configuration parameter. Because this parameter is
dynamic, it can be modified with very little risk or cost. The default number of
database buffers is 20.

OpenVMS
VAX

OpenVMS
Alpha

The logical name can be set system-, group-, or process-wide, for finer buffer
granularity. ♦

See Section 4.1.2.3 for additional information on the NUMBER OF BUFFERS
clause.

To help quantify the additional memory requirement due to increased
numbers of database buffers, a database application was run in 20-buffer
increments and memory statistics collected. Figure 8–8 shows the results of
this experiment. Because buffer size remained constant, increasing the number
of buffers affected virtual memory consumption linearly, as expected. Changing
the buffer size should move the line a constant factor upwards or downwards,
depending on in which direction buffer size is changed. However, results can
differ dramatically depending on the exact nature of the application being
studied; therefore, you will need to run similar experiments on your database
to determine the additional amount of memory consumed by increasing the
number of buffers.

Diagnosing a Database Resource Bottleneck 8–19

Figure 8–8 Virtual Memory Consumption Versus Number of Buffers

Number of Buffers

Virtual

100 200 3000

11000

12000

13000

14000

NU−2037A−RA

Address

Figure 8–9 shows how working set size was affected by increasing the number
of database buffers for the same application in 20-buffer increments. The
results show working set consumption to be nearly linear as well.

8–20 Diagnosing a Database Resource Bottleneck

Figure 8–9 Working Set Size Versus Number of Buffers

Number of Buffers

Working Set

100 200 3000

4000

5000

6000

7000

NU−2007A−RA

What does this mean for response time? Response time will vary depending on
disk speed and utilization, the type of transaction the application is performing,
the frequency with which updates occur, and the amount of contention in the
database. As a general rule, applications that perform range retrievals benefit
from having more buffers. This is also true if the data are clustered, as
associated information will be read into the buffers when the first piece of
information is accessed. Load-intensive workloads benefit from having small
numbers of buffers. Because load-intensive workloads deal primarily with the
physical database page, it makes little sense for them to incur the overhead of
maintaining a large number of buffers.

Response time is not linear with respect to the number of database buffers.

One tangible way to measure buffer pool effectiveness database-wide is
through the Performance Monitor PIO Statistics–Data Fetches and PIO
Statistics–SPAM Fetches screens. The local buffer versions of these screens are
shown in Example 8–8. The global buffer versions of these screens are shown
in Example 8–9.

Diagnosing a Database Resource Bottleneck 8–21

The way that you determine your database’s buffer pool effectiveness depends
on whether the database uses local buffers or global buffers.

When a database has local buffers enabled, the local buffer versions of the
PIO Statistics–Data Fetches and PIO Statistics–SPAM Fetches screens are
displayed by the Performance Monitor, as shown in Example 8–8. See the
Performance Monitor help for more information about these screens.

Example 8–8 Local Buffer Versions of Performance Monitor PIO Statistics–Data Fetches and
PIO Statistics–SPAM Fetches Screens

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 14:48:04
Rate: 3.00 Seconds PIO Statistics--Data Fetches Elapsed: 00:18:38.25
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

fetch for read 2287 0 20.4 18524 926.2
fetch for write 58 0 0.4 348 17.4

in LB: all ok 2035 0 18.3 16631 831.6
LB: need lock 296 0 2.1 1949 97.5
LB: old version 0 0 0.0 0 0.0

not found: read 34 0 0.3 292 14.6
: synth 0 0 0.0 0 0.0

DAPF: success 0 0 0.0 0 0.0
DAPF: failure 0 0 0.0 0 0.0
DAPF: utilized 0 0 0.0 0 0.0
DAPF: discarded 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

(continued on next page)

8–22 Diagnosing a Database Resource Bottleneck

Example 8–8 (Cont.) Local Buffer Versions of Performance Monitor PIO Statistics–Data
Fetches and PIO Statistics–SPAM Fetches Screens

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 14:51:28
Rate: 3.00 Seconds PIO Statistics--SPAM Fetches Elapsed: 00:22:03.13
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

fetch for read 4 0 0.1 59 3.0
fetch for write 0 0 0.0 0 0.0

in LB: all ok 3 0 0.1 52 2.6
LB: need lock 1 0 0.0 6 0.3
LB: old version 0 0 0.0 0 0.0

not found: read 0 0 0.0 1 0.1
: synth 0 0 0.0 0 0.0

DAPF: success 0 0 0.0 0 0.0
DAPF: failure 0 0 0.0 0 0.0
DAPF: utilized 0 0 0.0 0 0.0
DAPF: discarded 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For a database with local buffers enabled, you can calculate the percentage of
page requests that find the page in the local buffer pool as follows:

(total number found in local buffer pool / total number of page requests) * 100

To calculate the ‘‘total number found in local buffer pool’’ count, add the sum
of the ‘‘in LB: all ok’’ and ‘‘LB: need lock’’ counts on the PIO Statistics–Data
Fetches screen to the sum of the ‘‘in LB: all ok’’ and ‘‘LB: need lock’’ counts
on the PIO Statistics–SPAM Fetches screen. To calculate the ‘‘total number of
page requests’’ count, add the sum of the ‘‘fetch for read’’ and ‘‘fetch for write’’
counts on the PIO Statistics–Data Fetches screen to the sum of the ‘‘fetch for
read’’ and ‘‘fetch for write’’ counts on the PIO Statistics–SPAM Fetches screen.

In Example 8–8 the buffer pool effectiveness is as follows:

(18638 / 18931) * 100 = approximately 98.5%

In general, a higher percentage implies better buffering. If every page request
found the page in the buffer pool, the buffer pool effectiveness would be 100%.

Diagnosing a Database Resource Bottleneck 8–23

When a database has global buffers enabled, the global buffer versions of the
PIO Statistics–Data Fetches and PIO Statistics–SPAM Fetches screens are
displayed by the Performance Monitor, as shown in Example 8–9.

Example 8–9 Global Buffer Versions of Performance Monitor PIO Statistics–Data Fetches
and PIO Statistics–SPAM Fetches Screens

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 15:47:52
Rate: 3.00 Seconds PIO Statistics--Data Fetches Elapsed: 00:00:46.03
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
fetch for read 1872 0 16.2 18524 926.2
fetch for write 39 0 0.3 348 17.4
in AS: all ok 1693 0 14.1 16101 805.1

AS: lock for GB 0 0 0.0 0 0.0
AS: need lock 127 0 1.3 1494 74.7
AS: old version 0 0 0.0 0 0.0

in GB: need lock 73 0 1.0 1107 55.4
GB: old version 0 0 0.0 0 0.0
GB: transferred 0 0 0.0 0 0.0

not found: read 18 0 0.1 170 8.5
: synth 0 0 0.0 0 0.0

DAPF: success 0 0 0.0 0 0.0
DAPF: failure 0 0 0.0 0 0.0
DAPF: utilized 0 0 0.0 0 0.0
DAPF: discarded 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

(continued on next page)

8–24 Diagnosing a Database Resource Bottleneck

Example 8–9 (Cont.) Global Buffer Versions of Performance Monitor PIO Statistics–Data
Fetches and PIO Statistics–SPAM Fetches Screens

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 15:51:47
Rate: 3.00 Seconds PIO Statistics--SPAM Fetches Elapsed: 00:04:41.06
Page: 1 of 1 RDBVMS_USER1:[LOGAN.V70]MF_PERSONNEL.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....
fetch for read 5 0 0.1 59 3.0
fetch for write 0 0 0.0 0 0.0
in AS: all ok 4 0 0.0 52 2.6

AS: lock for GB 0 0 0.0 0 0.0
AS: need lock 0 0 0.0 0 0.0
AS: old version 0 0 0.0 0 0.0

in GB: need lock 1 0 0.0 6 0.3
GB: old version 0 0 0.0 0 0.0
GB: transferred 0 0 0.0 0 0.0

not found: read 0 0 0.0 1 0.1
: synth 0 0 0.0 0 0.0

DAPF: success 0 0 0.0 0 0.0
DAPF: failure 0 0 0.0 0 0.0
DAPF: utilized 0 0 0.0 0 0.0
DAPF: discarded 0 0 0.0 0 0.0

--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

For a database with global buffers enabled, you can calculate the following:

• The percentage of page requests that found the page in the allocate set

• The percentage of page requests that found the page in the global buffer
pool

• The percentage of page requests that saved a disk I/O that would have
occurred if your database had had local buffers enabled instead

You can calculate the percentage of page requests that find the page in the
allocate set as follows:

(total number found in allocate set / total number of page requests) * 100

To calculate the ‘‘total number found in allocate set’’ count, add the sum of
the ‘‘in AS: all ok,’’ ‘‘AS: lock for GB’’ and ‘‘AS: need lock’’ counts on the PIO
Statistics–Data Fetches screen to the sum of the ‘‘in AS: all ok,’’ ‘‘AS: lock for
GB’’ and ‘‘AS: need lock’’ counts on the PIO Statistics–SPAM Fetches screen.
To calculate the ‘‘total number of page requests’’ count, add the sum of the
‘‘fetch for read’’ and ‘‘fetch for write’’ counts on the PIO Statistics–Data Fetches

Diagnosing a Database Resource Bottleneck 8–25

screen to the sum of the ‘‘fetch for read’’ and ‘‘fetch for write’’ counts on the PIO
Statistics–SPAM Fetches screen.

In Example 8–9, the percentage of page requests that find the page in the
allocate set is as follows:

(17647 / 18931) * 100 = approximately 93.2%

You can calculate the percentage of page requests that find the page in the
global buffer pool (this includes the pages found in the allocate set) as follows:

(total number found in global buffer pool / total number of page requests) * 100

To calculate the ‘‘total number found in global buffer pool’’ count, add the sum
of the ‘‘in AS: all ok,’’ ‘‘AS: lock for GB,’’ ‘‘AS: need lock,’’ and ‘‘In GB: need lock’’
counts on the PIO Statistics–Data Fetches screen to the sum of the ‘‘in AS: all
ok,’’ ‘‘AS: lock for GB,’’ ‘‘AS: need lock,’’ and ‘‘In GB: need lock’’ counts on the
PIO Statistics–SPAM Fetches screen. To calculate the ‘‘total number of page
requests’’ count, add the sum of the ‘‘fetch for read’’ and ‘‘fetch for write’’ counts
on the PIO Statistics–Data Fetches screen to the sum of the ‘‘fetch for read’’
and ‘‘fetch for write’’ counts on the PIO Statistics–SPAM Fetches screen.

In Example 8–9, the percentage of page requests that found the page in the
global buffer pool (including the allocate set) is as follows:

(18760 / 18931) * 100 = approximately 99.1%

After calculating the allocate set effectiveness and buffer pool effectiveness, you
can determine whether the number of global buffers allocated to each process
(allocate sets) and the number of buffers in the buffer pool are appropriate. If
you want to increase the buffer pool effectiveness for the database, and you
have additional memory capacity on the system, increase the number of buffers
in your buffer pool. This should increase the buffer pool effectiveness.

If the buffer pool effectiveness is satisfactory but the allocate set effectiveness
is low, you can increase the number of buffers allocated to processes, which
should increase the allocate set effectiveness. Performance is better if a page
is found in a user’s allocate set instead of in the global buffer pool. Be careful
not to increase the size of allocate sets too much. For example, suppose a
database has a global buffer pool of 1000 buffers, the default allocate set size
for each process is 30 buffers, and 20 user processes must be able to access
the database. With the 1000 buffers in the buffer pool and 20 processes that
need to access the database, you should not make the default allocate set size
greater than 50 buffers; when an allocate set size of 50 buffers is defined,
each of the 20 user processes that needs to access the database can use all 50
buffers allocated to it. See Section 4.1.2.2 for more information on how Oracle
Rdb determines the number of buffers to allocate to each process.

8–26 Diagnosing a Database Resource Bottleneck

If your database has global buffers enabled, you might wonder what percentage
of your page requests saved a disk I/O that would have occurred if your
database had local buffers enabled instead. To calculate the percentage of
page requests that would have resulted in I/O operations if your database had
had local buffers enabled instead of global buffers enabled, use the following
formula. For each field in the formula, provide the sum of the counts for the
field from the PIO Statistics–Data Fetches and PIO Statistics–SPAM Fetches
screens:

(1 - (AS: old version + in GB: old version + not found: read + : synth) /
(AS: old version + in GB: need lock + in GB: old version +

not found: read + : synt h)) * 100

In Example 8–9, the percentage of page requests that saved a disk I/O that
would have occurred if the database had had local buffers enabled is as follows:

(1 - 171 / 1284) * 100 = approximately 86.7%

To determine the number of global buffers that you will need to achieve a
certain buffer pool effectiveness for a database, increase the size of the buffer
pool by different amounts and calculate the percentage of page requests that
find the page in the buffer pool for each increasingly larger global buffer pool.

OpenVMS
VAX

OpenVMS
Alpha

When you set the RDM$BIND_BUFFERS logical name (also discussed in
Section A.23), you need to address several system issues. First, you may need
to update the UAF quotas for the account from which the database application
will be run. DIOLM must be greater than or equal to the number of database
buffers. ASTLM should be at least 12 greater than DIOLM. ENQLM may need
to be increased, because more locks will be used for the additional buffers.
Memory parameters BYTLM and PGFLQUOTA may need to be increased
to handle the increased memory requirements. Additionally, working set
parameters WSDEFAULT, WSQUOTA, and WSEXTENT may need to be
adjusted to allow the processes to have more memory. If increasing the number
of buffers causes a large increase in the page fault rate, adjusting the working
set limit for the process should resolve the problem. Finally, the SYSGEN
parameter VIRTUALPAGECNT may need to be increased before the process
can take advantage of the additional buffers. If increasing the number of
buffers does not result in an increased consumption of virtual memory, chances
are good that you have reached the VIRTUALPAGECNT limit. ♦

If RDM$BIND_BUFFERS has already been optimized, you can use the
RDMS$BIND_WORK_VM logical name or the RDB_BIND_WORK_VM
configuration parameter to reduce I/O activity (also discussed in Section A.92).
RDMS$BIND_WORK_VM and RDB_BIND_WORK_VM can be used to reduce
disk I/O operations for database matching operations by allowing you to specify
the amount of virtual memory (VM) in bytes that will be allocated to your

Diagnosing a Database Resource Bottleneck 8–27

process for use in matching operations. The default is 10,000 bytes. Normally,
when the 10,000 bytes of VM is exhausted, Oracle Rdb uses a temporary file
for any additional data. Specifying larger values can reduce I/O by eliminating
or reducing the need for these temporary files to be created.

OpenVMS
VAX

OpenVMS
Alpha

The value of RDMS$BIND_WORK_VM should not be greater than the UAF
parameter PGFLQUOTA. ♦

8.1.3.1 Checking Constraints
If constraints are defined within the database, understanding the transactions
can help you understand how the constraints may be using resources (see
Figure 8–10). For example, if a long transaction stores a large number of
rows, virtual memory resources may be consumed. In this situation, if the
constraint can be evaluated at verb time rather than at commit time, fewer
memory resources will be consumed. The default is to evaluate the constraint
at commit time.

8–28 Diagnosing a Database Resource Bottleneck

Figure 8–10 Decision Tree: Check Constraints

NU−2028A−RA

Yes

Go to
check indexes
decision tree

Yes

Yes

No

No

No

No

No

Application
consuming much
virtual memory?

Constraints
evaluated at
verb time?

Evaluate the
constraint at

verb time

Constraints defined
within the database?

Write transactions
storing a large

number of
records?

Many constraints
defined?

Go to
check indexes
decision tree

Yes

No

Evaluate trade−off
of replacing some

Evaluate trade−off

constraints with

of replacing some Yes
constraints with

program code

program code

Yes

Constraints used
to ensure primary

key integrity?

Consider using
a unique index

instead of primary
key constraint

If you suspect that constraints are degrading the overall performance of
your database environment, the easiest way to verify this is to remove the
constraints and see how much performance improves. It may be that more
constraints exist than can be optimally handled by the current resources. In
other cases, replacing the constraint with an index that performs the same
function may improve performance (for example, replacing a primary key
constraint with a unique index).

Diagnosing a Database Resource Bottleneck 8–29

8.1.3.2 Checking Indexes
Figure 8–11 summarizes the steps you can follow to see how indexes are
affecting performance.

Figure 8–11 Decision Tree: Check Indexes

NU−2029A−RA

Yes

No

No

No

Yes

No

No

Yes

Remove optional
indexes

Yes

Any indexes
defined to allow

duplicates?

Many duplicates
defined on any

duplicate−allowed
keys?

Index type
sorted and the
area uniform?

Replace duplicate
key with

composite key

No

Yes

No

Usage query or
percent fill

>70 specified?

Index used
primarily for
retrieval?

Set usage
query or

percent fill

Go to check
node size

decision tree

High contention
on index? decision tree

Go to check
clustering

< 70 specified?

Usage update or
percent fill

Can any indexes be
removed without degrading

retrieval performance?

Yes

No

decision tree

Go to check
clustering

decision tree

Go to check
clustering

Replace duplicate
key with

composite key to
reduce traversal of
duplicate chains?

Yes

Yes

Yes No

_

Set usage update
or percent fill

Refer also to the section on setting sorted index characteristics in the Oracle
Rdb7 Guide to Database Design and Definition for additional information.

8–30 Diagnosing a Database Resource Bottleneck

If a number of indexes are defined for a table, the overhead of maintaining
those indexes can degrade update performance. The trade-off here is query
performance versus load performance. You must decide if it is more important
to get data into the database quickly, or to be able to generate a greater
number of queries quickly.

If load performance is the priority, and indexes are defined that are not used by
the standard reports, consider removing them to reduce overhead during store
operations. If an index has many duplicates, removing it reduces overhead
even more. Note that if the indexes not used by the standard reports are
removed, the DBA should take care that users do not perform ad hoc queries
that would normally use the removed indexes; without the availability of the
usual indexes, these queries might be forced to use sequential access to tables,
which could cause contention problems.

An alternative to removing indexes is to combine them. This approach can
reduce the number of I/Os required to maintain the indexes. For example,
assume you have three indexes: LAST_NAME_INDEX, FIRST_NAME_INDEX,
and AGE_INDEX. If you combine these three indexes into one index, LAST_
NAME_FIRST_NAME_AGE_INDEX, and delete the original three indexes,
overhead will be reduced. The storage space for one index definition and one
index structure is less than for three indexes, and I/O and locking need to be
performed on only one index instead of three. Note that you should combine
indexes like this only if all database queries specify the first index segment of
the resulting combined index, instead of any of the other segments:

SQL> SELECT * FROM CONTRACTORS WHERE LAST_NAME = ’Jones’;

Any database queries that request retrievals from any index segments besides
the first in the combined index may perform poorly.

Another design consideration when you examine index overhead during a
tuning analysis session is how the index is being used. If the index is defined
on a column used primarily for direct match retrieval, and you have a sorted
index defined to handle the query, creating a mixed area with a hashed index
might be more efficient. For example, an index like PART_NUMBER, where
you perform an exact match against the part number to fetch the row, might
qualify for this type of change.

A final consideration is sorted index definition. If you know that an index
is used primarily for efficient loading of data, you can specify usage update
in the index definition. Usage query can be specified if the index is to be
used primarily for queries. These options set the fullness percentage on
each index node. Update sets the fullness percentage to 70, query sets the
fullness percentage to 100. Alternately, percent fill can be specified during the

Diagnosing a Database Resource Bottleneck 8–31

definition if a finer granularity of control is required. If both usage and percent
fill are specified, the usage parameter takes precedence.

The Performance Monitor has several screens (described in Section 3.9.5.2)
that show information about indexes. These can help you determine how
extensively duplicate indexes are being used, how heavily indexes are being
used for insertion, removal, and retrieval, and other similar issues.

It is important to note that unique indexes are more efficient than duplicate
indexes because cardinalities for unique indexes do not need to be maintained
in the system tables. This reduces I/O and locking for unique indexes.

The RMU Analyze Indexes command shown in Example 8–10 can provide you
with physical information about the index structure, such as the number of
levels (max level) and number of records. The more levels an index has, the
more index nodes Oracle Rdb must access to find the data record. Therefore,
higher levels usually mean more I/O activity. Refer to Section 3.9.5.1 for
additional information.

Example 8–10 Using the RMU Analyze Indexes Command

$ RMU/ANALYZE/INDEX PRODUCTION$DB_LOGICAL

Indices for database - USER18:[PRODUCTION.DATABASE]PRODUCT_DB.RDB;

Index PTHIST$DATE_TIME for relation PART_HISTORY duplicates allowed

Max Level: 4, Nodes: 1051, Used/Avail: 246237/418298 (59%), Keys: 20770, Records: 10349
Duplicate nodes: 9371, Used/Avail: 149936/244528 (61%), Keys: 9371, Records: 18742

Index PTHIST$IDET_DATE for relation PART_HISTORY duplicates allowed
Max Level: 2, Nodes: 18, Used/Avail: 3857/7164 (54%), Keys: 471, Records: 12

Duplicate nodes: 910, Used/Avail: 232632/304534 (76%), Keys: 442, Records: 29079

.
.
.

The RMU Analyze Placement command shown in Example 8–11 can provide
you with information about how indexes have placed data rows in a storage
area and how accessible the data rows are. This information includes the
maximum and average number of index records accessed to reach a data row,
the total number of pages traversed to reach a data row, and considering the
buffer size, whether or not the index and data rows would both be in the buffer.
Refer to Section 4.3.1 for more information on the RMU Analyze Placement
command.

8–32 Diagnosing a Database Resource Bottleneck

Example 8–11 Using the RMU Analyze Placement Option=Normal Command

$ RMU/ANALYZE/PLACEMENT PRODUCTION$DB_LOGICAL PTHIST$DATE_TIME /OPTION=NORMAL
--

Indices for database - USER18:[PRODUCTION.DATABASE]PRODUCT_DB.RDB;

--
Sorted Index PTHIST$DATE_TIME for relation PART_HISTORY duplicates not allowed
Levels: 4, Nodes: 1051, Keys: 20770, Records: 10349
Maximum path length -- DBkeys: 5, IO range: 1 to 5
Average path length -- DBkeys: 4.20, IO range: 2.10 to 3.90

--

This information is useful in determining whether there are any performance
problems related to rows stored using an index for which the PLACEMENT
VIA INDEX clause is specified in the table’s storage map. Any problems found
might indicate that the page size is too small, the storage area is too small, or
you are running out of space to store data rows and index records.

8.1.3.3 Checking Node Size
Figure 8–12 summarizes the steps you can take to check the node size.

Diagnosing a Database Resource Bottleneck 8–33

Figure 8–12 Decision Tree: Check Node Size

Yes

NU−3046A−RA

No

Yes

No

Contention problem
on the index?

Are you evaluating
a sorted index?

Go to check clustering
decision tree

Are too many I/Os
required to retrieve

records using the index?

Reduce node size
for fewer keys per node

Yes

No

Increase node size
which may reduce I/O

When checking whether index nodes are sized correctly, you should first
determine whether a contention problem due to updates exists on the index
nodes. If a contention problem does exist, decrease the node size for the index.
When you reduce the node size, fewer index keys fit in each node, and fewer
keys are locked by each update operation, which can alleviate the contention
problem. It may not be possible to determine that contention is caused by a
particular index; therefore, you can instead try to confirm that contention is not
a problem. To do this, select the ‘‘stall time x 100’’ screen of the Performance
Monitor Locking (one stat field) screen and look at the statistics for record
locks. If this value is low, it indicates that contention in the index is not a
problem, and the index nodes are not too large.

If the problem is that too many I/Os are required to fetch a database record,
you should determine how many index node levels exist and, if the index is
in its own storage area, how many I/Os per transaction are occurring in the
area. You can sometimes reduce the number of I/Os by increasing the size of
index nodes. When the size of index nodes is increased, the number of index
node levels is sometimes reduced, which can reduce the number of I/Os needed

8–34 Diagnosing a Database Resource Bottleneck

to fetch a database record using the index. Use the RMU Analyze Placement
command (see Example 8–11) to display the number of index node levels in an
index. The number of I/Os required to fetch a record using a sorted index is:

Number of I/Os = Number of Node Levels + Number of Duplicate Nodes on
Other Pages - Number of Index Node Levels in the

Buffer Pool + an I/O to Retrieve the Requested Record

Using the formula for a sorted index with 5 node levels, 2 of which fit in the
buffer pool when the index is used, and no duplicate nodes, the number of I/Os
required to fetch a record with the index is 4:

4 = 5 + 0 - 2 + 1

If the index is in its own storage area, use the IO Statistics (by file) screen to
find the average number of I/Os per transaction in the storage area. If this
value is high, increasing the size of the nodes can reduce the number of node
levels and the amount of I/Os required to fetch records.

If you have infrequent updates to a table, and an index is used primarily
for queries, specify a high value with the PERCENT FILL clause of the SQL
ALTER INDEX or CREATE INDEX statements. Specifying a high percent
fill value will result in an index with fewer levels, which should reduce the
number of intermediate nodes fetched and the number of I/Os.

8.1.3.4 Checking Clustering
If you are using mixed storage areas, under certain conditions you can use
record clustering to reduce I/O (see Figure 8–13). For example, if your
application frequently performs join operations over several tables for exact
match queries, clustering the records together in the same storage area is an
option for I/O savings. In other words, inter-table clustering is good for data
that will be retrieved by exact match join operations because the related data
are clustered together, so fewer I/Os need to be performed.

Diagnosing a Database Resource Bottleneck 8–35

Figure 8–13 Decision Tree: Check Clustering

Go to
snapshot

decision tree

Yes

Yes

No

No

Yes

Yes

NU−2031A−RA

No

Yes

Using a mixed
storage area?

Do applications
frequently perform

join operations over
specific tables?

Are multiple tables
being stored in
the mixed area?

Is clustering
being attempted?

Go to check
hashed index
decision tree

Separate tables and
associated hashed

Do applications
mostly perform
range retrievals
during joins?

Consider clustering related
rows from tables

frequently joined together
in the same mixed area

No

No

indexes into
separate areas

Moving these tables
to a uniform area may
improve performance

If the PLACEMENT VIA INDEX clause has been specified for a sorted index
in a table’s storage map, you can use that sorted index to store records in
a particular order. This can lead to performance improvements if there are
queries that require ordered retrieval of data. For example, if your applications
always report information by ascending lot number, you can sort the records
in ascending order, then store them using a sorted index on a LOT_ID column
with an ascending key. This causes Oracle Rdb to attempt to store the records

8–36 Diagnosing a Database Resource Bottleneck

in ascending alphanumeric order. The I/O savings from this technique are due
to the ‘‘clustering’’ of records near each other. For example, assume 20 parts
comprise a lot, 10 parts fit on a database page, and queries often appear in the
following form:

SQL> SELECT LOT_ID, PART_ID FROM LOTS
cont> WHERE LOT_ID > 891001;

LOT_ID PART_ID

891001-ABCDE 00034443
891001-ABCDE 00034444

.

.

.
891001-CWEEW 00355344

If 1000 lots are in the database and 10 of them satisfy the query, and if the
records are clustered as just described, then Oracle Rdb can access the records
in approximately 20 I/O operations (2 I/Os per lot multiplied by 10 lots). If
the data is not clustered, the worst case is 2000 I/O operations for the same
request (assuming the records are so scattered that every part_id from the lot
is on a different page, far enough away from the target page to not get pulled
into a buffer). Note that clustering should be used only if you can accurately
predict the maximum number of records that will be stored on each page.

Clustering with hashed indexes is also done using indexes for which the
PLACEMENT VIA INDEX clause has been specified in the table’s storage map.
As stated earlier, if join operations occur frequently between two or more tables
for direct match queries, clustering the associated records in the same storage
area will retrieve the records with I/O.

Similarly, when records are retrieved based on a parent-child relationship
(one to many), clustering with hashed indexes could improve performance. In
manufacturing, this is a common relationship between a lot ID or batch ID and
the parts that are in it. If this relationship exists in your application and you
would like to cluster the records together in the same storage area, carefully
compute the values of certain storage area parameters such as allocation,
page size, and SPAM threshold to avoid performance degradation due to file
extending, page overflow, and fragmentation, respectively.

If it is impractical or physically impossible to group the records in one storage
area, you can use shadow pages to gain a cluster effect across two storage
areas. With this approach, your parent records (lot records) and both hashed
indexes are stored in one storage area, and the child nodes (part records) are
stored together in a second area. For example:

Diagnosing a Database Resource Bottleneck 8–37

create storage map LOTID_MAP create unique index LOTID_HASH
for WIP_LOTS on WIP_LOTS (LOT_ID)
store in AREA_B store in AREA_B
placement via index LOTID_HASH; type is HASHED;

create storage map PARTID_MAP create index PARTID_HASH
for PART_INFO on PART_INFO (LOT_ID)
store in AREA_A store in AREA_B
placement via index PARTID_HASH; type is HASHED;

This approach works by storing the PART_INFO shadow records in storage
area A at the same relative offset as those in storage area B, but not
necessarily on the same page numbers (see Figure 8–14). For another example,
refer to Section 3.9.7.3.

8–38 Diagnosing a Database Resource Bottleneck

Figure 8–14 Using Shadow Pages for Clustering

AREA_A
(Contains child nodes)

X 11
X 12
X 13

X 19
X 20

PARTID
PARTID
PARTID

PARTID
PARTID

.

.

.

.

.

.

PARTID

PARTID
PARTID

X 3

X 9
X 10

PARTID
PARTID

X 1
X 2

Y 11
Y 12
Y 13

Y 19
Y 20

PARTID
PARTID
PARTID

PARTID
PARTID

.

.

.

Cluster Effect Y 1
Y 2
Y 3

Y 9
Y 10

PARTID
PARTID
PARTID

PARTID
PARTID

.

.

.

(PLACEMENT VIA INDEX)

AREA_B
(Contains parent records

and hashed indexes)

NU−2039A−RA

Z 11
Z 12
Z 13

Z 19
Z 20

PARTID
PARTID
PARTID

PARTID
PARTID

.

.

.

Z 1
Z 2
Z 3

Z 9
Z 10

PARTID
PARTID
PARTID

PARTID
PARTID

.

.

.

LOT_ID X

LOT_ID Y

LOT_ID Z

Oracle Corporation does not recommend storing miscellaneous tables and
sorted indexes in a mixed storage area with hashed records or hash buckets.
If clustering is not the goal, isolating hashed indexes and records removes the
risk that some other database entity will use up the space on the page and
ruin your carefully calculated page sizes.

Diagnosing a Database Resource Bottleneck 8–39

8.1.3.5 Checking Hashed Indexes
Figure 8–15 summarizes the steps you can take to check the effect of hashed
indexes on performance.

Figure 8–15 Decision Tree: Check Hashed Index

NU−2032A−RA

No

No

No

Yes

Yes

Go to check
snapshot

decision tree

Is hashed index
currently being

used?

Index well
understood and
fairly invariant?

Do queries
normally perform

direct match
operations?

Consider replacing
current index
with a hashed

index

No

Yes

Can adequate
page sizes be

Yes

calculated with

Yes

certainty?

Tune to get
average of

one I/O

No

No

Yes

Has storage area
been extended?

Is page size
sufficient to hold

rows and
hash bucket?

High variability on
the number of

duplicates?

Increase initial
allocation for
storage area

Recalculate page
size to account for

row and hash bucket
space requirements

Are rows of data
and hash buckets
that contain row’s
dbkey stored on

same page in same
storage area?

No

Yes

Yes

No

Tune to get as close
to an average of two

I/Os as possible with−
out wasting space

8–40 Diagnosing a Database Resource Bottleneck

To determine if hashed or sorted indexes are best for a particular table requires
an understanding of the queries that will be performed on that data. If the
requests generally are direct match queries, and the index can be characterized
fairly well, defining a hashed index on the table can access the data with
optimal results.

When hashed indexes are defined, a number of parameters are critical to
how well the index performs. These parameters include: the initial allocation
of the storage area, the page size, the record size, a storage strategy, SPAM
information, key size, an estimate of the number of unique keys and the
number of duplicates, and an estimate of the total number of records associated
with the hashed index.

• The initial allocation of the storage area

Extents in a mixed storage area seriously impair performance when a
hashed index is being used. Because the hash key is not recalculated to
account for the new space, the target page where the insertion is to be
attempted is likely to be full. Additional I/O is incurred to find a free page
to insert the record.

If you have an undersized storage area and are mass loading data using
a hashed index, the load time is greatly increased because, as the storage
area fills, Oracle Rdb spends more and more time looking for free space on
data pages that are further and further from the target page. If you have
several undersized storage areas being loaded in succession, the problem
becomes even more pronounced.

• The page size

It is critical that you do not underestimate the page size when you use
hashed indexes. Perform the calculations based on the uncompressed size
of user-stored data records.

Table 8–1 provides information to help you size a data page. Refer to the
Oracle Rdb7 Guide to Database Design and Definition for more detailed
information on this topic.

Diagnosing a Database Resource Bottleneck 8–41

Table 8–1 Estimating the Number of Bytes per Entry Plus Overhead Bytes for
Each Respective Index Record Type on a Data Page

.
Category Bytes per Entry Total

SYSTEM RECORD

No. of hashed indexes1 a a

Total system record size

Overhead 4 4

Minimum 6 (6*a)+4

Maximum2 10 (10*a)+4

HASH BUCKET

Total hash bucket entry size

Key size3 1 1

Key length4 k+1 k+1

Overhead/entry5 12 12

Total/entry6 12+1+k+1=b b

No. of entries7 c c

Overhead/bucket8 13 13

Total bucket size (b*c)+13 (b*c)+13

DUPLICATE NODE RECORD

No. of duplicates9 d d

1Number of hashed indexes to be stored in the same storage area.
2Assume the maximum size for the system record.
3A single unsigned byte is used to store the key length.
4The VARCHAR (or VARYING STRING) data type includes a 2-byte length column that is ignored
for the index column length. The key value is space filled in the index. One byte (the 1 of K+1) is
used to indicate null values.
5Duplicate count column (4) plus dbkey pointer (8).
6Size of each hash entry in the hash bucket is the sum of key size plus key length plus overhead
per entry.
7An entry is any key value that maps to the same page, but is not a duplicate of an existing entry.
8Record type (4) plus overflow bucket dbkey pointer (8) and flags column (1)
9Number of duplicate records for the same value.

(continued on next page)

8–42 Diagnosing a Database Resource Bottleneck

Table 8–1 (Cont.) Estimating the Number of Bytes per Entry Plus Overhead
Bytes for Each Respective Index Record Type on a Data
Page

Category Bytes per Entry Total

DUPLICATE NODE RECORD

No. of entries/node10 10

No. of duplicate nodes11 (d+5)/10=e e

Overhead/node12 92 92

Total e*92 e*92

GRAND TOTAL FOR THE HASHED INDEX

[((6*a)+4)] OR [((10*a)+4)]+[(b*c)+13]+[e*92]

10The maximum number of duplicate entries that can fit in a duplicate node.
11The number of duplicate nodes rounded up to nearest whole number; if there are no duplicate
records, then no duplicate nodes are created.
12Total overhead of one duplicate node.

• The record size

Use the uncompressed size of user-stored data when you determine record
size. The record size is one of the calculations you need to determine an
adequate page size.

• A storage strategy

Two basic strategies for storing records using a hashed index for which the
PLACEMENT VIA INDEX clause has been specified in the table’s storage
map are as follows:

– Store the records and the hashed bucket in the same mixed area.

Using this approach, retrieval can be achieved in an average of one I/O
operation. It is best for stable information, without excessive variance
of duplicates.

– Store the records and the hash bucket in separate mixed areas.

This is the more conservative of the two approaches. Using this
approach, the hash buckets are placed in one storage area, and the
records in another. Retrieval can be achieved in an average of two I/O
operations.

Diagnosing a Database Resource Bottleneck 8–43

• SPAM information—thresholds and intervals

– Thresholds

If these are calculated incorrectly, the database will either have to
search longer than necessary to find a free page to store the data, or it
will fetch pages only to find that there is no room to store them. The
second case can be seen by looking at the Performance Monitor Record
Statistics screen.

– Intervals

Incorrect setting of the SPAM interval can result in additional I/O
or increased page locking. A large interval tends to reduce I/O and
increase page locking when multiple update users are accessing that
portion of the storage area. A small SPAM interval reduces page
locking problems (Performance Monitor Summary Locking Statistics
screen) but increases the number of I/O operations required to locate
free space for a record.

The default page interval is 216 pages. If the storage area is large and
page locking is not a problem, increasing this number can save I/O
operations.

Note that proper SPAM thresholds and intervals are also important to
obtain good performance with sorted indexes.

• Key size

• An estimate of the number of unique keys and the number of duplicates

• An estimate of the total number of records associated with the hashed
index

These final three items are needed to calculate the total page size.

8.1.3.6 Checking Snapshots
Snapshots are another area to consider when you attempt to reduce I/O (see
Figure 8–16).

8–44 Diagnosing a Database Resource Bottleneck

Figure 8–16 Decision Tree: Check Snapshots

Disable snapshots

Yes

No

NU−2033A−RA

No

No

No

No

No

Yes

Yes

Enable snapshots
immediate

deferred snapshots

Go to
check locks
decision tree

require concurrent
Does database

access?

Does database
have a contention

problem?

I/O bottleneck on
the snapshot disk?

Do writers perform
short transactions?

Can snapshot files
be moved to a

less utilized disk to
reduce I/O bottleneck?

Move snapshot
file to a less
utilized disk

Can readers be
temporarily delayed

until outstanding write
transactions complete?

No

Yes

YesEvaluate using

Yes

Diagnosing a Database Resource Bottleneck 8–45

If the database is being used in a single-user application that does not require
concurrent access to the information, then disable the snapshots. Do not incur
the overhead of writing to the snapshot file if it is not necessary.

The default is that snapshot files are enabled immediate. This is probably
the correct setting for snapshot files in an interactive, multiuser environment.
When snapshots are enabled immediate, writers incur the overhead of updating
the snapshot file every time they write to the database. When many users are
accessing the data, performance will normally be optimal using immediate
snapshots. This option trades additional I/O for reduced contention.

If snapshots are required and I/O resources are already limited on the disk
where the storage area resides, consider moving the snapshot file to a less
utilized device. If possible, place the .rda, .snp, .rdb, and .aij files so that each
file type is on a separate disk.

Deferred snapshots can be used for those environments where it is acceptable
for readers to be temporarily delayed. If your database is update-intensive
with short transactions, and readers are not constantly using the database,
you can benefit from deferred snapshots. Refer to Section 4.1.13 for additional
information.

With deferred snapshots, read/write transactions write to the snapshot file only
if a read-only transaction is in progress when the write transaction begins. The
potential delay for the read-only transaction occurs when a write transaction is
active when the read-only transaction starts. The read-only transaction must
wait for all active write transactions to complete. New writers, who start a
transaction after the read-only transaction begins, write before-images of the
rows they are about to update to the .snp file.

The benefit of using snapshots enabled deferred is reduced I/O; if no read-only
transactions are active, writers need not write to the snapshot file.

8.2 Analyzing Memory Resources
OpenVMS
VAX

OpenVMS
Alpha

Figure 8–17 will help you to identify and solve performance problems relating
to memory resources.

8–46 Diagnosing a Database Resource Bottleneck

Figure 8–17 Decision Tree: Check Memory

NU−2035A−RA

Yes

Yes

No

Are records
stored by long

transactions using
constraints
evaluated at
commit time?

Can number of

Yes

No

No

No

No

No

Yes

Yes

Yes

Potential
application design

problem

Evaluate
constraints at

verb time
if possible

Are applications
limited by

WSEXTENT?

Increase
WSEXTENT for

the account using
AUTHORIZE

Increase
WSDEFAULT

using
AUTHORIZE

Go to
check CPU

decision tree

Increase WSMAX

available memory

Are working
sets being
limited by
WSMAX?

Do some
applications have
high page fault

rates?

Average memory
utilization >80

percent?

Potential
application design

problem

Do high page
fault rates occur

only on application
startup?

to allow applica−
tions to access

local buffers or
buffer size be de−
creased to reduce
memory require−
ments for all or

some applications?

Reduce number of
local buffers or

buffer size where
appropriate

Yes

Yes

No

No

Reduce the total
number of

global buffers
allocated

Are global buffer
values set too

large?

If memory is over 80 percent utilized, it is possible that some applications have
oversized buffers or too many buffers. This causes the applications to compete
for available memory resources, and can cause degradation due to an increase
in system overhead.

Diagnosing a Database Resource Bottleneck 8–47

If some of your applications have a high page fault rate, check to see if your
working set extent limits how large your working set will grow. Use the SHOW
PROCESS/ACCOUNTING command to see how large your peak working set
size has become.

You can run the Authorize utility to see your current working set limits.
If your peak working set size is the same as your WSEXTENT value, your
process may have been limited by the current setting of that parameter. If
memory is available, increasing WSEXTENT allows the process to access it.
The working set range between WSQUOTA and WSEXTENT is used by the
application only if it needs the memory and if the memory is available. The
application can use up to WSQUOTA of working set without asking the system
if it is available to use. WSDEFAULT is the amount of working set that a
process has when it is created or when a user logs in to an account. If you see
large page fault rates only when a process starts or when a user first logs in,
consider increasing WSDEFAULT.

Another parameter to check if you have a large page fault rate and you feel
that your application is not getting access to available memory is WSMAX in
SYSGEN. WSMAX is the maximum working set size that any process on the
system is allowed. WSMAX is frequently used to limit working set growth in
a clustered environment that has a common UAF file and different amounts
of memory resources on each node. However, if your value for WSEXTENT is
larger than WSMAX, your process’ peak working set will never extend beyond
the value specified by WSMAX. In this situation, you might decide to increase
the WSMAX value to a value larger than WSEXTENT.

$ RUN SYSGEN
SYSGEN> USE ACTIVE
SYSGEN> SHOW WSMAX
Parameter Name Current Default Minimum Maximum Unit Dynamic
-------------- ------- ------- ------- ------- ---- -------
WSMAX 8200 1024 60 100000 Pages
SYSGEN> EXIT
$
♦

8.3 Analyzing CPU Resources
OpenVMS
VAX

OpenVMS
Alpha

CPU resource limitations are difficult to address. Figure 8–18 identifies the
steps you can follow to evaluate your resources. Options include moving
some applications to another system or limiting the number of users that can
access the machine. If your batch and interactive processing occur at the same
priority, you can lower the priority on the batch activity to give interactive
users first chance at the CPU resources. Carefully consider this option before
you lower the priority of any write transactions. Resources required for your

8–48 Diagnosing a Database Resource Bottleneck

higher priority application could be held by the lower priority applications,
leading to increased contention problems.

Figure 8–18 Decision Tree: Check CPU

NU−2036A−RA

Average CPU utilization

Tuning session

>80%?

complete

Lower priority for
selected applications

Can any applications
be run at lower priority?

Yes

Yes

No

No

No

Yes

Yes

No

Redesign applications
for better efficiency

Can some applications
be moved to another

system?

Move selected
applications to
another system

Is percentage of system
CPU mode time greater
than percentage of user

mode CPU time?

Adjust SYSGEN
parameters QUANTUM and

AWSTIME to increase
user mode percentage

Another option that you can sometimes use to help reduce a CPU resource
limitation is to change the SYSGEN parameters QUANTUM and AWSTIME.
QUANTUM is the CPU time given by the system for your process to use before

Diagnosing a Database Resource Bottleneck 8–49

the next process gets a turn. AWSTIME is the length of time the system waits
before trying to adjust working sets. If you set QUANTUM lower than 10
milliseconds (ms), another special parameter, called IOTA, might be lowered
from the default of 2 ms to 1 ms to keep the process from reaching QUANTUM
end too soon. IOTA is the number of ms subtracted from the process’ remaining
QUANTUM at I/O completion to cause I/O-intensive processes to give up the
CPU. These parameters are dynamic, so they can be changed and their
effect measured immediately, without taking the system up and down. To
use these parameters effectively, you need to consider your highest priority
application, and determine if it is I/O or CPU-intensive (disk I/O, not buffered).
I/O-intensive applications tend to benefit from smaller values of QUANTUM.
CPU-intensive applications benefit from higher QUANTUM settings. These
parameters cannot be changed on a per application basis. Because the
changes affect all processes on the system, be careful when you change these
parameters.

The resource savings from optimal setting of these parameters come from
reduced operating system overhead. These savings can be used for user-related
work. When QUANTUM is set lower than the default, a value of AWSTIME
of 2 times QUANTUM is recommended. When QUANTUM is increased above
the default, AWSTIME should be set the same as QUANTUM. In both cases,
the system overhead from checking working set adjustments is reduced. For
CPU-intensive applications, those applications that would be forced to wait for
their next allocation of CPU time to complete may complete right away with
a large QUANTUM. This improves response time and reduces the overhead
required to temporarily save the program status for its next turn.

Graphs from a QUANTUM tuning study (Figure 8–19 and Figure 8–20) have
been included to help illustrate this information. Figure 8–19 shows the effect
that QUANTUM has on the target workload response time.

8–50 Diagnosing a Database Resource Bottleneck

Figure 8–19 Effect of QUANTUM on Workload Response Time

QUANTUM (ms)
NU−2009A−RA

31:00

32:00

33:00

34:00

Time
in

Minutes
35:00

27:00

28:00

29:00

30:00

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

These response time improvements occur with very little variation in CPU
time. Also, memory and working sets remained the same for each iteration
of the test. The slight variations in CPU usage can be attributed in part to
the new automatic working set adjustment period for each interval. This
caused the application working set to respond differently, which caused minor
changes in direct I/O or page fault rate. Figure 8–20 compares CPU modes for
QUANTUM settings of 15 and 20 ms.

Diagnosing a Database Resource Bottleneck 8–51

Figure 8–20 Comparison of CPU Modes for QUANTUM Settings of 15 and
20 ms

2.91%
Free

47.12%
System

49.97%
User

NU−2006A−RA

Free
21.15%

User
40.09%

System
38.76%

QUANTUM = 20 msQUANTUM = 15 ms

♦

8.4 Analyzing Lock Resources
Locking can have a significant impact on database application response times.
Locking is often the cause of intermittent performance problems where the
application exhibits response time delays, yet CPU, I/O, and memory resources
are still available.

There are many causes of locking problems. An application may be holding a
shared resource with too restrictive a lock, or a resource may have too many
users contending for it. These problems will limit the maximum database
throughput that can be achieved.

Figure 8–21 summarizes the steps you can follow to check for locking
problems.

8–52 Diagnosing a Database Resource Bottleneck

Figure 8–21 Decision Tree: Check Locks

NU−2034A−RA

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Increase number of
levels of index tree

Large number
of deadlocks?

Do high contention
indexes have many

duplicates?

Consider converting to
composite key index

DEADLOCK_WAIT
SYSGEN parameter

Reduce

Evidence of high
database contention?

Go to check memory
decision tree

Evaluate adjustable
locking granularity

No

Does locking problem
occur intermittently?

Redesign conflicting
applications to better

share common resources

Does intermittent problem
only occur when certain

applications are running?

Potential system
resource shortage

Does Performance Monitor
Summary Locking Statistics

display show many
blocking ASTs?

Diagnosing a Database Resource Bottleneck 8–53

If contention is evident in the database, for example, if lots of lock resources
are being used up, or if many applications are stalled in the Performance
Monitor Stall Messages screen, or if the Performance Monitor Summary
Locking Statistics screen (Example 8–12) shows many blocking ASTs, then
turning off adjustable lock granularity (ALG) should reduce the number
of blocking ASTs by allowing Oracle Rdb to use the lowest level of locking
immediately. (An increase in blocking ASTs may also be related to the carry-
over lock optimization; see Section 3.8.3.2 for details.) Refer to Section 3.8.5
for information on ALG. Examine the DECLARE TRANSACTION and SET
TRANSACTION statements in your application code to ensure that they allow
maximum concurrency. If your transaction is only reading a table, set the
transaction to read-only and the access mode to shared read (specify the SQL
SET TRANSACTION READ ONLY RESERVING table-name FOR SHARED
READ statement for the transaction). In SQL, the default is read/write and
shared write. Thus, if your application uses the default, it will hold more
protective locks on the resources than are necessary if the transaction is a
read-only transaction. Symptoms of this problem include increased contention
and lower concurrency than expected.

8–54 Diagnosing a Database Resource Bottleneck

Example 8–12 Performance Monitor Summary Locking Statistics Screen

Node: MYNODE Oracle Rdb V7.0-00 Performance Monitor 30-MAY-1996 14:59:39
Rate: 3.00 Seconds Summary Locking Statistics Elapsed: 00:30:14.24
Page: 1 of 1 USER18:[PRODUCTION.DATABASE]PRODUCT_DB.RDB;1 Mode: Online
--
statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

locks requested 78 52 36.8 59013 115.3
rqsts not queued 1 0 0.2 349 0.7
rqsts stalled 2 0 0.2 390 0.8
rqst timeouts 0 0 0.0 0 0.0
rqst deadlocks 0 0 0.0 0 0.0

locks promoted 60 47 14.9 23840 46.6
proms not queued 0 0 0.0 29 0.1
proms stalled 0 0 0.0 20 0.0
prom timeouts 0 0 0.0 0 0.0
prom deadlocks 0 0 0.0 0 0.0

locks demoted 101 78 22.7 36417 71.1
locks released 190 35 36.4 58324 113.9
blocking ASTs 4 0 0.4 615 1.2
stall time x100 5 0 1.0 1630 3.2
invalid lock block 0 0 0.0 0 0.0
--
Exit Graph Help Menu Options Pause Reset Set_rate Time_plot Unreset Write X_plot

If the locking problems are intermittent, an application may be accessing the
database sequentially instead of using an index. When an application starts a
read/write transaction in shared write mode and the access is sequential, the
shared write lock is promoted to protected write (PW). This has the effect of
locking the whole table, and could account for intermittent locking problems.
To see if an application is using the expected index, use the RDMS$DEBUG_
FLAGS logical name or the RDB_DEBUG_FLAGS configuration parameter.
Setting the name to S results in the display of the retrieval strategy, as shown
in the following example:

$ SQL
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SELECT JOB_TITLE FROM JOBS WHERE JOB_CODE = "VPSD";

.

.

.
Conjunct Get Retrieval sequentially of relation JOBS

JOB_TITLE
Vice President

1 row selected
SQL>EXIT
$

Diagnosing a Database Resource Bottleneck 8–55

For detailed information on using the RDMS$DEBUG_FLAGS logical name
and the RDB_DEBUG_FLAGS configuration parameter, see Appendix C.

Another area that may be degrading performance is excessive deadlocks.
Deadlocks can be caused by applications or by poor application design.

OpenVMS
VAX

OpenVMS
Alpha

If your application is prone to deadlocks, you can adjust the SYSGEN
parameter DEADLOCK_WAIT to detect the situation more quickly. The
default value is 10 seconds. Lower the parameter if the environment is
deadlock prone.

By lowering the parameter, deadlocks are detected more quickly and
applications are delayed for less time. The cost of this is increased overhead to
search the lock timeout queue. If you get very few deadlocks, increasing this
parameter causes true deadlock situations to be undetected longer, but reduces
the overhead of searching for deadlocks that exist only rarely. The more locks
that are allocated, the more time it takes to search the queue and the greater
the overhead to search for a deadlock condition.

$ RUN SYSGEN
SYSGEN> USE ACTIVE
SYSGEN> SHOW DEADLOCK_WAIT
Parameter Name Current Default Minimum Maximum Unit Dynamic
-------------- ------- ------- ------- ------- ---- -------
DEADLOCK_WAIT 10 10 0 -1 Seconds D
SYSGEN> EXIT

Note that lowering the DEADLOCK_WAIT parameter only helps you to detect
deadlocks more quickly. ♦

If many deadlocks are encountered in a database, you can fix some of them by
changing the database or applications. Some of the changes you could make to
the database to fix deadlocks include reducing the size of sorted index nodes
or converting a sorted index to a hashed index. Changes that you could make
to applications include using update only cursors or using a restricted mode
(such as protected write mode) for transactions (using a restricted mode may
fix the deadlock, but could cause contention problems while the transaction is
executing). In some cases, deadlocks are unavoidable.

8–56 Diagnosing a Database Resource Bottleneck

A
Oracle Rdb Logical Names and Configuration

Parameters

This appendix describes Oracle Rdb logical names and configuration
parameters, and explains when and how to use them to improve database
performance.

The logical names and configuration parameters that are specific to the Hot
Standby option are not documented in this appendix. See the Oracle Rdb7 and
Oracle CODASYL DBMS: Guide to Hot Standby Databases for information
about the logical names and configuration parameters that are specific to the
Hot Standby option.

A.1 RDB$CHARACTER_SET
OpenVMS
VAX

OpenVMS
Alpha

You can define an alternate character set for use by Oracle Rdb. Valid
alternate character sets include the following:

• DEC_KANJI, Japan

• DEC_HANZI, PRC-China

• DEC_HANGUL, Korea

• DEC_HANYU, Taiwan

Example A–1 sets the character set to Japanese.

Example A–1 Using the RDB$CHARACTER_SET Logical Name

$ DEFINE RDB$CHARACTER_SET DEC_KANJI

The RDB$CHARACTER_SET logical name will be deprecated in a future
release. ♦

Oracle Rdb Logical Names and Configuration Parameters A–1

A.2 RDB$LIBRARY and RDB_LIBRARY
Specifies a protected library that you can use to store external routine images,
such as external functions. Oracle Corporation recommends that you manage
public or sensitive external routine images using a protected library that is
referenced by the logical name RDB$LIBRARY or the configuration parameter
RDB_LIBRARY.

OpenVMS
VAX

OpenVMS
Alpha

You should define RDB$LIBRARY as an executive mode logical name in the
system logical name table. If the external routine image is located in the
protected area, you can ensure that the desired image is used by specifying
the RDB$LIBRARY logical name with an explicit file name in the LOCATION
clause plus the WITH SYSTEM LOGICAL_NAME TRANSLATION clause in a
CREATE FUNCTION statement. ♦

A.3 RDB$RDBSHR_EVENT_FLAGS
OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, RDB$SHARE is assigned the following event flags at startup:

• Stall event flag

• Common event flag

• Remote read event flag

• Remote write event flag

These event flags are used for internal DECdtm processing. The common event
flag has a default value of 31. The other event flag values are assigned by the
LIB$GET_EF system service by default.

You can use the RDB$RDBSHR_EVENT_FLAGS logical name to override
the default event flag values. You may wish to do this if you are using event
flags for other purposes and you wish to restrict Oracle Rdb event flags to a
particular range or set of values.

Specify the logical name value as a string containing four integer values in
the range 0 to 63. Enclose the string in quotes, and separate the integers with
commas. These values are assigned to event flags in the same order the event
flags are shown in the previous list.

If an error occurs in translating the RDB$RDBSHR_EVENT_FLAGS logical
name, or if the specified event flag value is out of range, Oracle Rdb uses
the default event flag values assigned by the LIB$GET_EF system service.
Example A–2 shows how to use the RDB$RDBSHR_EVENT_FLAGS logical
name.

A–2 Oracle Rdb Logical Names and Configuration Parameters

Example A–2 Using the RDB$RDBSHR_EVENT_FLAGS Logical Name

$ DEFINE RDB$RDBSHR_EVENT_FLAGS "63,62,61,60"

The RDB$RDBSHR_EVENT_FLAGS logical name is translated using the
LMN$DCL_LOGICAL logical table. ♦

A.4 RDB$REMOTE_BUFFER_SIZE and
SQL_NETWORK_BUFFER_SIZE

By default, the buffer size of network transfers is 4096 bytes. You can use
the RDB$REMOTE_BUFFER_SIZE logical name or the SQL_NETWORK_
BUFFER_SIZE configuration parameter to change the default buffer size of
network transfers. The minimum value is 500 bytes and the maximum value
is limited only by your system’s resources and quota limits. If you specify a
value of less than 500 bytes, Oracle Rdb uses the default value of 4096 bytes.

It may be advantageous to increase your network buffer size before running
an application if you transfer large data blocks into or out of the database.
Increasing the buffer size reduces the number of network I/O operations used
when large transfers are made.

Digital UNIX On Digital UNIX, include the line shown in Example A–3 in your configuration
file to set the buffer size to 10,000 bytes.

Example A–3 Using the SQL_NETWORK_BUFFER_SIZE Configuration
Parameter

SQL_NETWORK_BUFFER_SIZE 10000
♦

You can set the network buffer size on one or both of the client and server
nodes in their respective configuration files. If these values are different for a
particular client and server combination, the smaller of the two values is used.

OpenVMS
VAX

OpenVMS
Alpha

The RDB$REMOTE_BUFFER_SIZE logical name is translated using the
LNM$DCL_LOGICAL logical table. ♦

Oracle Rdb Logical Names and Configuration Parameters A–3

A.5 RDB$REMOTE_MULTIPLEX_OFF and
SQL_NETWORK_NUMBER_ATTACHES

The RDB$REMOTE_MULTIPLEX_OFF logical name and the SQL_
NETWORK_NUMBER_ATTACHES configuration parameter control the
number of remote server processes used for multiple remote database accesses
to the same node.

If you define any value for the RDB$REMOTE_MULTIPLEX_OFF logical name
or set the SQL_NETWORK_NUMBER_ATTACHES configuration parameter
to the value of 1, each of your remote database accesses will require its own
RDB_SERVER process on the remote node. If you assign a higher value to
the SQL_NETWORK_NUMBER_ATTACHES configuration parameter, up to
that number of your remote database accesses to a particular node will share
a single RDB_SERVER process on the remote node. The default value for
SQL_NETWORK_NUMBER_ATTACHES is 10.

Digital UNIX On Digital UNIX, include the line shown in Example A–4 in your configuration
file to increase the network attaches to 20.

Example A–4 Using the SQL_NETWORK_NUMBER_ATTACHES
Configuration Parameter

SQL_NETWORK_NUMBER_ATTACHES 20
♦

OpenVMS
VAX

OpenVMS
Alpha

The RDB$REMOTE_MULTIPLEX_OFF logical name is translated using the
LNM$DCL_LOGICAL logical table. ♦

A.6 RDB$ROUTINES and RDB_ROUTINES
Specifies the location of an external routine image. If you do not specify a
location clause in a CREATE FUNCTION statement, or if you specify the
DEFAULT LOCATION clause, SQL uses the RDB$ROUTINES logical name or
the RDB_ROUTINES configuration parameter as the default image location.

A.7 RDBVMS$CREATE_DB and RDB_CREATE_DB
You can restrict the creation of databases by defining the logical name
RDBVMS$CREATE_DB or the configuration parameter RDB_CREATE_DB.

A–4 Oracle Rdb Logical Names and Configuration Parameters

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, you must also define a rights identifier of the same name. ♦

Note

When you define RDBVMS$CREATE_DB or RDB_CREATE_DB, other
installed Oracle and third-party products will not be able to use Oracle
Rdb to create Oracle Rdb databases. Therefore, you must deassign
the logical name or remove the parameter from the configuration
file whenever users of such products need to create an Oracle Rdb
database.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, to restrict the creation of Oracle Rdb databases, first define the
logical name RDBVMS$CREATE_DB as shown in Example A–5.

Example A–5 Using the RDBVMS$CREATE_DB Logical Name

$ DEFINE/SYSTEM/EXECUTIVE RDBVMS$CREATE_DB RESTRICT_DB

Next, use the rights identifier, RDBVMS$CREATE_DB, to control which users
can create databases using the SQL CREATE DATABASE statement. For more
information, see the Oracle Rdb7 Guide to Database Design and Definition. ♦

A.8 RDM$BIND_ABS_LOG_FILE and RDB_BIND_ABS_LOG_FILE
You can use the RDM$BIND_ABS_LOG_FILE logical name or the RDB_
BIND_ABS_LOG_FILE configuration parameter to define a file name for the
after-image journal backup server (ABS) log file.

OpenVMS
VAX

OpenVMS
Alpha

You must define this logical name in the LNM$SYSTEM_TABLE table. ♦

A.9 RDM$BIND_ABS_OVERWRITE_ALLOWED and
RDB_BIND_ABS_OVERWRITE_ALLOWED

You can use the logical name RDM$BIND_ABS_OVERWRITE_ALLOWED
or the configuration parameter RDB_BIND_ABS_OVERWRITE_ALLOWED
to indicate whether the after-image journal backup server (ABS) resets
overwritten AIJ journals. The default value 0 indicates that the ABS cannot
reset overwritten journals, while the value 1 indicates that the ABS can reset
overwritten journals.

Oracle Rdb Logical Names and Configuration Parameters A–5

A.10 RDM$BIND_ABS_OVERWRITE_IMMEDIATE and
RDB_BIND_ABS_OVERWRITE_IMMEDIATE

You can use the logical name RDM$BIND_ABS_OVERWRITE_IMMEDIATE
or the configuration parameter RDB_BIND_ABS_OVERWRITE_IMMEDIATE
to indicate whether journals should be immediately reset if RDM$BIND_ABS_
OVERWRITE_ALLOWED or RDB_BIND_ABS_OVERWRITE_ALLOWED is
enabled.

The default value 0 indicates that AIJ journals should not be immediately
reset. The value 1 indicates that AIJ journals should be immediately reset.

A.11 RDM$BIND_ABS_QUIET_POINT and
RDB_BIND_ABS_QUIET_POINT

You can use the logical name RDM$BIND_ABS_QUIET_POINT or the
configuration parameter RDB_BIND_ABS_QUIET_POINT to indicate whether
the after-image journal backup server (ABS) will perform a quiet-point
after-image journal backup.

The default value 0 indicates that a no-quiet-point backup will be performed
while 1 indicates that a quiet-point backup will be performed.

You should define the logical name and configuration parameter on all nodes
that access the database.

OpenVMS
VAX

OpenVMS
Alpha

You should define RDM$BIND_ABS_QUIET_POINT as an executive mode
logical name in the system logical name table as shown in the following
example:

$ DEFINE/SYSTEM/EXEC RDM$BIND_ABS_QUIET_POINT 1
♦

Note that the value you assign to RDM$BIND_ABS_QUIET_POINT or RDB_
BIND_ABS_QUIET_POINT is in effect for all databases on the current node.

A.12 RDM$BIND_ABW_ENABLED and
RDB_BIND_ABW_ENABLED

You can disable or enable asynchronous batch-write operations with the
RDM$BIND_ABW_ENABLED logical name or the RDB_BIND_ABW_
ENABLED configuration parameter. The default value 1 indicates that
asynchronous batch-write operations are enabled, and the value 0 indicates
that they are disabled.

A–6 Oracle Rdb Logical Names and Configuration Parameters

Digital UNIX On Digital UNIX, include the line shown in Example A–6 in your configuration
file to disable asynchronous batch-write operations.

Example A–6 Using the RDB_BIND_ABW_ENABLED Configuration
Parameter

RDB_BIND_ABW_ENABLED 0
♦

Asynchronous batch-write operations are enabled by default.

For more information on asynchronous batch-write operations, see
Section 3.2.5.

A.13 RDM$BIND_AIJ_CHECK_CONTROL_RECS and
RDB_BIND_AIJ_CHECK_CONTROL_RECS

The RDM$BIND_AIJ_CHECK_CONTROL_RECS logical name and the
RDB_BIND_AIJ_CHECK_CONTROL_RECS configuration parameter indicate
whether to check for control records during AIJ cache formatting. The default
value 1 indicates that Oracle Rdb will check for control records, and the value
0 indicates that Oracle Rdb will not check for control records.

A.14 RDM$BIND_AIJ_EMERGENCY_DIR and
RDB_BIND_AIJ_EMERGENCY_DIR

You can use the RDM$BIND_AIJ_EMERGENCY_DIR logical name or the
RDB_BIND_AIJ_EMERGENCY_DIR configuration parameter to specify the
location of the emergency AIJ journal. This logical name or configuration
parameter should specify only the device and directory where the emergency
AIJ journal is to be created. Note that, if defined, the RDM$BIND_AIJ_
EMERGENCY_DIR logical name or the RDB_BIND_AIJ_EMERGENCY_DIR
configuration parameter applies to all databases on the current node.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, the logical name must not contain any non-system concealed
logical definitions and must reside in the LNM$SYSTEM_TABLE logical name
table. ♦

A.15 RDM$BIND_AIJ_IO_MAX and RDB_BIND_AIJ_IO_MAX
The RDM$BIND_AIJ_IO_MAX logical name and the RDB_BIND_AIJ_IO_MAX
configuration parameter allow you to override the maximum AIJ group commit
I/O buffer size. The default buffer size is 127 blocks.

Oracle Rdb Logical Names and Configuration Parameters A–7

A.16 RDM$BIND_AIJ_IO_MIN and RDB_BIND_AIJ_IO_MIN
The RDM$BIND_AIJ_IO_MIN logical name and the RDB_BIND_AIJ_IO_MIN
configuration parameter allow you to override the minimum AIJ group commit
I/O buffer size. The default buffer size is 8 blocks.

A.17 RDM$BIND_AIJ_STALL and RDB_BIND_AIJ_STALL
The RDM$BIND_AIJ_STALL logical name and the RDB_BIND_AIJ_STALL
configuration parameter define the amount of time, expressed in milliseconds,
that a transaction waits after submitting its commit record to the after-image
journal (.aij) log file. This wait time permits a larger number of transactions in
the group commit operation.

Based on various benchmarks, an optimal wait time of 50 milliseconds has
been established as the default value. However, the true optimal value
depends on the particular application. If an application is not update-
intensive, a smaller value may improve performance slightly. If an application
is update-intensive, a larger value may result in slightly better performance.

Note

Oracle Corporation recommends that you do not change the default
value unless it is absolutely necessary.

The default value is 50 milliseconds. The minimum value is 0 milliseconds,
and the maximum value is 1000 milliseconds (1 second).

A.18 RDM$BIND_AIJ_SWITCH_GLOBAL_CKPT and
RDB_BIND_AIJ_SWITCH_GLOBAL_CKPT

You can use the RDM$BIND_AIJ_SWITCH_GLOBAL_CKPT logical name
or the RDB_BIND_AIJ_SWITCH_GLOBAL_CKPT configuration parameter
to indicate whether to perform a global checkpoint after an AIJ switch-over
has occurred. The default value 1 indicates that a global checkpoint will be
performed, and the value 0 indicates that a global checkpoint will not be
performed.

A–8 Oracle Rdb Logical Names and Configuration Parameters

A.19 RDM$BIND_ALS_CREATE_AIJ and
RDB_BIND_ALS_CREATE_AIJ

You can use the RDM$BIND_ALS_CREATE_AIJ logical name or the RDB_
BIND_ALS_CREATE_AIJ configuration parameter to indicate whether the
ALS server is to create an emergency AIJ journal if the AIJ switch-over
operation enters the suspended state.

A database enters the "AIJ suspended" state if the AIJ switch-over operation
cannot complete because there are no available AIJ journals. During this state,
the DBA can add new AIJ journals or perform database backups, but all other
AIJ-related activities are temporarily suspended until an AIJ journal becomes
available.

During the AIJ suspended period, any DBR invocation causes the database to
be shut down. This is required because the DBR always writes either a commit
or rollback record to the AIJ journal. Note that even a DBR invoked for a
read-only transaction causes the database to be shut down.

The default value 0 indicates that the ALS should not create an AIJ journal
and the value 1 indicates that the ALS should attempt to create an AIJ
journal. On OpenVMS, the logical name must reside in the LNM$SYSTEM_
TABLE logical name table.

When the RDM$BIND_ALS_CREATE_AIJ logical is set to the value 1, the ALS
attempts to create an emergency AIJ journal using the previous AIJ journal as
a template. This means that the emergency AIJ journal is created in the same
directory, and with the same allocation, as the journal being switched from. If
there is no adequate disk space, or any other error occurs, the database enters
the "AIJ suspended" state and the DBA must resolve the situation.

Warning

The emergency AIJ journal is not a temporary AIJ journal. Do not
delete it from DCL. You should only delete the emergency AIJ journal
with SQL or RMU syntax. Manually deleting the emergency AIJ
journal will cause your database to be shut down.

The ALS will notify the DBA through the operator notification facility that an
emergency AIJ journal has been created. Furthermore, the output from the
RMU Dump Header command will identify any AIJ journal created by the
ALS server process. The Performance Monitor also highlights any identified
emergency AIJ journal.

Oracle Rdb Logical Names and Configuration Parameters A–9

An emergency AIJ journal has the following characteristics:

• An emergency AIJ journal is a normal AIJ journal in all respects. It is
created by the ALS process to avoid the AIJ switch-over suspension state.
DBR invocations due to application process failure during the AIJ journal
creation do not cause the database to shut down.

• The name of the emergency AIJ journal is EMERGENCY_XXX where XXX
is a series of 16 characters used to create a unique name.

• The creation of the emergency AIJ journal is not journaled. This means
that the creation of an emergency AIJ journal is not possible while Hot
Standby database replication is active.

• There is no way to remove the emergency status of an emergency AIJ
journal.

A.20 RDM$BIND_APF_DEPTH and RDB_BIND_APF_DEPTH
Specifies the number (depth) of buffers for Oracle Rdb to asynchronously
prefetch for a process.

OpenVMS
VAX

OpenVMS
Alpha

Example A–7 shows how to specify that Oracle Rdb prefetch 5 buffers
asynchronously for a process.

Example A–7 Using the RDM$BIND_APF_DEPTH Logical Name

$ DEFINE RDM$BIND_APF_DEPTH 5
♦

See Section 3.2.4 for more information on using the Oracle Rdb asynchronous
prefetch capability.

A.21 RDM$BIND_APF_ENABLED and RDB_BIND_APF_ENABLED
The logical name RDM$BIND_APF_ENABLED and the configuration
parameter RDB_BIND_APF_ENABLED allow you to disable or enable
asynchronous prefetch operations. The default value 1 indicates that
asynchronous prefetch operations are enabled and the value 0 indicates
that they are disabled.

A–10 Oracle Rdb Logical Names and Configuration Parameters

Digital UNIX Include the line shown in Example A–8 in your configuration file to disable
asynchronous prefetch operations.

Example A–8 Using the RDB_BIND_APF_ENABLED Configuration Parameter

RDB_BIND_APF_ENABLED 0
♦

Asynchronous prefetch operations are enabled by default.

For more information on asynchronous prefetch operations, see Section 3.2.4.

A.22 RDM$BIND_BATCH_MAX and RDB_BIND_BATCH_MAX
The RDM$BIND_BATCH_MAX logical name and the RDB_BIND_BATCH_
MAX configuration parameter define the number of live data page cache
buffers that are written to the database as part of a batch-write operation
or asynchronous batch-write operation. A batch-write operation occurs when
a new cache buffer is needed but no buffers are available. To rectify this
situation, Oracle Rdb writes one or more of the existing cache buffers to the
database, making them candidates for replacement. Asynchronous batch-write
operations occur when the number of clean buffers at the end of a process’ least
recently used queue of buffers for replacement is less than the number of clean
buffers specified for the process with the RDM$BIND_CLEAN_BUF_CNT
logical name or the RDB_BIND_CLEAN_BUF_CNT configuration parameter.

When the RDM$BIND_BATCH_MAX logical name or the RDB_BIND_BATCH_
MAX configuration parameter is undefined, batch-write operations result in
large I/O bursts that cause unpredictable system performance. By setting this
logical name or configuration parameter to a value smaller than the number
of cache buffers allocated to the user, you can control the size of the I/O burst.
This results in more predictable and uniform I/O behavior for the system.

The optimal value of this logical name and configuration parameter depends on
several factors, including the number of cache buffers allocated per user, the
number of storage areas in the database, the type and speed of the disk drives,
the CPU load, the application workload, and so on. Setting the value too small
may result in excessive batch-write operations. Setting the value too large may
result in large I/O burst patterns.

The value of this logical name and configuration parameter does not affect the
size of the batch-write operation for snapshot pages or the size of the batch
used for commit or checkpoint operations.

Oracle Rdb Logical Names and Configuration Parameters A–11

The default value of the RDM$BIND_BATCH_MAX logical name and the
RDB_BIND_BATCH_MAX configuration parameter is the number of cache
buffers allocated to the user. This is also the maximum value, even if the
number specified is larger than the number of buffers used. The minimum
value is 1.

See Section 4.1.2.2 for more information on how Oracle Rdb determines the
size of a user’s allocate set.

A.23 RDM$BIND_BUFFERS and RDB_BIND_BUFFERS
You can use the RDM$BIND_BUFFERS logical name or the RDB_BIND_
BUFFERS configuration parameter to change the number of buffers Oracle
Rdb allocates for each database user at run time. By default, Oracle Rdb
allocates the value specified by the NUMBER OF BUFFERS IS parameter.
The behavior of RDM$BIND_BUFFERS and RDB_BIND_BUFFERS depends
on whether you are using local or global buffers.

• If you have local buffers enabled (the default), you can specify a value
between 2 and 524288 for RDM$BIND_BUFFERS and RDB_BIND_
BUFFERS.

• If you have global buffers enabled, the number of buffers you specify
with RDM$BIND_BUFFERS or RDB_BIND_BUFFERS cannot exceed
the value set by the USER LIMIT IS parameter. The USER LIMIT IS
value defines the maximum number of global buffers a process can allocate
from the global buffer pool and overrides an RDM$BIND_BUFFERS or
RDB_BIND_BUFFERS value that exceeds that value.

Section 4.1.2 describes how and when to use the RDM$BIND_BUFFERS
logical name and the RDB_BIND_BUFFERS configuration parameter with
both local and global buffers.

The RDM$BIND_BUFFERS logical name and the RDB_BIND_BUFFERS
configuration parameter can be a powerful tool for tuning specific applications.
For example, you can define the number of buffers to exceed the default for
an initial load program to facilitate database loading and sequential database
searches. Also, you can use RDM$BIND_BUFFERS or RDB_BIND_BUFFERS
to allocate more buffers for batch programs that run during off-peak hours,
but still retain the default number of buffers for users during normal working
hours.

A–12 Oracle Rdb Logical Names and Configuration Parameters

OpenVMS
VAX

OpenVMS
Alpha

Example A–9 allocates 100 buffers to the process that defines the logical
name.

Example A–9 Using the RDM$BIND_BUFFERS Logical Name

$ DEFINE RDM$BIND_BUFFERS 100

If you have the required privileges, you can define RDM$BIND_BUFFERS as a
group or system logical name to affect a larger group of processes. ♦

A.24 RDM$BIND_BUFOBJ_ENABLED
OpenVMS
Alpha

Oracle Rdb includes a performance enhancement feature for databases
accessed from OpenVMS Alpha systems. This feature uses the OpenVMS
buffer object feature to lock Oracle Rdb local buffers into physical memory.
Locking Oracle Rdb local buffers into memory increases SMP parallelism and
scaling and improves I/O performance by eliminating OpenVMS overhead.

To utilize this feature you must:

• Run Oracle Rdb V6.1 or higher along with OpenVMS Alpha Version 6.1 or
higher on an Alpha uniprocessor or an SMP system.

• Define the logical name RDM$BIND_BUFOBJ_ENABLED to be any value.

• Increase the OpenVMS user quota BYTLM by the number of bytes in your
local buffer pool. For example, if the number of local buffers is 1000, and
the buffer size is 8 blocks, determine the value of the BYTLM parameter
using the following formula:

1000 � (8 � 512) = 4; 096; 000 bytes

Do not use this feature on systems that are memory constrained. OpenVMS
pages that are defined as a buffer object can be paged and swapped, but
must remain resident in physical memory. This physical memory becomes
unavailable for use by any other process until the image is terminated.

The Oracle Rdb utilization of OpenVMS buffer objects is not available on
databases with global buffers enabled. ♦

A.25 RDM$BIND_CBL_ENABLED and RDB_BIND_CBL_ENABLED
The RDM$BIND_CBL_ENABLED logical name and the RDB_BIND_CBL_
ENABLED configuration parameter indicate whether coarse buffer locking is
enabled. The default value 0 indicates that coarse buffer locking is disabled,
and the value 1 indicates that it is enabled.

Oracle Rdb Logical Names and Configuration Parameters A–13

A.26 RDM$BIND_CKPT_BLOCKS and RDB_BIND_CKPT_BLOCKS
You can use the RDM$BIND_CKPT_BLOCKS logical name or the RDB_BIND_
CKPT_BLOCKS configuration parameter to specify the number of AIJ blocks
after which a checkpoint will occur. The default value is 0 blocks.

A.27 RDM$BIND_CKPT_TIME and RDB_BIND_CKPT_TIME
You can use the RDM$BIND_CKPT_TIME logical name or the RDB_BIND_
CKPT_TIME configuration parameter to specify the amount of time, in
seconds, after which a checkpoint will occur. The default value is 0.

A.28 RDM$BIND_CKPT_TRANS_INTERVAL and
RDB_BIND_CKPT_TRANS_INTERVAL

You can use the RDM$BIND_CKPT_TRANS_INTERVAL logical name or the
RDB_BIND_CKPT_TRANS_INTERVAL configuration parameter to define
a process-specific checkpoint interval value. By default, if you have fast
commit processing enabled, a process checkpoints when the AIJ block size
limit is reached or the time interval limit is exceeded, whichever occurs first.
The RDM$BIND_CKPT_TRANS_INTERVAL logical name and the RDB_
BIND_CKPT_TRANS_INTERVAL configuration parameter use the number
of transactions as the checkpoint trigger. Thus if you define RDM$BIND_
CKPT_TRANS_INTERVAL or RDB_BIND_CKPT_TRANS_INTERVAL to be
10, the process on which the logical name or configuration parameter is defined
checkpoints after committing 10 transactions if the transaction limit is reached
before the block size or time limits are reached. See Section 4.1.5.2 for more
information.

A.29 RDM$BIND_CLEAN_BUF_CNT and
RDB_BIND_CLEAN_BUF_CNT

You can use the RDM$BIND_CLEAN_BUF_CNT logical name or the RDB_
BIND_CLEAN_BUF_CNT configuration parameter to specify the number
of clean buffers to be maintained at the end of a process’ least recently
used queue of buffers for replacement. This logical name and configuration
parameter are used as part of the asynchronous batch-write feature, which
is designed to reduce the number of I/O stalls experienced by a process. The
default value for RDM$BIND_CLEAN_BUF_CNT and RDB_BIND_CLEAN_
BUF_CNT is 5, which means that five clean buffers will be maintained at the
end of a process’ least recently used queue of buffers for replacement.

A–14 Oracle Rdb Logical Names and Configuration Parameters

The RDM$BIND_BATCH_MAX logical name and the RDB_BIND_BATCH_
MAX configuration parameter are also used with the asynchronous batch-write
feature. See Section A.22 for more information on RDM$BIND_BATCH_MAX
and RDB_BIND_BATCH_MAX.

See Section 3.2.5 for information on the asynchronous batch-write feature.

A.30 RDM$BIND_COMMIT_STALL and RDB_BIND_COMMIT_STALL
The RDM$BIND_COMMIT_STALL logical name and the RDB_BIND_
COMMIT_STALL configuration parameter define the amount of time,
expressed in milliseconds, that a transaction waits after attempting to
become the group commit process. This wait time permits a larger number of
transactions in the group commit operation.

Based on various benchmarks, an optimal wait time of 50 milliseconds has
been established as the default value. However, the true optimal value
depends on the particular application. If an application is not update-
intensive, a smaller value may improve performance slightly. If an application
is update-intensive, a larger value may result in slightly better performance.

Note

Oracle Corporation recommends that you do not change the default
value unless it is absolutely necessary.

The default value is 50 milliseconds. The minimum value is 0 milliseconds,
and the maximum value is 1000 milliseconds (1 second).

A.31 RDM$BIND_DAPF_DEPTH_BUF_CNT and
RDB_BIND_DAPF_DEPTH_BUF_CNT

The logical name RDM$BIND_DAPF_DEPTH_BUF_CNT and the configuration
parameter RDB_BIND_DAPF_DEPTH_BUF_CNT allow you to specify the
number of buffers to prefetch from the physical area. The default is half the
number of buffers defined for the database user.

Oracle Rdb Logical Names and Configuration Parameters A–15

A.32 RDM$BIND_DAPF_ENABLED and
RDB_BIND_DAPF_ENABLED

The logical name RDM$BIND_DAPF_ENABLED and the configuration
parameter RDB_BIND_DAPF_ENABLED allow you to disable detected
asynchronous prefetch (DAPF) read operations. The DAPF feature predicts
the next page to be read for a physical area if the physical area is to be read
sequentially. If the page read matches the previous prediction, then Oracle
Rdb asynchronously prefetches pages prior to the actual (sequential) read
request.

The default value 1 indicates that detected asynchronous prefetch operations
are enabled and the value 0 indicates that they are disabled.

Digital UNIX Include the line shown in Example A–10 in your configuration file to disable
asynchronous prefetch operations.

Example A–10 Using the RDB_BIND_DAPF_ENABLED Configuration
Parameter

RDB_BIND_DAPF_ENABLED 0
♦

The DAPF feature improves performance primarily in mixed-format areas and
when you are:

• Inserting a large number of records in which the records would get stored
on successive pages

• Performing an RMU Verify command, or other operations that access the
PIO (or page) layer of Oracle Rdb by passing the DIO (or record) layer

• Walking adjacent sorted index leaf nodes from left to right when nodes are
in adjacent clumps

Detected asynchronous prefetch read operations are enabled by default.

A.33 RDM$BIND_DAPF_START_BUF_CNT and
RDB_BIND_DAPF_START_BUF_CNT

The logical name RDM$BIND_DAPF_START_BUF_CNT and the configuration
parameter RDB_BIND_DAPF_START_BUF_CNT allow you to specify the
number of buffers to be accessed sequentially from the physical area before
detected asynchronous prefetch read operations start.

A–16 Oracle Rdb Logical Names and Configuration Parameters

A.34 RDM$BIND_HRL_ENABLED and RDM_BIND_HRL_ENABLED
The RDM$BIND_HRL_ENABLED logical name and the RDM_BIND_HRL_
ENABLED configuration parameter indicate whether hold retrieval locks are
enabled. The default value 0 indicates that hold retrieval locks are disabled
and the value 1 indicates that they are enabled.

A.35 RDM$BIND_LOCK_TIMEOUT_INTERVAL and
RDB_BIND_LOCK_TIMEOUT_INTERVAL

You can specify a default wait interval by defining the RDM$BIND_LOCK_
TIMEOUT_INTERVAL logical name or the RDB_BIND_LOCK_TIMEOUT_
INTERVAL configuration parameter.

Digital UNIX Example A–11 shows how to define the configuration parameter on
Digital UNIX.

Example A–11 Using the RDB_BIND_LOCK_TIMEOUT_INTERVAL
Configuration Parameter

RDB_BIND_LOCK_TIMEOUT_INTERVAL 15

Example A–11 specifies a wait interval of 15 seconds. Note that the wait
interval is expressed in seconds, but that the time period is approximate. The
amount of time you specify for the wait interval depends on your application.
♦

OpenVMS
VAX

OpenVMS
Alpha

However, as a general guideline, use a value greater than the value specified in
the SYSGEN parameter DEADLOCK_WAIT. See Section 4.4.2 for information
on the DEADLOCK_WAIT parameter. ♦

To specify an application-specific wait interval, use the WAIT clause of the
SQL SET TRANSACTION statement. The interval specified by the WAIT
clause supersedes the interval specified by the logical name or configuration
parameter.

You can set a database-wide default lock timeout interval, which functions
as an upper limit on the amount of time that can be set with the WAIT
clause or with the RDM$BIND_LOCK_TIMEOUT_INTERVAL logical
name or the RDB_BIND_LOCK_TIMEOUT_INTERVAL configuration
parameter. This database-wide lock timeout interval is set with the
LOCK TIMEOUT INTERVAL IS n SECONDS parameter of the SQL CREATE
or ALTER DATABASE statement.

See the Oracle Rdb7 Guide to Distributed Transactions and the Oracle Rdb7
SQL Reference Manual for more information.

Oracle Rdb Logical Names and Configuration Parameters A–17

A.36 RDM$BIND_MAX_DBR_COUNT and
RDB_BIND_MAX_DBR_COUNT

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_
MAX_DBR_COUNT configuration parameter define the maximum number
of database recovery (DBR) processes to be simultaneously invoked by the
database monitor. This logical name and configuration parameter apply only
to databases that do not have global buffers enabled. Databases that utilize
global buffers have only one recovery process started at a time.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, this logical name must be defined in the LNM$SYSTEM_
TABLE logical name table. The following example limits the maximum
number of recovery processes to 20:

$ DEFINE/SYSTEM RDM$BIND_MAX_DBR_COUNT 20
♦

A.37 RDM$BIND_OPTIMIZE_AIJ_RECLEN and
RDB_BIND_OPTIMIZE_AIJ_RECLEN

You can improve the performance of the RMU Optimize After_Journal
command by defining the RDM$BIND_OPTIMIZE_AIJ_RECLEN logical name
or the RDB_BIND_OPTIMIZE_AIJ_RECLEN configuration parameter.

In general, Oracle Corporation recommends the following guidelines to improve
the overall after-image journal optimization performance:

• Always use the RDMS$BIND_SORT_WORKFILES logical name or the
RDB_BIND_SORT_WORKFILES configuration parameter to specify the
number of work files you wish to use.

• Always use the SORTWORKn logical names to specify the file names of
temporary work files on an unused, preferably fast, device.

• Never put two or more work files on the same device.

• Use fewer work files if the work file devices have lots of free space. Use
more work files if available free space is limited.

• Do not use the Trace qualifier with the RMU Optimize After_Journal
command if you do not need to trace the output. The trace output greatly
increases the number of buffered and direct I/O operations and the overall
elapsed time.

• Use the Log qualifier to obtain the OPTRECLEN message.

A–18 Oracle Rdb Logical Names and Configuration Parameters

• Use the output of the OPTRECLEN message plus 10 percent as the value
of the RDM$BIND_OPTIMIZE_AIJ_RECLEN logical name or the RDB_
BIND_OPTIMIZE_AIJ_RECLEN configuration parameter; the minimum
value is 512 and the maximum value is 4096.

• Do not optimize an .aij file containing many DDL records or .aij records
greater than the RDM$BIND_OPTIMIZE_AIJ_RECLEN or RDB_BIND_
OPTIMIZE_AIJ_RECLEN value; these types of records require an
immediate sort and flush operation, which is extremely expensive and
generates larger output files. The exact number of records depends largely
on the application and the overall size of the input after-image journal.

A.38 RDM$BIND_RCACHE_INSERT_ENABLED and
RDB_BIND_RCACHE_INSERT_ENABLED

You can use the RDM$BIND_RCACHE_INSERT_ENABLED logical name or
the RDM$BIND_RCACHE_INSERT_ENABLED configuration parameter to
indicate whether or not rows can be inserted into the row cache. The default
value 1 indicates that rows can be inserted into the cache, and the value 0
indicates that rows cannot be inserted into the cache.

A.39 RDM$BIND_RCACHE_RCRL_COUNT and
RDB_BIND_RCACHE_RCRL_COUNT

You can use the RDM$BIND_RCACHE_RCRL_COUNT logical name or the
RDB_BIND_RCACHE_RCRL_COUNT configuration parameter to specify the
number of row cache slots to reserve. Oracle Rdb reserves 20 row cache slots
by default.

A.40 RDM$BIND_RCS_BATCH_COUNT and
RDB_BIND_RCS_BATCH_COUNT

The RDM$BIND_RCS_BATCH_COUNT logical name and the RDB_BIND_
RCS_BATCH_COUNT configuration parameter define the number of rows that
the row cache server (RCS) process sweeps in a single batch.

The default value is 3000 rows. The minimum value is 1 row and the
maximum value is 1,000,000 rows.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, this logical name must be defined in the LNM$SYSTEM_
TABLE logical name table. ♦

Oracle Rdb Logical Names and Configuration Parameters A–19

A.41 RDM$BIND_RCS_CHECKPOINT and
RDB_BIND_RCS_CHECKPOINT

You can use the RDM$BIND_RCS_CHECKPOINT logical name or the
RDB_BIND_RCS_CHECKPOINT configuration parameter to direct the row
cache server (RCS) to perform a checkpoint. The default value 1 indicates a
checkpoint is performed, and the value 0 indicates that a checkpoint is not
performed. When the RCS process performs a checkpoint, it writes all of the
marked cold records in the row caches to their respective backing store files.

A.42 RDM$BIND_RCS_CKPT_BUFFER_CNT and
RDB_BIND_RCS_CKPT_BUFFER_CNT

You can use the RDM$BIND_RCS_CKPT_BUFFER_CNT logical name or the
RDB_BIND_RCS_CKPT_BUFFER_CNT configuration parameter to indicate
the number of buffers to be examined as a single batch by the row cache server
(RCS) process during a checkpoint operation. The default value for the buffer
count is 15 buffers.

A.43 RDM$BIND_RCS_LOG_FILE and RDB_BIND_RCS_LOG_FILE
You can use the RDM$BIND_RCS_LOG_FILE logical name or the RDB_BIND_
RCS_LOG_FILE configuration parameter to define a file name for the row
cache server (RCS) log file.

OpenVMS
VAX

OpenVMS
Alpha

You must define this logical name in the LNM$SYSTEM_TABLE table. ♦

A.44 RDM$BIND_RCS_MAX_COLD and
RDB_BIND_RCS_MAX_COLD

You can use the RDM$BIND_RCS_MAX_COLD logical name or the RDB_
BIND_RCS_MAX_COLD configuration parameter to specify the number of
marked records above which the row cache server (RCS) sweep starts. When
the RCS process performs a sweep, it writes all of the marked cold records in
the row caches to their respective storage areas.

A.45 RDM$BIND_RCS_MIN_COLD and
RDB_BIND_RCS_MIN_COLD

You can use the RDM$BIND_RCS_MIN_COLD logical name or the RDB_
BIND_RCS_MIN_COLD configuration parameter to specify the number of
unmarked records below which the row cache server (RCS) sweep completes.
When the RCS process performs a sweep, it writes all of the marked cold
records in the row caches to their respective storage areas.

A–20 Oracle Rdb Logical Names and Configuration Parameters

A.46 RDM$BIND_RCS_SWEEP_INTERVAL and
RDB_BIND_RCS_SWEEP_INTERVAL

You can use the RDM$BIND_RCS_SWEEP_INTERVAL logical name or the
RDB_BIND_RCS_SWEEP_INTERVAL configuration parameter to specify the
amount of time, in minutes, between sweeps. The default sweep interval is 1
minute.

A.47 RDM$BIND_READY_AREA_SERIALLY and
RDB_BIND_READY_AREA_SERIALLY

The RDM$BIND_READY_AREA_SERIALLY logical name and the RDB_
BIND_READY_AREA_SERIALLY configuration parameter cause Oracle Rdb
to grant lock requests for logical and physical areas in the order that the lock
requests were made.

The lock manager has two queues, the WAIT and CONVERSION queues,
to grant lock requests. When a process makes a lock request, one of two
things happens. The process either gets the lock immediately in the requested
mode, or (if another process has the lock already in an incompatible mode)
the process is put on the WAIT queue, where it is granted an NL lock to
the resource (regardless of the mode the process was requesting for the
resource). Once the process gets the lock in NL mode, it is moved from the
WAIT queue to the CONVERSION queue, where it seeks to get the NL mode
lock converted to a lock in the desired (originally requested) mode. On the
CONVERSION queue, lock requests compatible with the currently granted
mode are given preference over other incompatible lock requests on the queue
(that is, a lock request on the CONVERSION queue that is compatible with
the currently granted mode is granted before incompatible lock requests that
have been waiting longer on the CONVERSION queue). Lock requests in the
CONVERSION queue are always given precedence over lock requests in the
WAIT queue.

Moving a process lock request quickly from the WAIT queue to the
CONVERSION queue reduces the possibility of lock starvation. Lock
starvation is the term used to describe the situation where a process will
never be granted a lock in the requested mode. For example, suppose many
users on the CONVERSION queue kept readying and unreadying areas. If an
incompatible lock request on the WAIT queue was not moved quickly to the
CONVERSION queue, the process on the WAIT queue could starve for the lock
(because lock requests in the CONVERSION queue are given precedence over
lock requests in the WAIT queue).

Oracle Rdb Logical Names and Configuration Parameters A–21

Lock requests on the CONVERSION queue that are compatible with the
currently granted mode are given preference over incompatible lock requests on
the CONVERSION queue. This means that if there are many compatible lock
requests on the CONVERSION queue and very few incompatible lock requests,
the incompatible requests could become starved for the lock. To prevent the
lock starvation that can occur in this situation, define RDM$BIND_READY_
AREA_SERIALLY or RDB_BIND_READY_AREA_SERIALLY as 1; when this
is done, Oracle Rdb will force a serial ordering on the CONVERSION queue.
Thus, when RDM$BIND_READY_AREA_SERIALLY or RDB_BIND_READY_
AREA_SERIALLY is defined as 1, Oracle Rdb grants lock requests on the
CONVERSION queue for logical and physical areas in the order that the lock
requests were made.

OpenVMS
VAX

OpenVMS
Alpha

Example A–12 shows how to define the RDM$BIND_READY_AREA_
SERIALLY logical name to prevent lock starvation.

Example A–12 Using the RDM$BIND_READY_AREA_SERIALLY Logical
Name

$ DEFINE/SYSTEM/EXECUTIVE RDM$BIND_READY_AREA_SERIALLY 1
♦

A.48 RDM$BIND_RUJ_ALLOC_BLKCNT and
RDB_BIND_RUJ_ALLOC_BLKCNT

You can use the RDM$BIND_RUJ_ALLOC_BLKCNT logical name or the
RDB_BIND_RUJ_ALLOC_BLKCNT configuration parameter to define the
initial size, in blocks, of the .ruj file. The default .ruj file size is 127 blocks.

A.49 RDM$BIND_RUJ_EXTEND_BLKCNT and
RDB_BIND_RUJ_EXTEND_BLKCNT

You can use the RDM$BIND_RUJ_EXTEND_BLKCNT logical name or the
RDB_BIND_RUJ_EXTEND_BLKCNT configuration parameter to pre-extend
.ruj files for each process using a database. For example, you can define the
new block count to be a value between 1 and 65535 blocks or accept the default
of 127 blocks.

A–22 Oracle Rdb Logical Names and Configuration Parameters

Digital UNIX On Digital UNIX, include the line shown in Example A–13 in your
configuration file to pre-extend the .ruj file.

Example A–13 Using the RDB_BIND_RUJ_EXTEND_BLKCNT Configuration
Parameter

RDB_BIND_RUJ_EXTEND_BLKCNT 1000
♦

A.50 RDM$BIND_SNAP_QUIET_POINT and
RDB_BIND_SNAP_QUIET_POINT

The logical name RDM$BIND_SNAP_QUIET_POINT and the configuration
parameter RDB_BIND_SNAP_QUIET_POINT indicate whether snapshot
transactions hold the quiet-point lock and stall database or after-image journal
backups from operating.

The default value 1 indicates read-only transactions will continue to hold the
quiet-point lock. If the value is 0, the quiet-point lock is released prior to a
read-only transaction.

The process’ modified buffers are flushed to the appropriate database files prior
to releasing the quiet-point lock.

A.51 RDM$BIND_STATS_AIJ_ARBS_PER_IO and
RDB_BIND_STATS_AIJ_ARBS_PER_IO

The RDM$BIND_STATS_AIJ_ARBS_PER_IO logical name and the RDB_
BIND_STATS_AIJ_ARBS_PER_IO configuration parameter allow you to
override the default value of AIJ request blocks per AIJ I/O. The default is 2
blocks.

You can also set this threshold from the configuration submenu in the
Performance Monitor AIJ Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.52 RDM$BIND_STATS_AIJ_BKGRD_ARB_RATIO and
RDB_BIND_STATS_AIJ_BKGRD_ARB_RATIO

The RDM$BIND_STATS_AIJ_BKGRD_ARB_RATIO logical name and the
RDB_BIND_STATS_AIJ_BKGRD_ARB_RATIO configuration parameter
allow you to override the default value for the background AIJ request block
threshold. The default value is 50.

Oracle Rdb Logical Names and Configuration Parameters A–23

You can also set this threshold from the configuration submenu in the
Performance Monitor AIJ Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.53 RDM$BIND_STATS_AIJ_BLKS_PER_IO and
RDB_BIND_STATS_AIJ_BLKS_PER_IO

The RDM$BIND_STATS_AIJ_BLKS_PER_IO logical name and the RDB_
BIND_STATS_AIJ_BLKS_PER_IO configuration parameter allow you to
override the default value of blocks per AIJ I/O. The default value is 2.

You can also set this threshold from the configuration submenu in the
Performance Monitor AIJ Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.54 RDM$BIND_STATS_AIJ_SEC_TO_EXTEND and
RDB_BIND_STATS_AIJ_SEC_TO_EXTEND

The RDM$BIND_STATS_AIJ_SEC_TO_EXTEND logical name and the RDB_
BIND_STATS_AIJ_SEC_TO_EXTEND configuration parameter allow you to
override the default value of seconds to AIJ extend. The default value is 60.

You can also set this threshold from the configuration submenu in the
Performance Monitor AIJ Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.55 RDM$BIND_STATS_BTR_FETCH_DUP_RATIO and
RDB_BIND_STATS_BTR_FETCH_DUP_RATIO

The RDM$BIND_STATS_BTR_FETCH_DUP_RATIO logical name and the
RDB_BIND_STATS_BTR_FETCH_DUP_RATIO configuration parameter allow
you to override the default value of the B-tree duplicate fetch threshold. The
default threshold is 15.

You can also set this threshold from the configuration submenu in the
Performance Monitor Index Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.56 RDM$BIND_STATS_BTR_LEF_FETCH_RATIO and
RDB_BIND_STATS_BTR_LEF_FETCH_RATIO

The RDM$BIND_STATS_BTR_LEF_FETCH_RATIO logical name and the
RDB_BIND_STATS_BTR_LEF_FETCH_RATIO configuration parameter allow
you to override the default value of the B-tree leaf node fetch threshold. The
default threshold is 25.

A–24 Oracle Rdb Logical Names and Configuration Parameters

You can also set this threshold from the configuration submenu in the
Performance Monitor Index Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.57 RDM$BIND_STATS_DBR_RATIO and
RDB_BIND_STATS_DBR_RATIO

The RDM$BIND_STATS_DBR_RATIO logical name and the RDB_BIND_
STATS_DBR_RATIO configuration parameter allow you to override the default
value of the DBR invocation threshold. The default threshold is 15.

You can also set this threshold from the configuration submenu in the
Performance Monitor RUJ Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.58 RDM$BIND_STATS_ENABLED and
RDB_BIND_STATS_ENABLED

You can disable the writing of database statistics for a process with the
logical name RDM$BIND_STATS_ENABLED or the configuration parameter
RDB_BIND_STATS_ENABLED. When database statistics are disabled for a
process, the Performance Monitor shows zeros in the fields for each of the
display screens for that process. If you want to disable the writing of statistics
for all processes on a node, you must define the logical name RDM$BIND_
STATS_ENABLED or the configuration parameter RDB_BIND_STATS_
ENABLED for each process on that node. By default, the writing of database
statistics is enabled for each process on a node; the value is set to 1. Disabling
statistics is useful for static, performance-critical applications that have been
previously tuned and do not need the information provided by the Performance
Monitor. To disable the writing of database statistics for a process, define
the RDM$BIND_STATS_ENABLED logical name or the RDB_BIND_STATS_
ENABLED configuration parameter to 0.

OpenVMS
VAX

OpenVMS
Alpha

Example A–14 shows how to disable database statistics for a process.

Example A–14 Using the RDM$BIND_STATS_ENABLED Logical Name

$ DEFINE RDM$BIND_STATS_ENABLED 0
♦

To enable the writing of database statistics for a process in which the collection
of database statistics is disabled, define the RDM$BIND_STATS_ENABLED
logical name or the RDB_BIND_STATS_ENABLED configuration parameter to

Oracle Rdb Logical Names and Configuration Parameters A–25

1 or deassign the logical name or remove the parameter from the configuration
file.

OpenVMS
VAX

OpenVMS
Alpha

Example A–15 shows how to enable database statistics for a process.

Example A–15 Using the RDM$BIND_STATS_ENABLED Logical Name

$ DEFINE RDM$BIND_STATS_ENABLED 1
$
$! Or you can deassign the logical name
$
$ DEASSIGN RDM$BIND_STATS_ENABLED
♦

A.59 RDM$BIND_STATS_FULL_BACKUP_INTRVL and
RDB_BIND_STATS_FULL_BACKUP_INTRVL

The RDM$BIND_STATS_FULL_BACKUP_INTRVL logical name and the
RDB_BIND_STATS_FULL_BACKUP_INTRVL configuration parameter allow
you to override the full database backup threshold. The default threshold is 6.

You can also set this threshold from the configuration submenu in the
Performance Monitor RUJ Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.60 RDM$BIND_STATS_GB_IO_SAVED_RATIO and
RDB_BIND_STATS_GB_IO_SAVED_RATIO

The RDM$BIND_STATS_GB_IO_SAVED_RATIO logical name and the RDB_
BIND_STATS_GB_IO_SAVED_RATIO configuration parameter allow you to
override the GB IO-saved default threshold. The default threshold is 85.

You can also set the global buffer IO-saved threshold from the configuration
submenu in the Performance Monitor Buffer Analysis screen. See
Section 2.2.16 for more information on the Performance Monitor Online
Analysis facility.

A.61 RDM$BIND_STATS_GB_POOL_HIT_RATIO and
RDB_BIND_STATS_GB_POOL_HIT_RATIO

The RDM$BIND_STATS_GB_POOL_HIT_RATIO logical name and the RDB_
BIND_STATS_GB_POOL_HIT_RATIO configuration parameter allow you to
override the GB pool hit default threshold. The default threshold is 85.

A–26 Oracle Rdb Logical Names and Configuration Parameters

You can also set the global buffer pool hit threshold from the configuration
submenu in the Performance Monitor Buffer Analysis screen. See
Section 2.2.16 for more information on the Performance Monitor Online
Analysis facility.

A.62 RDM$BIND_STATS_LB_PAGE_HIT_RATIO and
RDB_BIND_STATS_LB_PAGE_HIT_RATIO

The RDM$BIND_STATS_LB_PAGE_HIT_RATIO logical name and the RDB_
BIND_STATS_LB_PAGE_HIT_RATIO configuration parameter allow you to
override the LB/AS page hit default threshold. The default is 75.

You can also set the local buffer pool hit threshold from the configuration
submenu in the Performance Monitor Buffer Analysis screen. See
Section 2.2.16 for more information on the Performance Monitor Online
Analysis facility.

A.63 RDM$BIND_STATS_MAX_HASH_QUE_LEN and
RDB_BIND_STATS_MAX_HASH_QUE_LEN

The RDM$BIND_STATS_MAX_HASH_QUE_LEN logical name and the RDB_
BIND_STATS_MAX_HASH_QUE_LEN configuration parameter allow you to
override the hash table queue length default threshold. The default threshold
is 2 rows.

You can also set the hash table queue length threshold from the configuration
submenu in the Performance Monitor Transaction Analysis screen. See
Section 2.2.16 for more information on the Performance Monitor Online
Analysis facility.

A.64 RDM$BIND_STATS_MAX_LOCK_STALL and
RDB_BIND_STATS_MAX_LOCK_STALL

The RDM$BIND_STATS_MAX_LOCK_STALL logical name and the RDB_
BIND_STATS_MAX_LOCK_STALL configuration parameter allow you to
override the lock stall default threshold. The default threshold is 2 seconds.

You can also set this threshold from the configuration submenu in the
Performance Monitor Locking Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

Oracle Rdb Logical Names and Configuration Parameters A–27

A.65 RDM$BIND_STATS_MAX_TX_DURATION and
RDB_BIND_STATS_MAX_TX_DURATION

The RDM$BIND_STATS_MAX_TX_DURATION logical name and the RDB_
BIND_STATS_MAX_TX_DURATION configuration parameter allow you to
override the transaction duration default threshold. The default value is 15.

You can also set the transaction duration threshold from the configuration
submenu in the Performance Monitor Transaction Analysis screen. See
Section 2.2.16 for more information on the Performance Monitor Online
Analysis facility.

A.66 RDM$BIND_STATS_PAGES_CHECKED_RATIO and
RDB_BIND_STATS_PAGES_CHECKED_RATIO

The RDM$BIND_STATS_PAGES_CHECKED_RATIO logical name and the
RDB_BIND_STATS_PAGES_CHECKED_RATIO configuration parameter allow
you to override the pages checked default threshold. The default threshold is
10 pages.

You can also set this threshold from the configuration submenu in the
Performance Monitor Record Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.67 RDM$BIND_STATS_RECS_FETCHED_RATIO and
RDB_BIND_STATS_RECS_FETCHED_RATIO

The RDM$BIND_STATS_RECS_FETCHED_RATIO logical name and the
RDB_BIND_STATS_RECS_FETCHED_RATIO configuration parameter allow
you to override the records fetched default threshold. The default threshold is
20 records.

You can also set this threshold from the configuration submenu in the
Performance Monitor Record Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.68 RDM$BIND_STATS_RECS_STORED_RATIO and
RDB_BIND_STATS_RECS_STORED_RATIO

The RDM$BIND_STATS_RECS_STORED_RATIO logical name and the RDB_
BIND_STATS_RECS_STORED_RATIO configuration parameter allow you
to override the records stored default threshold. The default threshold is 20
records.

A–28 Oracle Rdb Logical Names and Configuration Parameters

You can also set this threshold from the configuration submenu in the
Performance Monitor Record Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.69 RDM$BIND_STATS_RUJ_SYNC_IO_RATIO and
RDB_BIND_STATS_RUJ_SYNC_IO_RATIO

The RDM$BIND_STATS_RUJ_SYNC_IO_RATIO logical name and the RDB_
BIND_STATS_RUJ_SYNC_IO_RATIO configuration parameter allow you to
override the synchronous RUJ I/O default threshold. The default threshold is
10.

You can also set this threshold from the configuration submenu in the
Performance Monitor RUJ Analysis screen. See Section 2.2.16 for more
information on the Performance Monitor Online Analysis facility.

A.70 RDM$BIND_STATS_VERB_SUCCESS_RATIO and
RDB_BIND_STATS_VERB_SUCCESS_RATIO

The RDM$BIND_STATS_VERB_SUCCESS_RATIO logical name and the
RDB_BIND_STATS_VERB_SUCCESS_RATIO configuration parameter allow
you to override the verb success default threshold. The default threshold is 25.

You can also set the verb success threshold from the configuration submenu in
the Performance Monitor Transaction Analysis screen. See Section 2.2.16 for
more information on the Performance Monitor Online Analysis facility.

A.71 RDM$BIND_SYSTEM_BUFFERS_ENABLED
OpenVMS
Alpha

You can use the logical name RDM$BIND_SYSTEM_BUFFERS_ENABLED,
located in the LNM$SYSTEM_TABLE logical table, to specify whether or not
system space global sections are used. The RDM$BIND_SYSTEM_BUFFERS_
ENABLED logical name must be defined on all nodes that use system space
global sections. This logical name is not used as a database parameter.

The RDM$BIND_SYSTEM_BUFFERS_ENABLED logical name has three
values:

0 Indicates use of process global sections. This is the default value.

1 Indicates use of system space global sections, if possible. If this is not possible,
then process global sections are used.

2 Indicates use of system space global sections. If available system space is
inadequate, then the database open operation will fail.

Oracle Rdb Logical Names and Configuration Parameters A–29

The RMU Show Users command indicates whether system space global
sections are enabled, and shows the active values for the global buffer
parameters. ♦

A.72 RDM$BIND_TSN_INTERVAL and RDB_BIND_TSN_INTERVAL
The RDM$BIND_TSN_INTERVAL logical name and the RDB_BIND_TSN_
INTERVAL configuration parameter allow you to specify the number of
transactions to be allocated as a single batch when journal optimization is
enabled.

A.73 RDM$BIND_VM_SEGMENT and RDB_BIND_VM_SEGMENT
You can use the RDM$BIND_VM_SEGMENT logical name or the RDB_BIND_
VM_SEGMENT configuration parameter to prevent memory fragmentation and
allow applications that would otherwise run out of virtual memory to execute
correctly. Fragmentation occurs when, after some number of virtual memory
allocations and deallocations, unallocated virtual memory exists as a collection
of noncontiguous bytes (known as fragments). At some point, it is possible that
none of the memory fragments are large enough to satisfy the next request for
virtual memory. This logical name and configuration parameter are not for
general use, because preserving larger block sizes can cause problems for some
applications.

Unlike RDMS$BIND_WORK_VM and RDB_BIND_WORK_VM, which allocate
a user-specified number of virtual memory bytes (restricted only by the amount
of memory available on your system), RDM$BIND_VM_SEGMENT and
RDB_BIND_VM_SEGMENT allocate whatever number of contiguous bytes
are necessary to avoid memory fragmentation. Depending on the size of the
available virtual memory blocks, applications may receive more virtual memory
than requested. Defining RDM$BIND_VM_SEGMENT or RDB_BIND_VM_
SEGMENT to be 1 enables this feature; defining it to be 0 disables it.

Digital UNIX On Digital UNIX, include the line shown in Example A–16 in your
configuration file to enable the parameter.

Example A–16 Using the RDB_BIND_VM_SEGMENT Configuration
Parameter

RDB_BIND_VM_SEGMENT 1
♦

A–30 Oracle Rdb Logical Names and Configuration Parameters

You should enable RDM$BIND_VM_SEGMENT or RDB_BIND_VM_
SEGMENT either on the system experiencing the problem, or in some
other appropriate place, such as the LOGIN.COM file or the configuration file
of the user experiencing the fragmentation.

A.74 RDM$BUGCHECK_DIR and RDB_BUGCHECK_DIR
You can use the RDM$BUGCHECK_DIR logical name or the RDB_
BUGCHECK_DIR configuration parameter to redirect the location of bugcheck
files from the default directory to another location. This can be useful when
the default directory does not have enough space for bugcheck files.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, when the bugcheck directory is defined, bugcheck dump files are
written to the device and directory pointed to by the RDM$BUGCHECK_DIR
logical name, rather than to the user’s top-level directory, which is the default
behavior on OpenVMS. ♦

Digital UNIX On Digital UNIX, when the bugcheck directory is defined, bugcheck dump files
are written to the device and directory pointed to by the RDB_BUGCHECK_
DIR configuration parameter, rather than to the directory where the database
exists, which is the default behavior on Digital UNIX. ♦

When users have reached their disk quotas in their default directory due to
a bugcheck dump, and if the RDM$BUGCHECK_DIR logical name or the
RDB_BUGCHECK_DIR configuration parameter is not specified to another
device, the bugcheck dump overflows to the KOD$TT file. In this case, a DBR
process is created with an output device of KOD$TT. Also, note that bugcheck
dump files are written to the system disk and if the system disk becomes full,
the overflow might also end up in KOD$TT. Generally, nothing is written to
KOD$TT and an examination of the KOD$TT file will show that it is empty.

OpenVMS
VAX

OpenVMS
Alpha

DBR bugcheck dump files by default are written to the SYS$SYSTEM
directory; however, when you define the RDM$BUGCHECK_DIR logical name,
DBR bugchecks will also be written to the new location specified by this logical
name. ♦

As with any file creation, the user must have read and write access to the
bugcheck directory for the bugcheck dump file to be written successfully.

Oracle Rdb Logical Names and Configuration Parameters A–31

Digital UNIX Example A–17 shows how to redirect the location of the bugcheck file.

Example A–17 Using the RDB_BUGCHECK_DIR Configuration Parameter

RDB_BUGCHECK_DIR /usr/tmp/bugcheck
♦

OpenVMS
VAX

OpenVMS
Alpha

If the logical name you supply translates to the null device (NL:), then you
disable the bugcheck output. However, this defeats the purpose of the feature;
disabling the bugcheck output does not fix the problem that causes the
bugcheck dump. See the Oracle Rdb7 Guide to Database Maintenance for more
information. ♦

A.75 RDM$BUGCHECK_IGNORE_FLAGS and
RDB_BUGCHECK_IGNORE_FLAGS

You can use the RDM$BUGCHECK_IGNORE_FLAGS logical name or the
RDB_BUGCHECK_IGNORE_FLAGS configuration parameter to reduce the
size of bugcheck dump files created by Oracle Rdb.

OpenVMS
VAX

OpenVMS
Alpha

For example, to prevent the dumping of locking information and page dumps
for all Oracle Rdb users on OpenVMS, issue the following command:

$ DEFINE/SYSTEM RDM$BUGCHECK_IGNORE_FLAGS "LP"

In this example the ‘‘L’’ stands for ‘‘Locking’’ and the ‘‘P’’ stands for ‘‘Pages’’. ♦

The complete list of available flags is in Table A–1.

Table A–1 RDM$BUGCHECK_IGNORE_FLAGS and RDB_BUGCHECK_
IGNORE_FLAGS

Flag Description

C Disables dumping client-specific information. For Oracle Rdb this is
information such as request BLR, request (REQ) blocks, and generated
code. Disabling the dumping of this information substantially limits the
possibility of diagnosing problems such as optimizer problems, internally
generated coding problems, and area mapping problems. Typically this
portion of a bugcheck dump is not exceptionally large.

(continued on next page)

A–32 Oracle Rdb Logical Names and Configuration Parameters

Table A–1 (Cont.) RDM$BUGCHECK_IGNORE_FLAGS and RDB_BUGCHECK_
IGNORE_FLAGS

Flag Description

G Disables dumping of global buffer data structures. Disabling this
information may make it more difficult to diagnose global buffer related
bugchecks. For a database that has been opened with thousands of global
buffers, this output can be quite large.

H Disables dumping of root file information. This information is identical to
the output from RMU Dump Header with the Debug option. Disabling this
information substantially limits the possibility of diagnosing problems
related to physical storage areas, recovery problems, and various I/O
subsystem related bugchecks. This section is generally not very large. A
database that has hundreds of storage areas may generate a significant
amount of output in this section, but in general the quantity of dump output
is not significant.

L Disables dumping of locking information. This is a dump of the lock
database for the system. Disabling the dumping of this information
substantially limits the possibility of diagnosing bugchecks related to locking.
On a system with many or large databases, this output can be significant.

P Disables dumping of page buffers. All database pages in the attached
user’s buffers are normally dumped. Disabling this information can make
it more difficult to diagnose I/O subsystem related errors. If the user has
been allocated many hundreds or thousands of buffers, this output can be
significant.

A.76 RDM$MAILBOX_CHANNEL
OpenVMS
VAX

OpenVMS
Alpha

The logical name RDM$MAILBOX_CHANNEL contains the node-specific
address of the database monitor mailbox; this address is used by processes to
communicate with the appropriate database monitor.

The RDM$MAILBOX_CHANNEL logical name’s value is established by the
monitor process when the permanent mailbox is initially created; the value is
not defined by the user.

The RDM$MAILBOX_CHANNEL logical name is translated using the
LNM$PERMANENT_MAILBOX table or tables in the LNM$SYSTEM_TABLE
logical name table.

Note

If the LNM$PERMANENT_MAILBOX table is not defined in the
LNM$SYSTEM_TABLE logical name table, the following occurs:

Oracle Rdb Logical Names and Configuration Parameters A–33

• You receive the "monitor is not running" error when you try to
attach to a database.

• The RMU Monitor Start command hangs.

By default, the LNM$PERMANENT_MAILBOX table is defined in
the LNM$SYSTEM_TABLE logical name table. However, sometimes a
user or third-party application redefines the LNM$PERMANENT_
MAILBOX table in another logical name table (such as the
LNM$GROUP table). To avoid these problems, perform the following
steps:

1. Define the LNM$PERMANENT_MAILBOX table in the
LNM$SYSTEM_TABLE:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$PERMANENT_MAILBOX LNM$SYSTEM

2. Start the database monitor:

$ RMU/MONITOR START

3. Start the application

Alternately, you can change the application that redefines the
LNM$PERMANENT_MAILBOX table so that LNM$PERMANENT_
MAILBOX is defined as a search list that includes the LNM$SYSTEM_
TABLE table, as shown in the following example:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$PERMANENT_MAILBOX LNM$GROUP,-
_$ LNM$SYSTEM

♦

A.77 RDM$MONITOR and RDB_MONITOR
The logical name RDM$MONITOR and the configuration parameter RDB_
MONITOR define the device and directory where the Oracle Rdb monitor log
file is to reside; the value should not include a file name specification. The
directory location defined by the value of the logical name or configuration
parameter is tested and used only by the RMONSTART.COM command file.

Note

The logical name and configuration parameter are not actually used
by the Oracle Rdb monitor; only the RMONSTART.COM command file
uses the logical name and configuration parameter. The logical name

A–34 Oracle Rdb Logical Names and Configuration Parameters

and configuration parameter are primarily defined for use by layered
products.

To manually change the monitor log file location, see the information on the
RMU Monitor Start Output command in the Oracle RMU Reference Manual.

OpenVMS
VAX

OpenVMS
Alpha

The RDB$MONITOR logical name is translated using the LNM$SYSTEM
table. ♦

A.78 RDM$MON_USERNAME
OpenVMS
VAX

OpenVMS
Alpha

The logical name RDM$MON_USERNAME designates the name of the user
whose quotas the monitor process, upon startup, is to inherit.

During normal system startup, an RMU Monitor Start command is performed.
If global buffers are enabled, the default PGFLQUOTA of 20,480 (the original
process quotas) may not be sufficient for the monitor process to be created if
many global buffers are used.

When a monitor is started using the RMU Monitor Start command, the quota
limit that the monitor process uses is determined as the larger of three factors:
a hard-coded ‘‘minimum-necessary’’ value, the quota value from the designated
user, or the quota value from the user who is performing the startup.

For example, the hard-coded minimum value of the PGFLQUOTA process
quota is 20,480. If the quota value for the user SYSTEM is 40,960 and the
quota value for the user starting the monitor is 30,720, then the monitor is
started with a PGFLQUOTA of 40,960.

The hard-coded minimum values for each monitor quota are as follows:

ASTLM 256
BIOLM 256
BYTLM 20,480
DIOLM 256
ENQLM 8,192
FILLM 1,024
PGFLQUOTA 20,480
PRCCNT 64
TQCNT 64
WSEXTENT 512
WSQUOTA 512

Oracle Rdb Logical Names and Configuration Parameters A–35

Example A–18 shows how to use the RDM$MON_USERNAME logical name to
designate that the monitor process inherit the user quotas specified by the user
account GOOD_QUOTAS, according to the algorithm previously mentioned.

Example A–18 Using the RDM$MON_USERNAME Logical Name

$ DEFINE RDM$MON_USERNAME GOOD_QUOTAS

The RDM$MON_USERNAME logical name was introduced because it is
possible for an RMU Monitor Start operation at system startup to result
in an exceeded quota error if global buffers are enabled. The RDM$MON_
USERNAME logical name allows you to set up a special account with the
appropriate quotas for executing the monitor process. ♦

A.79 RDMS$AUTO_READY and RDB_AUTO_READY
The RDMS$AUTO_READY logical name and the RDB_AUTO_READY
configuration parameter allow a process requesting a logical area lock in CR
(concurrent read) mode to obtain the lock in CU (concurrent update) mode if
the process already holds a carry-over lock in CU mode for the logical area.

Under normal circumstances, a process may start an update transaction
that reads a row first, and then updates it later. In this case, Oracle Rdb
may first grant the process a logical area lock in CR (concurrent read) mode,
then upgrade the lock to CU (concurrent update) mode later. If the process
starts another update transaction, the same situation can occur. Many lock
operations can be required to transition from CR to CU mode and back again.

You can enable update carry-over locks at the table level for a process by
defining the RDMS$AUTO_READY logical name or the RDB_AUTO_READY
configuration parameter for the process. If RDMS$AUTO_READY or RDB_
AUTO_READY is defined, when the process requests a logical area lock in CR
mode, it will obtain that lock in CU mode if it is already holding a carry-over
lock on the logical area in CU mode. This optimization of carry-over locks for
logical areas reduces the locking overhead for most update transactions.

Digital UNIX Example A–19 shows how to enable update carry-over locking at a table level
for a process.

A–36 Oracle Rdb Logical Names and Configuration Parameters

Example A–19 Using the RDB_AUTO_READY Configuration Parameter

RDB_AUTO_READY 1
♦

Note that carry-over locking must be enabled when you define the
RDMS$AUTO_READY logical name or the RDB_AUTO_READY configuration
parameter to 1; otherwise, defining a value of 1 will not enable update
carry-over locks at the table level.

A process benefits from update carry-over lock optimization for tables only if
the process is updating the database. The benefit of enabling update carry-over
locks at a table level for a process is that when the process starts a new update
transaction on a table for which it holds a carry-over lock in CU mode for the
logical area, it will get the logical area lock in CU mode. Getting the logical
area lock in CU mode at the start of the transaction means the process avoids
the locking overhead of first downgrading and then upgrading the lock later. If
the process does not perform any updates, getting the logical area locks in the
lower (CR) mode is sufficient.

The RDMS$AUTO_READY logical name and the RDB_AUTO_READY
configuration parameter should be used in high volume, update-intensive,
transaction processing environments when the Performance Monitor indicates
that a large number of lock conversions are taking place for each transaction.

A process that has enabled update carry-over locking at the table level can
cause concurrency problems if the process reserves tables in PROTECTED
READ or PROTECTED WRITE modes, or if it performs sequential scans of
tables.

OpenVMS
VAX

OpenVMS
Alpha

Example A–20 shows how to disable update carry-over locking at a table level
for a process by deassigning the RDMS$AUTO_READY logical name.

Example A–20 Disabling Update Carry-Over Locking at a Table Level by
Deassigning the RDMS$AUTO_READY Logical Name

$ DEASSIGN RDMS$AUTO_READY
♦

A.80 RDMS$BIND_OUTLINE_FLAGS and
RDB_BIND_OUTLINE_FLAGS

The logical name RDMS$BIND_OUTLINE_FLAGS and the configuration
parameter RDB_BIND_OUTLINE_FLAGS cause Oracle Rdb to ignore query
outlines. If you want the optimizer to ignore any outlines that may be

Oracle Rdb Logical Names and Configuration Parameters A–37

stored for a query, define RDMS$BIND_OUTLINE_FLAGS or RDB_BIND_
OUTLINE_FLAGS to the value ‘‘I’’. When a process has defined the logical
name or configuration parameter as ‘‘I’’, the optimizer will ignore any stored
outlines when processing the query.

Section 5.9 provides more information on query outlines.

A.81 RDMS$BIND_OUTLINE_MODE and
RDB_BIND_OUTLINE_MODE

When multiple outlines exist for a query, you set the logical name
RDMS$BIND_OUTLINE_MODE or the configuration parameter RDB_
BIND_OUTLINE_MODE to the value of the outline mode for the outline you
want the optimizer to use.

Suppose, for example, two outlines are stored for a particular query. Assume
that one outline has the default outline mode value of 0 and the other outline
has an outline mode value of –1. If you want the optimizer to use the outline
with the outline mode value of 0 for the query, the RDMS$BIND_OUTLINE_
MODE logical name or the RDB_BIND_OUTLINE_MODE configuration
parameter should be set to 0 (zero). If you want the optimizer to use the other
outline for the query, the RDMS$BIND_OUTLINE_MODE logical name or the
RDB_BIND_OUTLINE_MODE configuration parameter should be set to –1.

Section 5.9 provides more information on query outlines.

A.82 RDMS$BIND_PRESTART_TXN and
RDB_BIND_PRESTART_TXN

The RDMS$BIND_PRESTART_TXN logical name and the RDB_BIND_
PRESTART_TXN configuration parameter allow you to establish the default
setting for prestarted transactions outside of an application.

The logical name and configuration parameter allow prestarted transactions to
be disabled in environments that do not allow source code to be modified, or in
which the source code may not be available.

The value 1 indicates that prestarted transactions are enabled, and the value 0
indicates that prestarted transactions are disabled.

A–38 Oracle Rdb Logical Names and Configuration Parameters

OpenVMS
VAX

OpenVMS
Alpha

The following example disables prestarted transactions on OpenVMS.

$ DEFINE RDMS$BIND_PRESTART_TXN 0
♦

You can override the value specified for RDMS$BIND_PRESTART_TXN or
RDB_BIND_PRESTART_TXN by using the PRESTARTED TRANSACTION
clause in your application.

Note

Oracle Rdb recommends that most applications accept the default
setting of PRESTARTED TRANSACTIONS ARE ON, which provides
reduced I/O during processing of the SET TRANSACTION statement.

A.83 RDMS$BIND_QG_CPU_TIMEOUT and
RDB_BIND_QG_CPU_TIMEOUT

The RDMS$BIND_QG_CPU_TIMEOUT logical name and the RDB_BIND_
QG_CPU_TIMEOUT configuration parameter restrict the amount of CPU
time used to optimize a query for execution. If the query is not optimized and
prepared for execution before the CPU time limit is reached, an error message
is returned and the query is aborted.

The default is unlimited CPU time for query compilation. Dynamic SQL
options are inherited from the compilation qualifier.

Digital UNIX Include the line shown in Example A–21 in your configuration file to limit the
elapsed CPU time spent by the optimizer to 5 seconds.

Example A–21 Using the RDB_BIND_QG_CPU_TIMEOUT Configuration
Parameter

RDB_BIND_QG_CPU_TIMEOUT 5
♦

This logical name and configuration parameter are translated at attach time
and supersede all options specified in an application.

Oracle Rdb Logical Names and Configuration Parameters A–39

A.84 RDMS$BIND_QG_REC_LIMIT and RDB_BIND_QG_REC_LIMIT
You can use the RDMS$BIND_QG_REC_LIMIT logical name or the RDB_
BIND_QG_REC_LIMIT configuration parameter to establish a process or
system limit on the number of rows a query returns. If a user enters a query
and the returned rows exceed the limit set by RDMS$BIND_QG_REC_LIMIT
or RDB_BIND_QG_REC_LIMIT, the user receives an error message and
the query is aborted. This prevents users from overloading the system with
general queries that return every row in a table or every row in a multiple
table join. You can also set a time limit to accomplish this goal; refer to
Section A.85.

OpenVMS
VAX

OpenVMS
Alpha

Example A–22 shows how to set a returned row limit.

Example A–22 Using the RDMS$BIND_QG_REC_LIMIT Logical Name

$ DEFINE RDMS$BIND_QG_REC_LIMIT 1000
♦

Example A–22 limits the number of returned rows to 1000. The specified value
is independent of the number of table rows read by the query, for example
intermediate rows read during a join operation; it applies only to the number
of rows returned. However, you should avoid setting too low a value because
the row limit value applies to all database queries, including queries to system
tables (by SQL, for example) that fetch the metadata required to parse a query.
If the row limit value prevents SQL from fetching all the required metadata,
the attempt to execute the query fails.

RDMS$BIND_QG_REC_LIMIT and RDB_BIND_QG_REC_LIMIT are
translated when a process attaches to the database, and their value supersedes
any limit specified within an application using compiler qualifiers.

A.85 RDMS$BIND_QG_TIMEOUT and RDB_BIND_QG_TIMEOUT
You can use the RDMS$BIND_QG_TIMEOUT logical name or the RDB_
BIND_QG_TIMEOUT configuration parameter to establish a system limit on
the amount of time the optimizer spends compiling a query. If a user enters
a query and the elapsed time specified by RDMS$BIND_QG_TIMEOUT or
RDB_BIND_QG_TIMEOUT is exceeded, the user receives an error message
and the query is aborted. This prevents users from overloading the system
with general queries that return every row in a table or every row in a multiple
table join. You can also establish a limit on the number of returned rows; refer
to Section A.84.

A–40 Oracle Rdb Logical Names and Configuration Parameters

Digital UNIX Example A–23 shows how to set a system limit on the amount of time the
optimizer spends compiling a query.

Example A–23 Using the RDB_BIND_QG_TIMEOUT Configuration Parameter

RDB_BIND_QG_TIMEOUT 15
♦

Example A–23 limits the elapsed time spent by the optimizer to 15 seconds.

RDMS$BIND_QG_TIMEOUT and RDB_BIND_QG_TIMEOUT are translated
when a process attaches to the database, and their value supersedes any limit
specified within an application using compiler qualifiers.

A.86 RDMS$BIND_SEGMENTED_STRING_BUFFER and
RDB_BIND_SEGMENTED_STRING_BUFFER

The RDMS$BIND_SEGMENTED_STRING_BUFFER logical name and the
RDB_BIND_SEGMENTED_STRING_BUFFER configuration parameter allow
you to reduce the overhead of I/O operations when you manipulate segmented
strings.

You may be able to increase the efficiency of applications that manipulate
segmented strings by increasing the buffer space for segmented strings.

OpenVMS
VAX

OpenVMS
Alpha

When you use the RDML and RDBPRE precompilers, be sure to define
a sufficiently large value for the RDMS$BIND_SEGMENTED_STRING_
BUFFER logical name. ♦

You need an adequate buffer size to store large segmented strings (using
segmented string storage maps) in storage areas other than the default
RDB$SYSTEM storage area. The minimum acceptable value for the
RDMS$BIND_SEGMENTED_STRING_BUFFER logical name and the
RDB_BIND_SEGMENTED_STRING_BUFFER configuration parameter must
be equal to the sum of the length of the segments of the segmented string.
For example, if you know that the sum of the length of the segments is 1
megabyte, then 1,048,576 bytes is an acceptable value for this logical name or
configuration parameter.

Oracle Rdb Logical Names and Configuration Parameters A–41

OpenVMS
VAX

OpenVMS
Alpha

You must specify the logical name value because when RDML and RDBPRE
precompilers store segmented strings, Oracle Rdb does not know which table
contains the string until after the entire string is stored. Oracle Rdb buffers
the entire segmented string, if possible, and does not store it until the STORE
statement executes. ♦

If the segmented string remains buffered, it is stored in the appropriate storage
area. If the string is not buffered (because it is larger than the defined value
for the logical name, configuration parameter, or the default value of 10,000
bytes), it is not stored in the default storage area and the following exception
message is displayed:

%RDB-F-IMP_EXC, facility-specific limit exceeded
-RDMS-E-SEGSTR_AREA_INC, segmented string was stored incorrectly

To avoid this error, set the value of the RDMS$BIND_SEGMENTED_STRING_
BUFFER logical name or the RDB_BIND_SEGMENTED_STRING_BUFFER
configuration parameter to a sufficiently large value. Note that a value of
up to 500 megabytes can be specified for this logical name and configuration
parameter.

Note

The SQL interface for lists (segmented strings) does not require you
to define the value for this logical name or configuration parameter.
Before the list is brought into the buffer, SQL knows the column that
the list is associated with and the table in which it is stored. However,
for large lists, defining this logical name or configuration parameter
with a value large enough to hold the entire list may improve the
handling performance of storing the list.

OpenVMS
VAX

OpenVMS
Alpha

Example A–24 shows how to change this value to 20000 bytes.

Example A–24 Using the RDMS$BIND_SEGMENTED_STRING_BUFFER
Logical Name

$ DEFINE RDMS$BIND_SEGMENTED_STRING_BUFFER 20000
♦

A–42 Oracle Rdb Logical Names and Configuration Parameters

A.87 RDMS$BIND_SEGMENTED_STRING_COUNT and
RDB_BIND_SEGMENTED_STRING_COUNT

The RDMS$BIND_SEGMENTED_STRING_COUNT logical name and the
RDB_BIND_SEGMENTED_STRING_COUNT configuration parameter specify
the allocation size, expressed as the number of entries, in the segmented string
ID list; the ID list is used to materialize and manipulate segmented strings for
a table row.

By default, the segmented string ID list is allocated in multiples of 64 entries,
with each entry addressing a separate segmented string. If a table contains
more than the indicated number of segmented strings, another segmented
string ID list whose size is twice the previous size will be allocated; the first
block will contain 64 entries, the second block will contain 128 entries, and so
forth. To avoid fragmenting virtual memory, the logical name or configuration
parameter value should closely approximate the number of segmented strings
typically retrieved by the application.

Define RDMS$BIND_SEGMENTED_STRING_COUNT or RDB_BIND_
SEGMENTED_STRING_COUNT as n, where n is the number of segmented
strings in the table. The default and minimum value is 64.

Digital UNIX Example A–25 defines a value of 100 for this configuration parameter.

Example A–25 Using the RDB_BIND_SEGMENTED_STRING_COUNT
Configuration Parameter

RDB_BIND_SEGMENTED_STRING_COUNT 100
♦

Defining this logical name or configuration parameter can help to avoid a
problem in which an import operation fails and the process loops, producing
these messages:

%SQL-F-BADBLOB, unable to import a segmented string
%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-EXQUOTA, exceeded quota
-SYSTEM-F-EXQUOTA, exceeded quota

A problem has been found when this logical name or configuration parameter
is used with multiple database attaches. Each additional attach causes virtual
memory to be allocated unnecessarily. This extra virtual memory is not
released until image rundown.

Oracle Rdb Logical Names and Configuration Parameters A–43

Oracle Corporation suggests that this logical name and configuration
parameter not be used if more than one database attach is performed per
session. Alternatively, because this logical name and configuration parameter
are usually associated with importing large databases with many segmented
strings, make sure you exit the SQL interactive utility between IMPORT and
ATTACH statements.

A.88 RDMS$BIND_SEGMENTED_STRING_DBKEY_SCOPE and
RDB_BIND_SEGMENTED_STRING_DBKEY_SCOPE

The RDMS$BIND_SEGMENTED_STRING_DBKEY_SCOPE logical name
and the RDB_BIND_SEGMENTED_STRING_DBKEY_SCOPE configuration
parameter indicate whether the dbkey of a modified segmented string may be
reused by the process.

The dbkey of the first segment of a segmented string is stored in the user’s
data record. It is possible that certain applications test this dbkey value to
determine if something has changed; if Oracle Rdb were to reuse the same
segment, then this could break the user application.

When the RDMS$BIND_SEGMENTED_STRING_DBKEY_SCOPE logical
name or the RDB_BIND_SEGMENTED_STRING_DBKEY_SCOPE
configuration parameter is set to 1 (indicating true), the dbkeys of modified
segmented strings will not be reused by the process; the dbkeys will be
available for reuse after the process detaches from the database. When the
logical name or configuration parameter is undefined, or set to 0 (indicating
false), the dbkeys of modified segmented strings are reused by the process. The
default value is 0 (false).

Note

If the database has the Replication Option for Rdb (formally known as
Data Distributor) transfers enabled, the logical name RDMS$BIND_
SEGMENTED_STRING_DBKEY_SCOPE or the configuration
parameter RDB_BIND_SEGMENTED_STRING_DBKEY_SCOPE
value is always 1 (true).

A–44 Oracle Rdb Logical Names and Configuration Parameters

OpenVMS
VAX

OpenVMS
Alpha

Example A–26 shows how to change this value to indicate that segmented
string dbkeys are not reused until the process detaches from the database.

Example A–26 Using the RDMS$BIND_SEGMENTED_STRING_DBKEY_
SCOPE Logical Name

$ DEFINE RDMS$BIND_SEGMENTED_STRING_DBKEY_SCOPE 1
♦

A.89 RDMS$BIND_SORT_WORKFILES and
RDB_BIND_SORT_WORKFILES

OpenVMS
VAX

OpenVMS
Alpha

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work
files the OpenVMS Sort utility (SORT) is to use if work files are required. The
SORT default is 2 and the maximum number is 10. The work files can be
individually controlled by the SORTWORKn logical names (where n is from 0
through 9).

You can increase the efficiency of Oracle Rdb sort operations, which use the
SORT utility, by assigning the location of the temporary sort work files to
different disks. These assignments are made by using up to ten logical names,
SORTWORK0 through SORTWORK9.

Normally, SORT places work files in the user’s SYS$SCRATCH directory. By
default, SYS$SCRATCH is the same device and directory as the SYS$LOGIN
location. When many concurrent users enter Oracle Rdb queries that
necessitate sort operations, and those users share the same disk, performance
can suffer if disk I/O operation is a bottleneck. Specifying that a user’s work
files will reside on separate disks permits overlap of the SORT read/write
cycle. Also, you may encounter cases where insufficient space exists on the
SYS$SCRATCH disk device (for example, while Oracle Rdb builds indexes for a
very large table); using the SORTWORK0 through SORTWORK9 logical names
can help you avoid this problem.

For the greatest sorting efficiency, you can place work files on:

• The fastest device available

• The device having the least activity

• The device having the most space available

• Separate devices

Oracle Rdb Logical Names and Configuration Parameters A–45

At DCL level, you can select a different device (as shown in Example A–27) for
any work file by specifying the device.

Example A–27 Using the SORTWORKn Logical Name

$ DEFINE SORTWORKn device:

The logical name SORTWORKn is a work file, where n indicates the
number of the work file. By default, SORT creates just two work files.
The RDMS$BIND_SORT_WORKFILES logical name uses this default, unless
more work files are specified. Thus, for Oracle Rdb users, you can assign up
to ten (SORTWORK0 through SORTWORK9) logical names. You can use the
logical name SORTWORKn in two ways:

• If you define SORTWORKn and specify a device, Oracle Rdb creates a
hidden temporary file. No root directory is necessary, but users must have
disk quotas enabled on the specified device.

• If you define SORTWORKn and specify a device and a directory name,
Oracle Rdb creates a visible temporary file. Users do not need disk quotas
enabled on the specified device. Instead, you can add an ACL for a resource
identifier and grant the resource identifier to each user. The disk quota for
the resource identifier is then used. This is a good alternative when a large
number of database users may be concurrently using the sort work files,
because this alternative requires only one directory for all of the active
users.

Example A–28 assigns the first work file to the 1DUA1 device.

Example A–28 Using the SORTWORK0 Logical Name

$ DEFINE SORTWORK0 1DUA1:

If the user’s writable directory exists, the 1DUA1:[USER1]SORTWORK.TMP
file is created. If no writable directory exists on the target disk, the operation
fails.

Consider the following example:

• The OpenVMS files that comprise an Oracle Rdb database called
CORPORATE_SALARY are distributed over six RA81 disk devices:
222DUA12, 222DUA14, 222DUA16, 222DUA18, 222DUA21,
and 222DUA22. At daily peak usage times, and particularly when the
weekly payroll is being computed, activity on these disks is very high.

A–46 Oracle Rdb Logical Names and Configuration Parameters

• The SYS$SCRATCH logical names for most users accessing this database
translate into directories on several I/O-saturated disks: 222DUA17,
222DUA19, and 222DUA20. In addition, because of other uses for
these disks, unused disk space is not always available.

• After you analyze disk I/O activity with the OpenVMS Monitor utility on
all your available disks, you determine that 222DUA8, 222DUA9,
222DUA10, and 222DUA11 have the least I/O activity. These disks
contain no OpenVMS files from the CORPORATE_SALARY database and
are not used as SYS$SCRATCH locations by any users (or users running
programs) who access this database.

• Because of the nature of this application, there is no easy way to avoid the
high volume of concurrent SORT operations.

Entering the four DCL DEFINE commands shown in Example A–29 causes the
SORT work files to be placed on separate disks from the user’s SYS$LOGIN
location, which, as previously described, may improve sort performance.

Example A–29 Using SORTWORK n to Specify Multiple Devices

$ DEFINE SORTWORK0 222DUA8:
$ DEFINE SORTWORK1 222DUA9:
$ DEFINE SORTWORK2 222DUA10:
$ DEFINE SORTWORK3 222DUA11:
♦

Digital UNIX To increase the efficiency of Oracle Rdb sort operations that use the Sort
utility, you can spread work files across disks by assigning the location of the
temporary sort work files to different disks. You make these assignments by
using the environmental variables SORTWORK0 through SORTWORK255.
For example, you can define the environmental variables by using the following
commands:

setenv SORTWORK0 /tmp
setenv SORTWORK1 .

To specify how many work files the Sort utility is to use, define the RDB_
BIND_SORT_WORKFILES configuration parameter in the .dbsrc configuration
file. The following example shows how to specify that the Sort utility uses 9
files:

RDB_BIND_SORT_WORKFILES 9
♦

Oracle Rdb Logical Names and Configuration Parameters A–47

A.90 RDMS$BIND_VALIDATE_CHANGE_FIELD and
RDB_BIND_VALIDATE_CHANGE_FIELD

When you use the SQL ALTER DOMAIN statement, Oracle Rdb changes the
metadata in the system relation but converts the data stored in the table when
the next update operation occurs. This approach usually causes no problems.
Sometimes, however, you may make changes to metadata that render data
unreadable due to conversion problems between stored data and newly defined
metadata.

By defining the RDMS$BIND_VALIDATE_CHANGE_FIELD logical name or
the RDB_BIND_VALIDATE_CHANGE_FIELD configuration parameter, you
can ensure that data records are validated and converted to the new metadata
definition by the ALTER DOMAIN statement, rather than at data update time.

Digital UNIX Example A–30 shows how to define the RDB_BIND_VALIDATE_CHANGE_
FIELD configuration parameter in the configuration file.

Example A–30 Using the RDB_BIND_VALIDATE_CHANGE_FIELD
Configuration Parameter

RDB_BIND_VALIDATE_CHANGE_FIELD 1
♦

A.91 RDMS$BIND_WORK_FILE and RDB_BIND_WORK_FILE
You can use the RDMS$BIND_WORK_FILE logical name or the RDB_BIND_
WORK_FILE configuration parameter to redirect the location of temporary
files that Oracle Rdb sometimes creates for use in matching operations. You
have the following three options:

OpenVMS
VAX

OpenVMS
Alpha

• If you do not define RDMS$BIND_WORK_FILE, Oracle Rdb creates the
temporary file on the device specified in SYS$LOGIN. ♦

• If you define RDMS$BIND_WORK_FILE or RDB_BIND_WORK_FILE
and specify a device name, Oracle Rdb creates the temporary file in your
default directory on the specified device.

A–48 Oracle Rdb Logical Names and Configuration Parameters

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, this reduces the number of disk I/O operations in
SYS$LOGIN. ♦

• If you define RDMS$BIND_WORK_FILE or RDB_BIND_WORK_FILE and
specify a device name and directory, Oracle Rdb creates the temporary file
in the specified directory. This enables the file to use resource identifiers
for disk quota allocation.

In all three cases, Oracle Rdb creates the file when the process running
the query runs out of virtual memory, and deletes the file once the query is
completed.

OpenVMS
VAX

OpenVMS
Alpha

Example A–31 shows how to assign the location of temporary files to a specific
device and directory.

Example A–31 Using the RDMS$BIND_WORK_FILE Logical Name

$ DEFINE RDMS$BIND_WORK_FILE WORK$DISK:[RDB.WORK]
♦

If you assign temporary files to a device and directory and your system fails
before Oracle Rdb can delete a temporary file, you can find the file and delete
it yourself.

OpenVMS
VAX

OpenVMS
Alpha

The following example uses the DCL DIRECTORY command to find the file
specified in Example A–31:

$ DIRECTORY WORK$DISK:[RDB.WORK]

Directory WORK$DISK:[RDB.WORK]

RDMSTTBL$WYQD02QQU4D.TMP;1 76 30-JUN-1991 19:47:04.20

Total of 1 file, 76 blocks.

The temporary file name consists of RDMSTTBL$ followed by a random
sequence of characters, and a file type of .tmp.

Because the Oracle Rdb work file is an OpenVMS RMS file, you can also
set the RMS multibuffer and multiblock counts. Use the DCL SET RMS_
DEFAULT command to improve the performance of Oracle Rdb temporary
files by specifying appropriate values for the /BUFFER_COUNT and /BLOCK_
COUNT qualifiers. ♦

The RDMS$BIND_WORK_FILE logical name and the RDB_BIND_WORK_
FILE configuration parameter are often used in conjunction with the
RDMS$BIND_WORK_VM logical name and the RDB_BIND_WORK_VM
configuration parameter.

Oracle Rdb Logical Names and Configuration Parameters A–49

A.92 RDMS$BIND_WORK_VM and RDB_BIND_WORK_VM
The RDMS$BIND_WORK_VM logical name and the RDB_BIND_WORK_VM
configuration parameter permit you to reduce the overhead of disk I/O for
matching operations by letting you specify the amount of virtual memory (VM),
in bytes, to be allocated to your process. Once the allocation is exhausted,
additional data values will be written to a temporary file on disk.

OpenVMS
VAX

OpenVMS
Alpha

If RDMS$BIND_WORK_FILE is undefined, the temporary file is located in
SYS$LOGIN. ♦

The default is 10,000 bytes. The maximum allowed value is restricted only by
the amount of memory available on your system.

Digital UNIX Example A–32 defines the RDB_BIND_WORK_VM value to be 25,000 bytes.

Example A–32 Using the RDB_BIND_WORK_VM Configuration Parameter

RDB_BIND_WORK_VM 25000
♦

See Section 3.2.1.7 and Section 8.1.3 for more information.

A.93 RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS
The RDMS$DEBUG_FLAGS logical name and the RDB_DEBUG_FLAGS
configuration parameter allow you to examine database access strategies
and the estimated cost of those strategies when your program is run. See
Section 5.8.7 and Appendix C for more information.

A.94 RDMS$DEBUG_FLAGS_OUTPUT and
RDB_DEBUG_FLAGS_OUTPUT

The RDMS$DEBUG_FLAGS_OUTPUT logical name and the RDB_DEBUG_
FLAGS_OUTPUT configuration parameter allow you to name an output file
in which to collect the output from RDMS$DEBUG_FLAGS or RDB_DEBUG_
FLAGS when you run your program. You must have write access to the
directory and the disk device must exist for this logical name or configuration
parameter to be successful.

A–50 Oracle Rdb Logical Names and Configuration Parameters

A.95 RDMS$DIAG_FLAGS and RDB_DIAG_FLAGS
You can use the RDMS$DIAG_FLAGS logical name or the RDB_DIAG_
FLAGS configuration parameter to assist in locating erroneous queries.
When RDMS$DIAG_FLAGS or RDB_DIAG_FLAGS is defined, the query
compiler checks for sort keys totally defined by contexts external to the record
selection expression (RSE) that includes the sort clause. When such a case is
encountered, the query compiler produces the following error:

%RDB-E-INVALID_BLR, request BLR is incorrect at offset n
-RDMS-F-SORTKEYEXT, sort key is external to RSE context

Digital UNIX Include the line shown in Example A–33 in your configuration file to assist in
locating erroneous queries.

Example A–33 Using the RDB_DIAG_FLAGS Configuration Parameter

RDB_DIAG_FLAGS S
♦

Oracle Rdb allows you to mix old format (chained) and new format (indexed)
segmented strings in the same table. You may want to convert your chained
segmented strings to the new indexed format. Conversion is desirable if, for
example, you want to perform FETCH LAST statements with a scrolling list
cursor. With chained segmented strings, a FETCH LAST statement would
cause Oracle Rdb to read all segments before reaching the desired segment,
which is not optimal. With indexed segmented strings, a FETCH LAST
statement would cause Oracle Rdb to read only the pointer segment and the
last data segment.

OpenVMS
VAX

OpenVMS
Alpha

Define RDMS$DIAG_FLAGS or RDB_DIAG_FLAGS as L to prevent Oracle
Rdb from performing a FETCH LAST statement with chained segmented
strings.

Example A–34 Using the RDMS$DIAG_FLAGS Logical Name

$ DEFINE RDMS$DIAG_FLAGS L
♦

Defining RDMS$DIAG_FLAGS or RDB_DIAG_FLAGS to L causes an OPEN
CURSOR statement to fail if it tries to open a SCROLL list cursor.

Oracle Rdb Logical Names and Configuration Parameters A–51

A.96 RDMS$KEEP_PREP_FILES
OpenVMS
VAX

OpenVMS
Alpha

You can use the RDMS$KEEP_PREP_FILES logical name to cause the
RDBPRE preprocessor to retain the intermediate .mar and language files. This
can be helpful when you are trying to debug an RDBPRE program and need
to refer to the language files. Use the command shown in Example A–35 to
specify that you want to retain these files.

Example A–35 Using the RDMS$KEEP_PREP_FILES Logical Name

$ DEFINE RDMS$KEEP_PREP_FILES YES
♦

A.97 RDMS$RUJ and RDB_RUJ
You can use the RDMS$RUJ logical name or the RDB_RUJ configuration
parameter to locate the .ruj file on a different disk and directory from the
default directory. This can help to reduce contention in that directory.

Digital UNIX Include the RDB_RUJ configuration parameter in the configuration file to
specify the location you want to use, as shown in Example A–36.

Example A–36 Using the RDB_RUJ Configuration Parameter

RDB_RUJ /usr/clients/journal
♦

See Section 3.2.1.7 and Section 8.1.2 for more information.

A.98 RDMS$USE_OLD_CONCURRENCY and
RDB_USE_OLD_CONCURRENCY

Prior to V4.2, the SQL interface provided syntax to select different isolation
levels but the syntax was automatically upgraded to isolation level serializable
(degree 2 consistency). Many 4GLs also selected this mode by default.

In Oracle Rdb V4.2, full isolation level support was added, and these low
isolation levels were supported.

When applications using these low isolation levels were upgraded to V4.2, they
encountered significant changes—more locks were used and different records
became visible. Although this behavior is expected for CONSISTENCY LEVEL
2 applications, the applications used prior to V4.2 were never tested or tuned
under such an environment.

A–52 Oracle Rdb Logical Names and Configuration Parameters

A solution was implemented with Oracle Rdb V4.2A and V5.1 to allow
applications to revert to V4.1 behavior by defining RDMS$USE_OLD_
CONCURRENCY to 1. This converts TPB$K_DEGREE2 to TPB$K_DEGREE3
to maintain the V4.1 behavior. Note that TPB$K_ISOLATION_1 (ISOLATION
LEVEL READ COMMITTED) is not affected by this logical name and
configuration parameter.

Oracle Corporation recommends that applications and 4GLs be adjusted to use
the isolation level best suited for their environment as soon as practical.

OpenVMS
VAX

OpenVMS
Alpha

In Example A–37, the RDMS$USE_OLD_CONCURRENCY logical name
causes Oracle Rdb to use the V4.1 isolation level behavior. Defining the
RDMS$DEBUG_FLAGS logical name to T causes the isolation levels selected
by Oracle Rdb to be displayed.

Example A–37 Using the RDMS$USE_OLD_CONCURRENCY Logical Name
to Cause Oracle Rdb to Use V4.1 Isolation Level Behavior

$ DEFINE RDMS$DEBUG_FLAGS "T"
$ DEFINE RDMS$USE_OLD_CONCURRENCY 1
$ SQL
SQL> ATTACH ’FILE mf_personnel’;
SQL> SET TRANSACTION READ WRITE CONSISTENCY LEVEL 2;
%SQL-I-DEPR_FEATURE, Deprecated Feature: CONCURRENCY or CONSISTENCY LEVEL. Use
ISOLATION LEVEL instead

Compile transaction on db: X00000001
~T Transaction Parameter Block: (len=3)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_DEGREE2 (read committed)
0002 (00002) TPB$K_WRITE (read write)
~T Concurrency option (TPB$K_DEGREE2) converted to TPB$K_DEGREE3

Start_transaction on db: X00000001, db count=1
SQL> EXIT

Commit_transaction on db: X00000001
Prepare_transaction on db: X00000001

Oracle Rdb has always used the read/write transaction mode when snapshots
are disabled for a database. Oracle Rdb V6.0 or higher outputs an indication of
this when the T debug flag is in use, as shown in Example A–38.

Oracle Rdb Logical Names and Configuration Parameters A–53

Example A–38 Using the RDMS$USE_OLD_CONCURRENCY and
RDMS$DEBUG_FLAGS Logical Names to Display the
Conversion of Read-Only Transactions When Snapshots Are
Disabled

$ DEFINE RDMS$DEBUG_FLAGS "T"
$ DEFINE RDMS$USE_OLD_CONCURRENCY 1
$ SQL
SQL> ALTER DATABASE FILE mf_personnel
cont> SNAPSHOT IS DISABLED;
SQL> ATTACH ’FILE mf_personnel’;
SQL> SET TRANSACTION READ ONLY;

Compile transaction on db: X00000002
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_READ (read only)

Start_transaction on db: X00000002, db count=1
~T Snapshots are disabled, READ ONLY converted to READ WRITE
SQL>
♦

A.99 RDMS$USE_OLD_COST_MODEL and
RDB_USE_OLD_COST_MODEL

When you define RDMS$USE_OLD_COST_MODEL or RDB_USE_OLD_
COST_MODEL to be any value, the optimizer will not use workload or storage
statistics. Using RDMS$USE_OLD_COST_MODEL or RDB_USE_OLD_COST_
MODEL allows you to:

• Test the optimization of a query workload with and without the use of
storage and workload statistics

• Selectively disable the use of workload and storage statistics for particular
users, processes, and batch jobs

When the RDMS$USE_OLD_COST_MODEL logical name or the RDB_USE_
OLD_COST_MODEL configuration parameter is defined, the optimizer uses
cost and cardinality functions that were in use prior to V7.0 and ignores any
workload and storage statistics that have been collected.

Deassign the logical name or configuration parameter to enable the optimizer
to start using workload and storage statistics again in cost and cardinality
estimation.

A–54 Oracle Rdb Logical Names and Configuration Parameters

A.100 RDMS$USE_OLD_COUNT_RELATION and
RDB_USE_OLD_COUNT_RELATION

In previous versions of Oracle Rdb, a CREATE INDEX statement would check
whether a table was empty by fetching the first row. If the table was empty,
Oracle Rdb could avoid collection and sorting of the data and creation of the
index. This optimization works very well in uniform storage areas where the
SPAM pages allow fast access to the first row.

However, in mixed-format storage areas, each page must be read and checked
for an occurrence of a row for the table. In particular, when the table is
partitioned across many areas, CREATE INDEX could execute many I/Os to
determine whether or not a table was empty.

Oracle Rdb V7.0 includes an optimization within CREATE INDEX to avoid
this area scan for all areas. If the table was created in the current transaction,
sufficient internal information exists for Oracle Rdb to know if a table does not
contain data. Oracle Rdb maintains an internal list of newly created tables to
support this optimization.

If you attach to the database using RESTRICTED ACCESS, Oracle Rdb
carries this optimization through until you disconnect from the database.
RESTRICTED ACCESS is necessary so that Oracle Rdb can guarantee that
no other process has updated the table after it was created during the current
session. Because the IMPORT statement, by default, attaches to the new
database for RESTRICTED ACCESS, this optimization helps improve the
import of large databases. In particular, less I/O is needed to import a table
that is placed using a hashed index if the table is mapped to mixed-format
areas.

In some cases, where applications create and drop many tables, the
maintenance of the internal list of new tables may not be desirable. In
those cases, you can define the logical name RDMS$USE_OLD_COUNT_
RELATION or the configuration parameter RDB_USE_OLD_COUNT_
RELATION to disable this optimization. Only the existence of the logical name
or configuration parameter is required; it can be defined as any value.

A.101 RDMS$USE_OLD_SEGMENTED_STRING and
RDB_USE_OLD_SEGMENTED_STRING

Defining the RDMS$USE_OLD_SEGMENTED_STRING logical name or the
RDB_USE_OLD_SEGMENTED_STRING configuration parameter retains the
old format (chained) segmented strings as the default. This logical name and
configuration parameter cause the application to write the chained format
segmented strings to all read/write media. Note that if a write-once storage

Oracle Rdb Logical Names and Configuration Parameters A–55

area is used, then the new (indexed) segmented string format is always used.
The value for the logical name or configuration parameter is not examined by
Oracle Rdb.

OpenVMS
VAX

OpenVMS
Alpha

To enable this logical name, define it as shown in Example A–39.

Example A–39 Enabling the RDMS$USE_OLD_SEGMENTED_STRING
Logical Name

$ DEFINE RDMS$USE_OLD_SEGMENTED_STRING YES

If later you wish to use the new (indexed) segmented string format, then you
must deassign this logical name as shown in Example A–40.

Example A–40 Disabling the RDMS$USE_OLD_SEGMENTED_STRING
Logical Name

$ DEASSIGN RDMS$USE_OLD_SEGMENTED_STRING
♦

Mixing of old and new segmented strings format is supported.

A.102 RDMS$USE_OLD_UPDATE_RULES and
RDB_USE_OLD_UPDATE_RULES

Since V4.1, Oracle Rdb has used new update rules, which are enforced by
default. With these new update rules it is not possible to modify or delete rows
from a table that are directly joined with other tables. However, rows from a
table can still be modified or deleted if the table is joined with other tables that
are in a subquery. Because SQL does not have syntax that allows rows from
a table to be modified or deleted and at the same time allows that table to be
joined with other tables, the new update rules introduced with V4.1 have no
affect on SQL applications.

OpenVMS
VAX

OpenVMS
Alpha

However, RDO applications that contain join update queries—that is, the
update queries that modify or delete rows from a table that is joined with other
tables—are affected by the new update rules and should be fixed.

Oracle Rdb now gives an error diagnostic for the following join update query:

FOR E IN EMPLOYEES CROSS D IN DEGREES OVER EMPLOYEE_ID
WITH D.DEGREE = ’MA’

ERASE E
END_FOR
%RDMS-E-JOIN_CTX_UPD, relation EMPLOYEES is part of a join, cannot be updated

A–56 Oracle Rdb Logical Names and Configuration Parameters

In this previous update query, if an employee has two MA degrees, the same
employee row will be joined to two different degree rows. Therefore, Oracle
Rdb will try to delete the same row twice. Or, if instead of using the ERASE
verb, the previous update query used a MODIFY verb on the EMPLOYEES
table, then Oracle Rdb might modify the row more than once.

Prior to V4.1, join update queries similar to the previous query worked
correctly or produced an error diagnostic trying to delete the same row more
than once, or—even worse—produced a bugcheck. Some 4GLs and third-party
software products were also affected.

The previous update query can be reworded into an equivalent form as follows:

FOR E IN EMPLOYEES WITH (ANY D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID
AND D.DEGREE = ’MA’)

ERASE E
END_FOR

The rows can now be erased because the EMPLOYEES table is no longer
directly joined to the DEGREES table. The use of a modified update query
guarantees that an employee row will not be deleted more than once.

Oracle Rdb V4.1 and later versions support either new or old update rules. By
default, V4.1 and higher versions enforce new update rules. To make Oracle
Rdb continue to use the old update rules, define the logical name RDMS$USE_
OLD_UPDATE_RULES to be 1.

Example A–41 Using the RDMS$USE_OLD_UPDATE_RULES Logical Name

$ DEFINE RDMS$USE_OLD_UPDATE_RULES 1

The following join update query will no longer work with the new update rules.
Also, this update query will modify some salary history rows more than once
and gives multiple salary raises to some managers!

! Give a 10% salary raise to all managers who have an MA degree.
FOR S IN SALARY_HISTORY CROSS D IN DEGREES CROSS DP IN DEPARTMENTS

WITH S.EMPLOYEE_ID = D.EMPLOYEE_ID AND
S.EMPLOYEE_ID = DP.MANAGER_ID AND
S.SALARY_END MISSING AND
D.DEGREE = ’MA’

MODIFY S USING S.SALARY_AMOUNT = S.SALARY_AMOUNT * 1.1
END_FOR

Oracle Rdb Logical Names and Configuration Parameters A–57

This query can be reworded using a subquery as follows:

FOR S IN SALARY_HISTORY
WITH S.SALARY_END MISSING AND

(ANY D IN DEGREES CROSS DP IN DEPARTMENTS
WITH S.EMPLOYEE_ID = D.EMPLOYEE_ID AND
S.EMPLOYEE_ID = DP.MANAGER_ID AND
D.DEGREE = ’MA’)

MODIFY S USING S.SALARY_AMOUNT = S.SALARY_AMOUNT * 1.1
END_FOR

This revised query will work with the new as well as the old update rules, and
it will ensure that each qualified manager gets a single salary raise. ♦

A.103 RDMS$VALIDATE_ROUTINE and RDB_VALIDATE_ROUTINE
Use the RDMS$VALIDATE_ROUTINE logical name or the RDB_VALIDATE_
ROUTINE configuration parameter to mark an invalid routine as valid. When
a process defines the RDMS$VALIDATE_ROUTINE or RDB_VALIDATE_
ROUTINE to 1, Oracle Rdb marks each invalid routine as valid when the
process calls the procedure within a read/write transaction.

Digital UNIX On Digital UNIX, you can define the RDB_VALIDATE_ROUTINE configuration
parameter to 1 by including the line in Example A–42 in your .dbsrc
configuration file.

Example A–42 Using the RDB_VALIDATE_ROUTINE Configuration
Parameter

RDB_VALIDATE_ROUTINE 1
♦

A.104 RDO$EDIT
OpenVMS
VAX

OpenVMS
Alpha

The RDO$EDIT logical name indicates the system editor selected to edit
interactive RDO queries.

Two values are currently allowed:

Logical
Value Selected Editor

EDT EDIT/EDT

TPU TPU

The logical can be defined at the system, group, or process level. ♦

A–58 Oracle Rdb Logical Names and Configuration Parameters

A.105 RDOINI
OpenVMS
VAX

OpenVMS
Alpha

The RDOINI logical name specifies the name of the file that contains the RDO
initialization information. If the logical name exists, and the indicated file
exists, RDO executes the commands in this file first, before displaying the RDO
prompt and accepting input commands.

The logical name is translated using the LNM$FILE_DEV table or tables. ♦

A.106 RMU$EDIT
OpenVMS
VAX

OpenVMS
Alpha

The RMU$EDIT logical name indicates the system editor to be used to edit the
notepad in the Performance Monitor tools facility. The valid values are EDT,
LSE, and TPU. The default editor is EDT. ♦

A.107 SQL$DATABASE and SQL_DATABASE
The SQL$DATABASE logical name and the SQL_DATABASE configuration
parameter specify the database that SQL declares if you do not explicitly
declare a database.

Defining SQL$DATABASE or SQL_DATABASE provides a database file
specification that interactive SQL automatically uses to find your default
database, unless you explicitly attach to any database before you enter a
statement that requires database access.

Digital UNIX Example A–43 shows that using SQL_DATABASE allows you to access your
database without explicitly attaching to it.

Example A–43 Using the SQL_DATABASE Configuration Parameter to
Define a Default Database

SQL_DATABASE /usr/tmp/mf_personnel
$ SQL
SQL> SHOW TABLES
User tables in database with filename /usr/tmp/mf_personnel

CANDIDATES
COLLEGES
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
DEGREES

(continued on next page)

Oracle Rdb Logical Names and Configuration Parameters A–59

Example A–43 (Cont.) Using the SQL_DATABASE Configuration Parameter
to Define a Default Database

DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS

SQL>
♦

The SQL precompiler, module processor, and run-time system also translate
SQL$DATABASE and SQL_DATABASE if you do not explicitly declare an alias
(DECLARE ALIAS) or attach to a database (ATTACH) in a source file or (for
precompiled programs) SQL context file.

OpenVMS
VAX

OpenVMS
Alpha

You cannot specify repository access using the SQL$DATABASE logical name.
Therefore, if you intend to execute CREATE or ALTER statements including
the DICTIONARY IS REQUIRED clause, you should not attach to a database
using the SQL$DATABASE logical name. ♦

A.108 SQL$DISABLE_CONTEXT
OpenVMS
VAX

OpenVMS
Alpha

You can disable the two-phase commit protocol by defining the SQL$DISABLE_
CONTEXT logical name to be TRUE, as shown in Example A–44

Example A–44 Using the SQL$DISABLE_CONTEXT Logical Name

$ DEFINE SQL$DISABLE_CONTEXT TRUE

This logical name is useful for turning off distributed transactions when you
want to run batch-update transactions. Because batch-update transactions
do not write to recovery-unit journal (.ruj) files, these transactions cannot be
rolled back and, therefore, cannot be used in a distributed transaction. For
more information, see the Oracle Rdb7 Guide to Distributed Transactions. ♦

A–60 Oracle Rdb Logical Names and Configuration Parameters

A.109 SQL$EDIT
OpenVMS
VAX

OpenVMS
Alpha

The SQL$EDIT logical name indicates the system editor selected to edit
interactive SQL queries.

Two values are currently allowed:

Logical
Value Selected Editor

EDT EDIT/EDT

TPU TPU

The logical name can be defined at the system, group, or process level. ♦

A.110 SQLINI
OpenVMS
VAX

OpenVMS
Alpha

The SQLINI logical name specifies the name of the file that contains the SQL
initialization information. If the logical name exists, and the indicated file
exists, SQL executes the commands in this file first, before displaying the SQL
prompt and accepting input commands.

The logical name is translated using the LNM$FILE_DEV table or tables. ♦

A.111 SQL$KEEP_PREP_FILES and SQL_KEEP_PREP_FILES
You can use the SQL$KEEP_PREP_FILES logical name or the SQL_KEEP_
PREP_FILES configuration parameter to cause the SQL precompiler and
SQL module language compiler to retain the intermediate .mar and language
files. This can be helpful when you are trying to debug an SQL host language
module and need to refer to the language files.

Digital UNIX On Digital UNIX, include the line shown in Example A–45 in your
configuration file to specify that you want to retain these files.

Example A–45 Using the SQL_KEEP_PREP_FILES Configuration File

SQL_KEEP_PREP_FILES YES
♦

Oracle Rdb Logical Names and Configuration Parameters A–61

B
Oracle Rdb Event-Based Data Tables

OpenVMS
VAX

OpenVMS
Alpha

This appendix describes the event-based data tables in the formatted database
for the Oracle Rdb PERFORMANCE and RDBEXPERT collection classes. The
ALL collection class is not shown because, for the current release of Oracle
Rdb, the ALL class contains the same tables and columns as the RDBEXPERT
class.

B.1 Oracle Rdb PERFORMANCE Class Database Tables
This section describes the event-based data tables in the formatted database
for the Oracle Rdb PERFORMANCE class. This information is provided so
that you can write customized reports based on data in the formatted database.

Table B–1 shows the DATABASE table.

Table B–1 Columns for Table EPC$1_221_DATABASE

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

STREAM_ID INTEGER

CLIENT_PC INTEGER

DB_NAME VARCHAR(255)

DB_NAME_STR_ID INTEGER STR_ID_DOMAIN

IMAGE_NAME VARCHAR(255)

IMAGE_NAME_STR_ID INTEGER STR_ID_DOMAIN

Oracle Rdb Event-Based Data Tables B–1

Table B–2 shows the DATABASE_ST table. An index is provided for this table.
It is defined with column STR_ID, duplicates are allowed, and the type is
sorted.

Table B–2 Columns for Table EPC$1_221_DATABASE_ST

Column Name Data Type Domain

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_
DOMAIN

STR_SEGMENT VARCHAR(0)

Table B–3 shows the TRANSACTION table.

Table B–3 Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

STREAM_ID_START INTEGER

CLIENT_PC_START INTEGER

LOCK_MODE_START SMALLINT

TRANS_ID_START VARCHAR(16)

TRANS_ID_START_STR_ID INTEGER STR_ID_DOMAIN

GLOBAL_TID_START VARCHAR(16)

GLOBAL_TID_START_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

(continued on next page)

B–2 Oracle Rdb Event-Based Data Tables

Table B–3 (Cont.) Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

(continued on next page)

Oracle Rdb Event-Based Data Tables B–3

Table B–3 (Cont.) Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

RDB_CROSS_FAC_2 INTEGER

RDB_CROSS_FAC_3 INTEGER

RDB_CROSS_FAC_7 INTEGER

RDB_CROSS_FAC_14 INTEGER

Table B–4 shows the TRANSACTION_ST table. An index is provided for this
table. It is defined with column STR_ID, duplicates are allowed, and the type
is sorted.

B–4 Oracle Rdb Event-Based Data Tables

Table B–4 Columns for Table EPC$1_221_TRANSACTION_ST

Column Name Data Type Domain

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_
DOMAIN

STR_SEGMENT VARCHAR(0)

Table B–5 shows the REQUEST_ACTUAL table.

Table B–5 Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

(continued on next page)

Oracle Rdb Event-Based Data Tables B–5

Table B–5 (Cont.) Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

STREAM_ID_END INTEGER

CLIENT_PC_END INTEGER

REQ_ID_END INTEGER

COMP_STATUS_END INTEGER

REQUEST_OPER_END INTEGER

TRANS_ID_END VARCHAR(16)

TRANS_ID_END_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

(continued on next page)

B–6 Oracle Rdb Event-Based Data Tables

Table B–5 (Cont.) Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

Table B–6 shows the REQUEST_ACTUAL_ST table. An index is provided for
this table. It is defined with column STR_ID, duplicates are allowed, and the
type is sorted.

Table B–6 Columns for Table EPC$1_221_REQUEST_ACTUAL_ST

Column Name Data Type Domain

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_
DOMAIN

STR_SEGMENT VARCHAR(0)

Oracle Rdb Event-Based Data Tables B–7

B.2 Oracle Rdb RDBEXPERT Class Database Tables
This section describes the event-based data tables in the formatted database
for the Oracle Rdb RDBEXPERT collection class. This information is provided
so that you can write customized reports based on data in the formatted
database.

The RDBEXPERT collection class contains all the event-based data tables
shown in Section B.1, plus the two tables shown in Table B–7 and Table B–8.

Table B–7 shows the REQUEST_BLR table.

Table B–7 Columns for Table EPC$1_221_REQUEST_BLR

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_
DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

STREAM_ID INTEGER

TRANS_ID INTEGER

CLIENT_PC INTEGER

REQ_ID INTEGER

BLR VARCHAR(127)

BLR_STR_ID INTEGER STR_ID_DOMAIN

Table B–8 shows the REQUEST_BLR_ST table. An index is provided for this
table. It is defined with column STR_ID, duplicates are allowed, and the type
is sorted.

Table B–8 Columns for Table EPC$1_221_REQUEST_BLR_ST

Column Name Data Type Domain

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_
DOMAIN

(continued on next page)

B–8 Oracle Rdb Event-Based Data Tables

Table B–8 (Cont.) Columns for Table EPC$1_221_REQUEST_BLR_ST

Column Name Data Type Domain

STR_SEGMENT VARCHAR(128)

♦

Oracle Rdb Event-Based Data Tables B–9

C
Using RDMS$DEBUG_FLAGS and

RDB_DEBUG_FLAGS to Analyze the Query
Optimizer

Oracle Rdb enables you to examine the access strategies selected by the query
optimizer and the estimated cost of those strategies at query execution time
by defining the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_
FLAGS configuration parameter. By analyzing the displays from this feature,
you can develop indexing policies for routine queries, as well as for those
queries that contain complex record selection expressions.

OpenVMS
VAX

OpenVMS
Alpha

You can define the RDMS$DEBUG_FLAGS logical name as one or more flags,
for example:

$ DEFINE RDMS$DEBUG_FLAGS "S"

or

$ DEFINE RDMS$DEBUG_FLAGS "SO"
♦

Digital UNIX You can define the RDB_DEBUG_FLAGS configuration parameter as one or
more flags in the your .dbsrc configuration file. For example:

RDB_DEBUG_FLAGS "S"

or

RDB_DEBUG_FLAGS "SO"
♦

Table C–1 shows the available flags, the output generated, and where to find
more information.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–1

Table C–1 Flags Used with the RDMS$DEBUG_FLAGS Logical Name and the
RDB_DEBUG_FLAGS Configuration Parameter

Flag Output generated Reference

E Execution trace Section C.6

O Query statistics Section C.4, Section C.5

R Sort statistics Section C.7

S Query strategy Section C.1, Section C.5, Section C.6

Ss Query outline definitions for nonsystem
queries

Section C.2

ISs Query outline definitions for system-
created queries

Section C.2

ISsn Constraint and/or trigger names for
which query outlines are generated

Section C.2

Sn Constraints query strategy Section C.3

Xt TRACE control statement logging Section C.9

T Transaction activity Section C.8

\ Sets dbkey buffer size to 10 Section C.6

The flags that can be defined for RDMS$DEBUG_FLAGS and RDB_DEBUG_
FLAGS are case sensitive. Therefore, when you define the RDMS$DEBUG_
FLAGS logical name or the RDB_DEBUG_FLAGS configuration parameter as
one or more flags, be sure to specify each flag in the correct case (uppercase or
lowercase). If, for example, you want to display constraint names with a query
strategy, be sure to specify the flags as "Sn" (uppercase S and lowercase n). If
you use the wrong case for a flag or flags, the output produced by the flags will
be different than what is documented in this chapter.

The RDMS$DEBUG_FLAGS_OUTPUT logical name and the RDB_DEBUG_
FLAGS_OUTPUT configuration parameter allow you to specify a file in which
to collect the output from RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS_
OUTPUT, respectively. You must have write access to the target directory for
this to be successful.

C–2 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Digital UNIX For example, you could define the RDB_DEBUG_FLAGS and RDB_DEBUG_
FLAGS_OUTPUT configuration parameters in your .dbsrc configuration file as
in the following example:

RDB_DEBUG_FLAGS "S"
RDB_DEBUG_FLAGS_OUTPUT debugflags_output.log

In this case, Oracle Rdb writes all the strategy information generated by the S
flag to the file debugflags_output.log in your default directory. ♦

• If you do not define RDMS$DEBUG_FLAGS_OUTPUT or RDB_
DEBUG_FLAGS_OUTPUT, output is directed to the default device. The
default device on OpenVMS is SYS$OUTPUT and the default device on
Digital UNIX is the standard output (stdout) device.

• If you do not specify a file type when you define RDMS$DEBUG_FLAGS_
OUTPUT or RDB_DEBUG_FLAGS_OUTPUT, the file receives the default
file type of .lis.

• If you do direct RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS_
OUTPUT output to a file, the query and its results do not appear in the
file. If output is displayed on the default device, Oracle Rdb shows the
query, the output from RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS_
OUTPUT, and the query results.

Note

You must define the RDMS$DEBUG_FLAGS and RDMS$DEBUG_
FLAGS_OUTPUT logical names or the RDB_DEBUG_FLAGS and
RDB_DEBUG_FLAGS_OUTPUT configuration parameters before you
attach to your database. Once attached, you cannot reset the logical
names or configuration parameters without first detaching from the
database.

You can use the SQL SET NOEXECUTE statement to control query execution.
By using the NOEXECUTE option in conjunction with the S and O flags of
RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS, you can examine the access
strategy and estimated cost of a query, without actually executing the query
or displaying results. This can be a valuable tool if you are testing various
queries to compare access strategies or costs, but are not concerned with query
output.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–3

C.1 Displaying Optimization Strategy with the S Flag
When you define the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter as S and execute a query, Oracle
Rdb returns a formatted display that shows the access method or methods the
optimizer used to produce the results of a query. Table C–2 shows the notation
that can appear in the S flag display.

Table C–2 Output Definitions for the S Flag

Output Definition

Aggregate Indicates use of a statistical function, such as COUNT, SUM, AVG, MIN, MAX,
or GROUP BY.

Aggregate-F1 Indicates a check for the existence of a single value, such as a query containing
EXIST or ANY.

Aggregate-F2 Indicates a check for uniqueness. Used when a query contains UNIQUE.

BgrOnly Indicates the background only leaf retrieval type.

Bool Indicates key-only Boolean optimization. The optimizer uses this method to
filter out dbkeys before fetching rows, thus saving I/O operations.

Card=n Indicates table cardinality stored in the field RDB$CARDINALITY in the
system relation RDB$RELATIONS.

Conjunct Indicates processing of a WHERE predicate. Also means that the optimizer
could not use an index to (fully) satisfy the expression from the query.
Oracle Rdb can process several WHERE constructs as part of one Conjunct.
Therefore, the number of occurrences of the word Conjunct does not necessarily
reflect the number of comparisons involved in the query.

Cross block of n entries Indicates a cross (or nested loop) join method for n entries.

Direct lookup Indicates that the index used has no duplicates and that an exact key match
predicate is used for retrieval, which returns one or zero dbkeys.

Fan=n Indicates the average fanout factor of a B-tree node based on the B-tree node
size, index key length, and the initial percent fill of the index node. The fanout
of a B-tree node is the number of child nodes (branches) attached to a given
node. The higher the average fanout, the fewer levels the B-tree contains,
which promotes faster single key access but greater potential for deadlock in a
multiuser environment.

FFirst Indicates the fast first leaf retrieval type.

(continued on next page)

C–4 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Table C–2 (Cont.) Output Definitions for the S Flag

Output Definition

Firstn Indicates use of a LIMIT TO n ROWS clause. This information is not used by
the optimizer as part of the optimization process, but rather as a limitation of
the output from the query. The processing of the Firstn clause is always the
last thing done and is therefore always shown as the first line of output.

Get Indicates execution of an I/O operation for data record retrieval.

Index only retrieval Indicates the requested information was retrieved from within the index. No
data record access was required.

Leaf#01 Identifies the first leaf node in the execution tree. Subsequent leaf nodes in
the same tree are incremented by one.

Match Indicates a match (or merge scan) join method.

Max key lookup
Min key lookup

Indicates a direct index key lookup instead of an entire index scan. Used when
the optimizer can use index only retrieval and the query contains the MAX
or MIN statistical function. The optimizer uses the Max or Min aggregate
optimization under the following circumstances:

• Used on ascending, descending, and partitioned indexes.

• For a multisegmented index, the optimizer can perform MAX or MIN only
on the leading segment unless a trailing segment is specified and the
leading segment is an equality.

• Not possible if the query contains a nonindexed predicate.

• Not possible if any indexed predicate is not used during index lookup.

Merge block of n entries Indicates use of the merge strategy to return rows from multiple tables. In the
merge strategy, rows from different tables are concatenated and delivered to
the user.

NdxOnly Indicates the index only leaf retrieval type.

OR index retrieval Indicates static OR optimization using a hashed index or multiple sorted
indexes to retrieve data from a single table. Rows selected by each index
are delivered one after another. Duplicate dbkeys are discarded by applying
Conjunct, so that the same row is not delivered twice.

Reduce Indicates elimination of duplicate rows based on the values of one or more
columns. Found in queries using the DISTINCT or UNION operators. A sort
is frequently part of the duplicate elimination process and the Sort notation is
therefore often included in the output.

(continued on next page)

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–5

Table C–2 (Cont.) Output Definitions for the S Flag

Output Definition

Retrieval by dbk of
relation

Indicates that the requested data was retrieved using direct dbkey access.

Retrieval by index of
relation

Indicates use of an index to retrieve data.

Retrieval sequentially of
relation

Indicates the table or relation is read sequentially.

Sort Indicates the requested data had an output order specified, that a sort was
done on behalf of a match join strategy, or that a sort was required for a
Reduce operation.

Sorted Indicates the sorted order leaf retrieval type.

Temporary relation Indicates creation of a temporary table to store intermediate results. The
temporary table can exist either in memory or on disk. See Section 3.2.1.7
for information on using the RDMS$BIND_WORK_VM and RDMS$BIND_
WORK_FILE logical names or the RDB_BIND_WORK_VM and RDB_
BIND_WORK_FILE configuration parameters to reduce the disk I/O that
can accompany the creation of a temporary table.

Zigzag Indicates a variation of the match retrieval strategy.

[l:h] Indicates the number of low index key (low Ikey) segments and high index
key (high Ikey) segments in an index key range. l represents the number of
low Ikey segments and h represents the number of high Ikey segments for the
given index range.

• The notation [0:0] indicates that a full scan of the index is done.

• The notation [1:1] indicates there is one low index key segment and
one high index key segment in the index key range. Sometimes this
indicates the presence of an equality predicate in the query, such as
EMP_EMPLOYEE_ID = ’ 00164’ . In this case, the range is a single value.

• The notation [1:0] indicates there is one low index key segment but no
high index key segment. That is, the range of index keys to be scanned
has a starting point but no upper limit.

• The notation [0:1] indicates there is no low index key segment but one
high index key segment. That is, the range of index keys to be scanned
starts at the beginning of the index but ends at the high index key bound.

(continued on next page)

C–6 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Table C–2 (Cont.) Output Definitions for the S Flag

Output Definition

[l:h . . .]n Indicates dynamic OR optimization in which the optimizer uses a single sorted
index to locate two or more ranges of data rows. l represents the number of
low Ikey segments in the first range; h represents the number of high Ikey
segments in the first range; . . . represents subsequent index ranges; and, n
represents the total number of ranges. For example:

.

.

.
WHERE EMPLOYEE_ID IN (’00164’, ’00177’, ’00200’);

Leaf#01 FFirst R Card=100
BgrNdx1 EMP_EMPLOYEE_ID [1:1...]3

.

.

.

In this case, the three ranges correspond to the three employee ID numbers.

~S#0001 Indicates that the following lines show the strategy for query number 0001.

The remainder of this section provides examples of S flag output that illustrate
various access strategies. Other examples of S flag output are shown in
Section C.5 and Section C.6.

Sequential Access Strategy
Example C–1 shows simple sequential access when RDMS$DEBUG_FLAGS or
RDB_DEBUG_FLAGS is defined as ‘‘S’’.

Example C–1 S Display—Sequential Access

SQL> SELECT LAST_NAME, FIRST_NAME
cont> FROM CANDIDATES
cont> ORDER BY LAST_NAME;
Sort # Get " Retrieval sequentially of relation CANDIDATES !

LAST_NAME FIRST_NAME
Boswick Fred

(continued on next page)

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–7

Example C–1 (Cont.) S Display—Sequential Access

Schwartz Trixie
Wilson Oscar

3 rows selected
SQL>

The following callouts are keyed to Example C–1:

! The optimizer selects a sequential retrieval strategy because all rows must
be returned from the table CANDIDATES.

" Indicates data record fetches for the requested rows.

Indicates the requested rows have been sorted as specified by the ORDER
BY clause.

To improve performance of a query, pay particular attention to the notation,
‘‘Retrieval sequentially.’’ You may be able to improve performance if you define
an index for the column involved. You should not assume, however, that simply
defining indexes automatically speeds up a query, or that Oracle Rdb uses the
index you have defined. The correct procedure is to define the index, run the
query with RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS again, and check
the output for the notation, ‘‘Indexed retrieval.’’ You should time the query
to determine if adding an index really improves performance. In some cases,
Oracle Rdb ignores the index because it is faster to access rows sequentially.
Also, check the cost of a query by setting the O flag to determine which query
would result in fewer I/O operations.

In addition, you should note the presence of the sort notation. Sorting rows
before delivery usually slows down query execution time. By defining the
appropriate index, you can prevent row sorting, thus speeding up query
execution time.

Indexed Access Strategy
Example C–2 shows an indexed access strategy when RDMS$DEBUG_FLAGS
or RDB_DEBUG_FLAGS is defined as ‘‘S’’.

Example C–2 S Display—Indexed Access

SQL> SELECT LAST_NAME FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00167’;

(continued on next page)

C–8 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Example C–2 (Cont.) S Display—Indexed Access

Get % Retrieval by Index of relation EMPLOYEES !
Index name EMPLOYEES_HASH" [1:1] # Direct lookup $

LAST_NAME
Kilpatrick

1 row selected
SQL>

The following callouts are keyed to Example C–2:

! The optimizer determines that indexed retrieval is the best strategy.

" The EMPLOYEES_HASH hashed index is selected.

Indicates the index range to scan, in this case, one low index key segment
and one high index key segment. For hashed indexes these values are the
same because the range is limited to a single value.

$ The index does not allow duplicates and will return one or zero dbkeys.

% The index itself does not contain all columns required by the query, so the
optimizer must fetch the data row (indicates data I/O).

Index Only Access Strategy
Example C–3 illustrates the index only access strategy when RDMS$DEBUG_
FLAGS or RDB_DEBUG_FLAGS is defined as ‘‘S’’.

Example C–3 S Display—Index Only Access

SQL> SELECT LAST_NAME FROM EMPLOYEES
cont> WHERE LAST_NAME STARTING WITH ’A’;
Conjunct % Index only retrieval of relation EMPLOYEES ! $

Index name EMP_LAST_NAME" [1:1] #

LAST_NAME
Ames
Andriola

2 rows selected
SQL>

The following callouts are keyed to Example C–3:

! The optimizer determines that index only retrieval is the best strategy.

" The EMP_LAST_NAME index is selected.

Indicates the index range to scan; in this case, one low index key segment
and one high index key segment.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–9

$ Because only the LAST_NAME column is required to satisfy the query
and the EMP_LAST_NAME index is based on that column, the index itself
contains all the required data.

% Returned index data is tested to see if the data matches the condition
specified in the WHERE clause.

Index Access Strategy with OR
Example C–4 illustrates traditional (static) OR index retrieval strategy.
Compare Example C–4 with Example C–5, which illustrates dynamic OR
optimization.

Example C–4 S Display—OR Indexed Retrieval

SQL> SELECT EMPLOYEE_ID, LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID IN (’00167’, ’00168’);

OR index retrieval !
Get Retrieval by index of relation EMPLOYEES #

Index name EMPLOYEES_HASH [1:1] Direct lookup "

Conjunct Get Retrieval by index of relation EMPLOYEES %
Index name EMPLOYEES_HASH [1:1] Direct lookup $

EMPLOYEE_ID LAST_NAME&
00167 Kilpatrick
00168 Nash

2 rows selected
SQL>

The following callouts are keyed to Example C–4:

! The optimizer selects OR index retrieval because the query contains the IN
operator and a hashed index exists on the EMPLOYEE_ID column.

" In the first leg of OR indexed retrieval, the optimizer uses the index
EMPLOYEES_HASH to search for the specified EMPLOYEE_ID (00167)
without scanning the index (Direct lookup). The optimizer returns a single
dbkey.

The optimizer uses the returned dbkey to retrieve (Get) the row from the
EMPLOYEES table.

$ In the second leg of OR indexed retrieval, the optimizer uses the index
EMPLOYEES_HASH to search for the next EMPLOYEE_ID (00168)
without scanning the index (Direct lookup). The optimizer returns a single
dbkey.

C–10 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

% The optimizer uses the returned dbkey to retrieve (Get) the row from
the EMPLOYEES table. The retrieved row is compared with previously
returned rows (Conjunct). If the row is different, it is delivered; if the row
is a duplicate, it is discarded.

& All the retrieved rows are delivered to the user.

Index Access Strategy with Dynamic OR Optimization
Example C–5 illustrates dynamic OR index retrieval strategy. Compare
Example C–5 with Example C–4. Both examples use the same query
but Example C–5 uses the personnel database; Example C–4 uses the
mf_personnel database. Because hashed indexes are not available on single-file
databases, Example C–5 uses a sorted index to process the two key ranges.

Example C–5 S Display—Dynamic OR Indexed Retrieval

SQL> SELECT EMPLOYEE_ID, LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID IN (’00167’, ’00168’);

Leaf#01 FFirst EMPLOYEES Card=100 !
BgrNdx1 EMP_EMPLOYEE_ID [1:1...]2 Fan=17 "

EMPLOYEE_ID LAST_NAME#
00167 Kilpatrick
00168 Nash

2 rows selected
SQL>

The following callouts are keyed to Example C–5:

! The optimizer uses the fast first (FFirst) type of dynamic leaf retrieval on
the EMPLOYEES table, which contains 100 rows. Leaf#01 indicates that
this is the first (and only) node in the execution tree.

" The second line of output has the following elements:

• EMP_EMPLOYEE_ID is the best index available and thus is the only
index (BgrNdx1) the optimizer will use to retrieve data rows. Although
not shown in the display, the foreground process uses the same index
and actually delivers the rows.

• [1:1 . . .]2 is the notation that reveals this strategy as dynamic OR
optimization. There is one low index key segment and one high index
key segment for the first range (00167) of the EMP_EMPLOYEE_ID
index. The number ‘‘2’’ indicates the number of ranges; in this case,
employee IDs 00167 and 00168.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–11

• Fan=17 indicates a fanout factor of 17, meaning that there are an
average of 17 branches in the B-tree representing this index.

The retrieved rows are delivered to the user.

Cross Retrieval Strategy
Example C–6 illustrates a join of two tables using the cross block retrieval
strategy when RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS is defined as
‘‘S’’.

Example C–6 S Display—Cross Block Retrieval

SQL> SELECT DISTINCT JH.EMPLOYEE_ID, J.JOB_TITLE
cont> FROM JOB_HISTORY JH, JOBS J
cont> WHERE JH.JOB_CODE = J.JOB_CODE;
Reduce Sort &
Cross block of 2 entries !

Cross block entry 1 "
Get Retrieval sequentially of relation JOBS #

Cross block entry 2 $
Conjunct Get Retrieval sequentially of relation JOB_HISTORY %

JH.EMPLOYEE_ID J.JOB_TITLE
00164 Department Manager
00164 Systems Programmer
00165 Assistant Clerk

.

.

.
00435 Vice President
00471 Department Manager

193 rows selected
SQL>

The following callouts are keyed to Example C–6:

! The optimizer uses the cross block retrieval strategy to access the data in
the JOBS table (entry 1) and the JOB_HISTORY table (entry 2).

" The optimizer starts processing with Cross block entry 1. Each cross block
entry is read from top to bottom.

Data rows in the JOBS table are accessed sequentially. The Get notation
represents a data read and indicates that the optimizer is fetching a row in
the JOBS table.

$ The optimizer uses cross block entry 2 to process the JOB_HISTORY table.

C–12 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

% Data rows in the JOB_HISTORY table are accessed sequentially. The Get
notation represents a data read and indicates that the optimizer is fetching
a row in the JOB_HISTORY table.

& The resulting rows from each table (block) are sorted and duplicates are
eliminated.

C.2 Displaying Outlines Generated by the Optimizer with the Ss,
ISs, and ISsn Flags

You define an outline by using query outlines generated by the Oracle Rdb
optimizer. Defining the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter with the following flag combinations
enables display of query outline definitions:

• "Ss" flags–display query outline definitions for all nonsystem queries.

• "ISs" flags–display query outline definitions for system-created queries
such as those generated when Oracle Rdb compiles constraint and trigger
internal queries.

• "ISsn" flags–display the names of the constraints or triggers (or both) for
which query outlines are generated.

OpenVMS
VAX

OpenVMS
Alpha

For example, the following command combines the "I" (Internals) flag with the
"Ss" (Dump query outlines) flags:

$ DEFINE RDMS$DEBUG_FLAGS "ISs"

The following command adds the "n" (Show names) flag to the flags in the
preceding example:

$ DEFINE RDMS$DEBUG_FLAGS "ISsn"
♦

Note that the "s" and "n" flags must be lowercase and must immediately follow
the uppercase "S" (Strategy) flag.

See Section 5.9.1 for complete information on capturing an outline generated
by the optimizer, interpreting the generated outline, and editing the generated
outline before storing it in the database. Example 5–6 shows how to capture
outlines generated by the optimizer.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–13

C.3 Displaying Constraint Names and the Query Strategy with the
Sn Flag

When you define the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter as Sn, Oracle Rdb displays the
names of constraints that were forced to be evaluated by your queries, along
with the constraints query strategy. Note that you must use an uppercase S
and a lowercase n when you define RDMS$DEBUG_FLAGS or RDB_DEBUG_
FLAGS as Sn. Example C–7 shows the Sn flag display.

Example C–7 Sn Flag Display

SQL> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID,
cont> LAST_NAME,
cont> FIRST_NAME,
cont> MIDDLE_INITIAL,
cont> ADDRESS_DATA_1,
cont> ADDRESS_DATA_2,
cont> CITY,
cont> STATE,
cont> POSTAL_CODE,
cont> SEX,
cont> BIRTHDAY,
cont> STATUS_CODE)
cont> VALUES
cont> (’98765’,
cont> ’Snerd’,
cont> ’Mortimer’,
cont> ’J’,
cont> ’149 Pothole Place’,
cont> ’Apartment 7’,
cont> ’Nashua’,
cont> ’NH’,
cont> ’03060’,
cont> ’M’,
cont> ’07-Dec-1993’,
cont> ’1’);
1 row inserted
SQL> COMMIT;

(continued on next page)

C–14 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Example C–7 (Cont.) Sn Flag Display
~S: Constraint name EMPLOYEES_PRIMARY_EMPLOYEE_ID !
Cross block of 2 entries

Cross block entry 1
Conjunct Firstn Get Retrieval by DBK of relation EMPLOYEES

Cross block entry 2
Conjunct Aggregate-F2 Get
Retrieval by index of relation EMPLOYEES

Index name EMPLOYEES_HASH [1:1] Direct lookup

~S: Constraint name EMP_SEX_VALUES Conjunct Firstn Get "
Retrieval by DBK of relation EMPLOYEES
~S: Constraint name EMP_STATUS_CODE_VALUES Conjunct Firstn Get #
Retrieval by DBK of relation EMPLOYEES
SQL>

The following callouts are keyed to Example C–7:

! The primary key constraint EMPLOYEES_PRIMARY_EMPLOYEE_ID on
the EMPLOYEE_ID column of the EMPLOYEES table is evaluated by the
insertion of the employee record.

" The check constraint EMP_SEX_VALUES on the SEX column of the
EMPLOYEES table is evaluated by the insertion of the employee record.

The check constraint EMP_STATUS_CODE_VALUES on the STATUS_
CODE column of the EMPLOYEES table is evaluated by the insertion of
the employee record.

Because the three constraints referenced by the request in Example C–7 are
all evaluated at commit time, the constraints are not compiled and the names
and strategy are not displayed until the COMMIT statement is issued.

C.4 Displaying Optimization Statistics with the O Flag
When you define the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter as O, Oracle Rdb displays statistics
that show the number of solutions the query optimizer tried and rejected
before it found an optimal solution for the query. It also displays the estimated
cost for executing the query; that is, the expected number of rows in the query
result. A sample display is shown in Example C–8.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–15

Example C–8 O Flag Display

SQL> SELECT DISTINCT JH.EMPLOYEE_ID, J.JOB_TITLE
cont> FROM JOB_HISTORY JH, JOBS J
cont> WHERE JH.JOB_CODE = J.JOB_CODE;
Solutions tried 11 !
Solutions blocks created 8 "
Created solutions pruned 5 #
Cost of the chosen solution 1.3184742E+03 $
Cardinality of chosen solution 2.4829416E+02 %

JH.EMPLOYEE_ID J.JOB_TITLE
00164 Department Manager
00164 Systems Programmer
00165 Assistant Clerk
00166 Associate Programmer
00166 Department Manager
00167 Associate Programmer

.

.

.
00435 Department Manager
00435 Vice President
00471 Department Manager

193 rows selected &
SQL>

The following callouts are keyed to Example C–8:

! The number of actual retrieval solutions analyzed by the query optimizer,
in this case 11.

" The number of retrieval solutions that the query optimizer found
interesting, in this case 8. Interesting solutions are those with fewer
I/O operations or those with a sort order that can be used in another part
of the query.

The number of solutions that the optimizer pruned from the solution queue
because another, less costly method of retrieval was found, in this case 5.

$ The estimated relative cost of the full query. In this case, 1318 I/O
operations.

% The estimated number of rows returned, in this case 248 rows. The
optimizer determines cardinality by estimating the number of rows the
query is expected to return based on many factors, including:

• The number of tables and their cardinalities

• The selectivities of the query predicates

C–16 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

& The number of rows actually returned. The optimizer estimated a return of
248 rows; the actual number was 193.

This display can be useful when you are developing a very complex query that
joins many tables. Note that some overhead included in such a query results
from query optimizer processing overhead. You can experiment with different
forms of the query by defining indexes for particular columns named in the
select expression, or separating the query into smaller and simpler queries.
Then you can run the query using the S and O flags and compare the access
strategies the query optimizer chooses for each form of the query with the cost.
Use the form of the query that displays the lowest relative cost. Usually the
best solution is to simplify the query as much as possible.

In general, you should be concerned with query execution cost only if a
particular query poses a problem. Because the database can change
considerably from one execution of a query to the next, the optimizer may
choose a different access strategy for each execution. Special cases involving
complex select expressions, however, may benefit from this kind of analysis
before you include them in your host language programs.

You can also access optimizer cost information using the interactive SQL
statement SET QUERY CONFIRM. See Section 5.8.8.

C.5 Displaying the Optimization Strategy and Cost of Optimization
Using the SO Flags

When you define the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter as SO, Oracle Rdb displays statistics
that show both the number of solutions the query optimizer tried and rejected
before performing the query, and the retrieval strategy or strategies that the
optimizer used to perform the query.

Example C–9 and Example C–11 use identical queries to demonstrate the
advantages or trade-offs of different access strategies.

Example C–9 SO Flag Display

SQL> SELECT JOB_CODE, JOB_TITLE, MINIMUM_SALARY, MAXIMUM_SALARY
cont> FROM JOBS
cont> WHERE WAGE_CLASS= ’4’
cont> AND MINIMUM_SALARY BETWEEN 10000 AND 60000;

(continued on next page)

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–17

Example C–9 (Cont.) SO Flag Display
Solutions tried 1
Solutions blocks created 1
Created solutions pruned 0
Cost of the chosen solution 9.0000000E+00 ! (9 I/OS)
Cardinality of chosen solution 5.7421874E-02 ! (0.06 rows)
Conjunct Get Retrieval sequentially of relation JOBS

JOB_CODE JOB_TITLE MINIMUM_SALARY MAXIMUM_SALARY
APGM Associate Programmer $15,000.00 $24,000.00
DMGR Department Manager $50,000.00 $100,000.00
DSUP Dept. Supervisor $36,000.00 $60,000.00
EENG Electrical Engineer $20,000.00 $40,000.00
MENG Mechanical Engineer $20,000.00 $35,000.00
PRGM Programmer $20,000.00 $35,000.00
SANL Systems Analyst $40,000.00 $60,000.00
SPGM Systems Programmer $25,000.00 $50,000.00

8 rows selected
SQL>

Because no indexes are defined for either column used in this query, the
optimizer must search the JOBS table sequentially to retrieve the rows
identified in the select expression. The output displayed by the S flag shows
that only one access solution was created: a sequential retrieval of the rows
in the table. The cost associated with this solution, displayed by the O flag, is
determined by the estimated number of I/O operations necessary to retrieve
the selected rows, in this case 9. The estimated cardinality value of the chosen
solution is 0.06 rows retrieved.

Unless a query includes the ORDER BY clause, the optimizer does not
guarantee a specific row order. The optimizer finds all the rows that satisfy
the query. In this case, the rows in the JOBS table were stored using the
JOB_CODE order, and that order is relatively stable. The optimizer returns
rows by ascending JOB_CODE, just as they occur in the table itself.

Note

In these examples, the order of the rows displayed differs from one
query to the next. The order depends on which columns, if any,
are indexed. When you define an index for a column, the optimizer
arranges the nodes in the index in ascending order of value. Therefore,
the default sort order for displayed indexed columns is ASCENDING.

If you need to specify a particular order for any column, always include
an ORDER BY clause in your query. Because you cannot determine the

C–18 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

access method the optimizer chooses to retrieve your rows, do not rely
on a default sort order.

Because the JOBS table is small and relatively stable (not likely to grow much
if all jobs categories are already defined), sequential access seems to be the
fastest access method. Furthermore, small tables should be placed in uniform
storage areas to realize the fastest possible access. Sequential access on mixed
storage areas incurs a higher search overhead. If the JOBS table were to grow
considerably for some reason, you might consider defining an index and testing
it again. You should time an actual access to determine if time is saved when
using an index. A general rule is that sequential access probably works best
for small tables that are stable; a small table is one where there are a small
number of unique column values with no duplicates. If you are unsure, define
an index and test it as shown in Example C–10.

Adding an index, as shown in Example C–10, enables the optimizer to consider
another access strategy to retrieve rows that satisfy the query.

Example C–10 Defining the WAGECLASS_IDX Index

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE;
SQL> CREATE INDEX WAGECLASS_IDX ON JOBS
cont> (WAGE_CLASS)
cont> TYPE IS SORTED;
SQL> COMMIT;

Example C–11 uses the same query shown in Example C–9, but uses the
WAGE_CLASS index defined in Example C–10.

Example C–11 SO Flag Display Using the New WAGECLASS_IDX Index

SQL> SELECT JOB_CODE, JOB_TITLE, MINIMUM_SALARY, MAXIMUM_SALARY
cont> FROM JOBS
cont> WHERE WAGE_CLASS= ’4’
cont> AND MINIMUM_SALARY BETWEEN 10000 AND 60000;

(continued on next page)

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–19

Example C–11 (Cont.) SO Flag Display Using the New WAGECLASS_IDX
Index

Solutions tried 2
Solutions blocks created 1
Created solutions pruned 0
Cost of the chosen solution 4.2839408E+00 ! (4 I/O)
Cardinality of chosen solution 4.5937499E-01 ! (0.5 rows)
Leaf#01 FFirst JOBS Card=15 !

BgrNdx1 WAGECLASS_IDX [1:1] Fan=19 "
JOB_CODE JOB_TITLE MINIMUM_SALARY MAXIMUM_SALARY
APGM Associate Programmer 15000.00 24000.00
DMGR Department Manager 50000.00 100000.00
DSUP Dept. Supervisor 36000.00 60000.00
EENG Electrical Engineer 20000.00 40000.00
MENG Mechanical Engineer 20000.00 35000.00
PRGM Programmer 20000.00 35000.00
SANL Systems Analyst 40000.00 60000.00
SPGM Systems Programmer 25000.00 50000.00

8 rows selected
SQL>

The display in Example C–11 shows that creating a new index has changed the
retrieval strategy selected by the optimizer. Instead of the sequential retrieval
strategy found in Example C–9, the availability of the WAGECLASS_IDX
produces a dynamic FFirst leaf strategy. The following callouts are keyed to
Example C–11:

! This line identifies the strategy as the fast first type of dynamic leaf
optimization on the JOBS table, which contains 15 rows.

" This line shows that the background process opens the WAGECLASS_IDX
index.

In this case, the optimizer can locate all rows whose WAGE_CLASS column
contains the value 4 by using the sorted index defined for the WAGE_CLASS
column. Because the value 4 is repeated for many rows, that is, the column
contains duplicate values, all duplicate nodes with key value 4 in the index
must be locked and tested. The second column tested is MINIMUM_SALARY.
This column is not indexed. By indexing the WAGE_CLASS column, the
optimizer must locate all rows that contain the value 4 and, from that group,
test each to determine if the row also contains the MINIMUM_SALARY
column with a value within the range of values specified in the query.

C–20 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

The optimizer cannot determine from the index alone which rows satisfy the
query, because all the information is not in the index. Therefore, the optimizer
uses the dbkey from the index to go directly to each row whose WAGE_CLASS
column contains the value 4 and test its MINIMUM_SALARY column against
the range of values in the second clause, MINIMUM_SALARY BETWEEN
10000 AND 60000.

By using the O flag and S flag together, you can understand why the query
optimizer chooses a particular strategy. Notice also that Oracle Rdb uses the
value 4 to restrict the search through the index. The display from the SO flags
indicates that one low Ikey segment and one high Ikey segment ([1:1]), of the
WAGECLASS_IDX sorted index is used to specify the index range to scan in
search of this value defined as 4.

The cost associated with this query, using an index defined for the WAGE_
CLASS column alone, is estimated at four I/Os. Oracle Rdb retrieves the
rows through the index. However, if the rows in a table experience frequent
additions and deletions, Oracle Rdb stores them randomly in the logical area
associated with the table. Therefore, the access strategies Oracle Rdb chooses
to execute this query are different from the strategies it would choose if
the table were empty. Defining an index on the WAGE_CLASS column also
partially answers a previous question about whether or not an index defined
for this table could result in better performance (nine I/Os as opposed to
four I/Os when the index is used). You would need to time some queries to
determine if the savings in time is actually measurable.

C.6 Displaying the Optimization Strategy and Execution Trace
with the SE Flags

During dynamic optimization, the optimizer can change strategies. For this
reason, using the S flag to examine optimizer strategy does not reveal all the
steps in query execution. When you define the RDMS$DEBUG_FLAGS logical
name or the RDB_DEBUG_FLAGS configuration parameter as SE, Oracle Rdb
displays the execution trace for dynamic optimization strategies and includes
the following lines:

• One line at the initial stage

• One line at the conclusion or termination of each background index

• One line at the conclusion or termination of the foreground index

• One line at the conclusion or termination of the final phase

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–21

In certain situations any of the preceding information can be omitted in the
E debug flag display. This indicates that a given phase was not needed for a
given leaf run. However, at least one line is always printed.

The "\" debug flag sets the internal dbkey buffer size to a very small (testing)
value of 10 dbkeys. This allows you to test dynamic optimization with small
tables by forcing the use of temporary tables to store dbkey lists.

Note

The "\" debug flag should be used only for testing or problem
solving. It is not intended for production use as it slows down system
performance.

Digital UNIX You can specify the maximum number of leaf node iterations to be printed in
the execution trace display by defining the RDB_DEBUG_FLAGS configuration
parameter in your .dbsrc configuration file as follows:

RDB_DEBUG_FLAGS "SEnnn"

Substitute the maximum number of iterations for the notation nnn. The
default number is 100 iterations. You can set this limitation when you have
a complex query where the inner loop of a cross block join strategy contains a
leaf node. In some cases, the execution trace for this type of strategy can result
in an extremely long display that can slow performance and consume excessive
disk space. ♦

The remainder of this section examines detailed output of the dynamic
optimization (leaf) strategy using the S and E flags. Table C–3 shows notation
used with the E flag display.

C–22 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Table C–3 Output Definitions for the E Flag

Output Definition

~E#000n.0n(n) Identifies an execution trace (E flag) line. For example, the line ~E#0001.01(1)
indicates the following:

• #0001 indicates that this is the execution trace for the first query strategy
of the session.

• .01 indicates that the output is from the first leaf in the strategy’s
execution tree.

• (1) indicates that this is the first iteration of this leaf.

Estim Ndx:Lev/Seps
/DBKeys n:n/n/n n:n
/n\n

Indicates cardinality reestimation of a leaf ’s background indexes. Refer to
Section 5.7.2 for background information.

• Estim indicates that this is an estimation line.

• Ndx: indicates the background index number in a sequence delivered by
the static optimizer, for example BgrNdx1 or BgrNdx2.

• Lev indicates a B-tree descent to an index node where a range split occurs
or to a level 1 index node. An index node split occurs when that index
node no longer covers the entire index key range. In other words, the key
range is split across more than one index node. By knowing the level at
which the split occurs and the average keys per node, the optimizer can
estimate cardinality more accurately than the initial estimate made by the
static optimizer. If a level 1 index node is reached, the cardinality is equal
to the number of entries in the node that are within the key range times
the duplicates key factor.

• Seps indicates the number of Ikey separators between the range nodes at
this level, that is #OfNodes minus 1.

• DBKeys indicates the number of dbkeys (retrievals) in the range.

Each n corresponds to a position in the Ndx:Lev/Seps/DBKeys notation. The
notation is illustrated in the following example:

~E0005.01(1) Estim Ndx:Lev/Seps/DBKeys 1:1/1/1 2:3/1\197

(continued on next page)

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–23

Table C–3 (Cont.) Output Definitions for the E Flag

Output Definition

• 1:1/1/1

Background index number 1, as indicated in the S display.

B-tree descent stopped at level 1, the lowest level.

The key range contained one separator. Note that at level 1, Seps is not
#OfNodes minus 1 but #OfNodes, that is, the number of entries that could
be row dbkeys or dbkeys pointing to the lists of duplicate key dbkeys.

One (1) dbkey. The ‘‘1’’ preceded by a slash (/) means the ‘‘1’’ is a precise
figure (not an estimate), indicating no duplicate keys are involved.

• 2:3/1\197

Background index number 2.

Split level 3.

Two (2) nodes in the range at this split level (#OfNodes–1=1).

197 estimated dbkeys. When preceded by a backslash (\), the number is
the estimated number of dbkeys (retrievals) in the range.

Another example is:

~E0007.01(1) Estim Ndx:Lev/Seps/DBKeys 2:3/1\38 1:_52

• 2:3/1\38

Background index number 2, as indicated by the S display.

Level 3.

(continued on next page)

C–24 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Table C–3 (Cont.) Output Definitions for the E Flag

Output Definition

Two (2) nodes in the range at this split level (#OfNodes–1=1).

38 estimated dbkeys.

• 1:_52

Background index number 1.

When preceded by an underscore (_), the number is the static optimizer’s
estimate of the number of records to retrieve. This estimate is provided
when the dynamic optimizer estimate cannot be conducted. Background
index information is shown in ascending dbkeys order. Therefore, in
this example, the background index number 2 information is displayed
first because background index number 2 has fewer dbkeys (38) than
background index 1 (52).

BgrNdx1 Indicates the first index chosen for the background process. If more than one
index is opened, they are numbered consecutively.

FgrNdx Indicates foreground index. There can be a single foreground index.

DBKeys=n Indicates the number of dbkeys accumulated in a dbkey list (buffer or
temporary table) while scanning an index, excluding those dbkeys that are
filtered out.

Fetches=n+n Indicates the number of the physical I/O operations done to fetch index pages
during an index range scan. The left side of the plus sign is the I/O portion
for an index open stage (B-tree descent). The right of the plus sign is the get
next I/O portion, that is, the index scan or a data scan. The number of I/O
operations does not accumulate from fetch line to fetch line for a particular
leaf scan. Instead, this line shows the number of physical fetches done for a
particular background index. Note that this information does not include I/O
required for sorts or for moving data to the temporary table.

RecsOut=n Indicates the number of records delivered to a caller by this leaf node at the
moment this BgrNdx completes or terminates. The RecsOut count increments
with each new ~E line printed for a given leaf scan.

#Bufs=n Indicates the estimated number of table page buffers that will be read when
all the rows pointed to by the dbkeys in the dbkey list are fetched. The #Bufs
value is displayed for fast first, background only, and index only leaf retrieval
strategies.

Fin Buf Indicates the Fin stage has obtained a dbkey list from a buffer.

Fin Ttbl Indicates the Fin stage has obtained a dbkey list from a temporary table.

(continued on next page)

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–25

Table C–3 (Cont.) Output Definitions for the E Flag

Output Definition

Fin Seq Indicates the Fin stage has delivered the rows sequentially. The Fin stage
should never deliver rows sequentially, but this can happen if the stored
cardinality has become much higher than the actual cardinality.

Fin ?state? Indicates the Fin stage has not been started because the retrieval was
prematurely terminated.

ThreLim Indicates too many dbkeys have been read. A sequential scan or possibly
another index would be faster.

FtchLim Indicates too many I/O operations have been done. Try the next index or a
sequential scan.

Termin* Indicates background process termination.

EofData Indicates successful completion of a background index scan.

’CUT Indicates the background process or foreground process was stopped by an
explicit ‘‘Close Leaf’’ command.

’ABA Indicates a process was abandoned (terminated) in favor of the other process.

Keep the following three rules in mind when you read the output of the S and
E flags:

• The ~S (strategy) output lines are printed during the final stage of query
compilation. The ~E (execution) output lines are printed during query
execution after processing has completed; that is, after the Bgr, Fgr, and
Fin processes have completed. Note that ~E output lines can appear
apart from their ~S output counterparts. They also can be intermixed for
different leaves in the same query as well as for the leaves of different
queries. This is why the ~S notation contains two numbers and the ~E
notation contains three numbers: the numbers identify to which query, to
which instance of a leaf within the query, and to which iteration of a given
leaf the ~E output lines belong.

• The ~E output lines are printed just above the last line of query output
(the last delivered row).

• The RecsOut line shows the total count of rows delivered for a run up to
that point. This means that rows could have been delivered by either the
foreground process or the Fin process, but whatever quantity has been
delivered by the time the background process finishes is shown on the Bgr
line.

The examples in this section show examples of debug flag output with the S
and E flags set.

C–26 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Fast First Leaf Strategy with Execution Trace
Example C–12 illustrates the Fast First (FFirst) leaf retrieval strategy.

Example C–12 SE Flag Display—FFirst Retrieval

SQL> SELECT LAST_NAME, EMPLOYEE_ID FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’00200’;
~S#0004 !
Leaf#01 FFirst EMPLOYEES Card=100 "

BgrNdx1 EMP_EMPLOYEE_ID [1:0] Fan=17 #
LAST_NAME EMPLOYEE_ID
Clinton 00201 $
Harrington 00202
Gaudet 00203

.

.

.
Dement 00405
Mistretta 00415
Ames 00416
Blount 00418
MacDonald 00435

~E#0004.01(1) BgrNdx1 EofData DBKeys=63 Fetches=0+0 RecsOut=63 #Bufs=24 %
~E#0004.01(1) FgrNdx FFirst DBKeys=63 Fetches=0+23 RecsOut=63‘ABA &
~E#0004.01(1) Fin Buf DBKeys=63 Fetches=0+0 RecsOut=63 '

Herbener 00471 (
63 rows selected
SQL>

The following callouts are keyed to Example C–12:

! This is the fourth query of the session.

" This is the first (and only) leaf node in the execution tree for this query.
The optimizer chose the fast first leaf type to access the EMPLOYEES
table, which has a cardinality of 100 rows.

The background process uses one index (BgrNdx1), EMP_EMPLOYEE_ID,
which the optimizer has determined is the best available index. Because
this is a FFirst retrieval, both the background process and the foreground
process use EMP_EMPLOYEE_ID.

There is one low index key value, but no upper limit for the scan because
the query contains the Boolean greater than (>) operator. The fanout factor
is an average of 17 branches for each index node.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–27

$ The foreground process begins delivering rows immediately and delivers
63 rows before the first execution trace line appears. The ~E output lines
are always printed one line before the last line of query output (the last
delivered row).

% This execution trace line contains the following information:

• ~E#0004.01(1)

This execution trace line is for the fourth query of the current session;
for the first leaf in the execution tree; and for the first iteration of this
leaf.

• BgrNdx1 EofData DBKeys=63 Fetches=0+0 RecsOut=63 #Bufs=24

The background process has finished the index scan (EofData). The
DBKeys=63 shows that 63 dbkeys were collected in the buffer while
scanning the index. The Fetches notation shows that no I/O operations
were required for the scan of this leaf. The #Bufs notation is an
estimate of the number of table page buffers that will be read when all
the rows pointed to by the dbkeys in the dbkey list are fetched.

& ~E#0004.01(1) FgrNdx FFirst DBKeys=63 Fetches=0+23 RecsOut=63‘ABA

The FgrNdx FFirst notation indicates that the background index is the
source of the dbkeys that the foreground process has delivered. The
foreground process itself has not fetched any dbkeys because the RecsOut
total of 63 dbkeys has not been incremented above the 63 delivered by the
background process. The Fetches notation shows that 23 I/O operations
were required for data record fetches. Note that 23 I/O operations is close
to the estimate of 24 shown in the #Bufs notation.

The optimizer abandons (‘ABA) the foreground process because the
background process has successfully finished. The optimizer is now ready
to do the final stage fetches.

' ~E#0004.01(1) Fin Buf DBKeys=63 Fetches=0+0 RecsOut=63

This line shows that the final (Fin) stage has read all 63 dbkeys stored in
a buffer (Buf), tested them against the dbkey list already delivered by the
foreground process, and ignored all 63 dbkeys in the dbkey list as already
delivered, thus doing no I/O operations (Fetches=0+0), and, together with
the foreground process, has delivered 63 rows (RecsOut=63).

(The final output line is always printed after the execution trace line
responsible for its delivery.

C–28 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Sorted Order Leaf Strategy with Execution Trace
Example C–13 illustrates the sorted order leaf retrieval strategy with both the
S and E flags set.

Example C–13 SE Flag Display—Sorted Order Retrieval

SQL> SELECT EMPLOYEE_ID, LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME = ’Clarke’
cont> ORDER BY EMPLOYEE_ID;
~S#0004 !
Leaf#01 Sorted EMPLOYEES Card=100 "

FgrNdx EMP_EMPLOYEE_ID [0:0] Fan=17 #

BgrNdx1 EMP_LAST_NAME [1:1] Fan=12 $

~E#0004.01(1) BgrNdx1 EofData DBKeys=3 Fetches=0+0 RecsOut=0 %

EMPLOYEE_ID LAST_NAME&
00188 Clarke
00196 Clarke

~E#0004.01(1) FgrNdx Sorted DBKeys=5 Fetches=0+4 RecsOut=3 '
00212 Clarke (

3 rows selected
SQL>

The following callouts are keyed to Example C–13:

! This is the fourth query of the session.

" This is the first (and only) leaf node in the execution tree for this query.
The optimizer chose the sorted order leaf type to access the EMPLOYEES
table, which has a cardinality of 100 rows.

The foreground process uses EMP_EMPLOYEE_ID for its index (FgrNdx)
scan. This index returns the rows in the specified sorted order. Because
the query does not specify a condition on the EMPLOYEE_ID column, the
entire index must be scanned as indicated by the [0:0] notation. The fanout
factor is 17.

$ The background process uses one index (BgrNdx1), EMP_LAST_NAME.
The background process simultaneously scans the EMP_LAST_NAME
index while the foreground process scans EMP_EMPLOYEE_ID. The
query specifies an equivalence for the LAST_NAME column (= ’ Clarke’);
thus the [1:1] notation indicates one low Ikey segment and one high Ikey
segment. The fanout factor is 12.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–29

The foreground process does a complete scan over the EMP_EMPLOYEE_
ID sorted index. If at any point during the scan no complete background
dbkey list is available, the foreground process fetches all the rows for its
dbkeys. If at a given point during the scan a complete background dbkey
list becomes available, the foreground process fetches only the rows whose
dbkeys belong to the background dbkey list.

% The background process finishes first, having scanned its index to
completion (EofData). The background process found three dbkeys,
requiring no I/O operations to get an index page in order to open it and
no I/O operations for the index scan. No rows were delivered (RecsOut=0)
by the foreground process at this point; instead, the dbkeys were written to
a dbkey list.

& The foreground process delivers rows.

' The foreground process can now use the dbkey list created by the
background process and no longer needs to fetch every row from the table.
The dbkeys from the foreground index are filtered through the dbkey list;
if the dbkey is there, the foreground process fetches the row and matches it
against the complete query selection. If the dbkey is not in the dbkey list,
the row is not fetched.

The foreground process scanned the entire foreground index (EMP_
EMPLOYEE_ID [0:0]) and used five dbkeys (DBKeys=5) to perform data
record fetches. It did filter the EMP_EMPLOYEE_ID index dbkeys through
the background process’ dbkey list and output three rows (RecsOut=3),
which required four page I/O operations (Fetches=0+4). The four fetches for
the foreground index scan include the index scan itself plus all necessary
fetches of data records (using three dbkeys in this case). If the background
dbkey list had not been available, fetches for all 100 dbkeys for the entire
table would have been necessary.

(The final output line is always printed after the execution trace line
responsible for its delivery.

Index Only Leaf Strategy with Execution Trace
Example C–14 illustrates the index only leaf retrieval strategy with both the S
and E flags set. To illustrate this leaf strategy, two indexes have been created
specifically for this example:

SQL> CREATE INDEX EMP_LN_FN_SX ON EMPLOYEES
cont> (LAST_NAME, FIRST_NAME, SEX);
SQL>
SQL> CREATE INDEX EMP_SX ON EMPLOYEES
cont> (SEX);

C–30 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

The EMP_LN_FN_SX index contains all the columns needed in the sample
query.

Example C–14 SE Flag Display—Index Only Leaf Retrieval

SQL> SELECT LAST_NAME, FIRST_NAME FROM EMPLOYEES
cont> WHERE FIRST_NAME <> ’Alvin’ AND LAST_NAME >= ’L’
cont> AND FIRST_NAME <= ’U’ AND SEX = ’F’;
~S#0004 !
Leaf#01 NdxOnly EMPLOYEES Card=100 "

FgrNdx EMP_LN_FN_SX [1:0] Fan=9 #

BgrNdx1 EMP_SX [1:1] Fan=19 $

LAST_NAME FIRST_NAME%
Lapointe Hope
Lapointe Jo Ann
MacDonald Johanna

.

.

.
Ulrich Christine
Villari Christine
Watters Christine

~E#0004.01(1) FgrNdx NdxOnly DBKeys=16 Fetches=2+0 RecsOut=16 &
Watters Cora '

16 rows selected
SQL>

The following callouts are keyed to Example C–14:

! This is the fourth query of the session.

" This is the first (and only) leaf node in the execution tree for this query.
The optimizer chose the index only (NdxOnly) leaf type to access the
EMPLOYEES table, which has a cardinality of 100 rows.

The foreground process chose the EMP_LN_FN_SX index (defined
specifically for this example) because it contains all the columns needed
by the query. There is one low index key value, but no upper limit for the
scan. The fanout factor indicates an average of nine branches for each
index node.

$ The background process chose the EMP_SX index (defined specifically for
this example), which is based on the SEX column of the EMPLOYEES
table. The query specifies an equivalence for the SEX column (= ’ F’), thus
the [1:1] notation indicates one low index key segment and one high index
key segment. The fanout factor is 19.

% The foreground process begins returning rows immediately.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–31

& The foreground process has completed its scan of the EMP_LN_FN_SX
index with two (2) physical I/O operations, found 16 dbkeys, and returned
16 rows. Because the foreground index contained all the columns required
by the query, and thus was so efficient, the background index scan was not
started.

' The final output line is always printed after the execution trace line
responsible for its delivery.

Join Using Sorted Order Leaf Strategy with Execution Trace
Example C–15 illustrates a join of two tables that uses the zigzag variation of
the match strategy. One loop uses the sorted order leaf retrieval strategy; the
second loop uses an index only retrieval strategy. Both the S and E flags are
set.

Example C–15 SE Flag Display—Leaf Strategy with Join

SQL> SELECT E.EMPLOYEE_ID, JH.JOB_START
cont> FROM EMPLOYEES E, JOB_HISTORY JH
cont> WHERE E.EMPLOYEE_ID = JH.EMPLOYEE_ID
cont> AND (E.LAST_NAME > ’T’ OR E.LAST_NAME > ’Y’ OR E.LAST_NAME > ’Z’);
~S#0005 !
Conjunct +>
Match "

Outer loop #
Leaf#01 Sorted EMPLOYEES Card=100 $

FgrNdx EMP_EMPLOYEE_ID [0:0] Fan=17 %

BgrNdx1 EMP_LAST_NAME [1:0...]3 Fan=12 &

Inner loop (zig-zag) '
Get Retrieval by index of relation JOB_HISTORY (

Index name JH_EMPLOYEE_ID [0:0])
E.EMPLOYEE_ID JH.JOB_START
00164 5-Jul-1980 +?

~E#0005.01(1) BgrNdx1 EofData DBKeys=9 Fetches=1+0 RecsOut=1 +@
00164 21-Sep-1981
00170 26-Nov-1980 +A
00186 25-Apr-1980
00186 1-Jul-1975
00186 16-Aug-1977

.

.

.

(continued on next page)

C–32 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Example C–15 (Cont.) SE Flag Display—Leaf Strategy with Join

00242 12-May-1978
00242 11-May-1980
00247 19-Jan-1982
00276 3-Jun-1977

~E#0005.01(1) FgrNdx Sorted DBKeys=11 Fetches=0+7 RecsOut=9 +B
00276 15-Mar-1980 +C

20 rows selected
SQL>

The following callouts are keyed to Example C–15:

! This is the fifth query of the session.

" The optimizer uses the match strategy (specifically, the zigzag variation) to
join the two tables in the query. The two loops of the match strategy access
different tables.

The table assigned to the outer loop is scanned in conjunction with the
inner loop. Processing in the two loops advances so that the current keys
in each loop remain as closely matched as possible. The optimizer, using
the key with the lower value, searches for a key in the opposite loop that
matches (is equal to) or exceeds (is greater than) the lower valued key.

$ The optimizer chose the sorted order leaf type to access the EMPLOYEES
table, which has a cardinality of 100 rows.

% The foreground process uses the EMP_EMPLOYEE_ID index (FgrNdx).
This index returns rows in sorted order. The entire index must be scanned
as indicated by the [0:0] notation. The fanout factor is 17.

& The background process uses one index (BgrNdx1), EMP_LAST_NAME.
The background process simultaneously scans the EMP_LAST_NAME
index while the foreground process scans EMP_EMPLOYEE_ID. The query
specifies 3 ranges for the LAST_NAME column (> ’ T’ OR > ’ Y’ OR >
’ Z’), thus the [1:0 . . .]3 notation indicates one low Ikey segment and no
high Ikey segment for three ranges. The fanout factor is 12.

The foreground process does a complete scan over the sorted index EMP_
EMPLOYEE_ID. For each dbkey in the index, the foreground fetches a
row and then checks to see that the row satisfies the second condition on
the EMPLOYEES table, LAST_NAME > ’ T’ OR LAST_NAME > ’ Y’ OR
LAST_NAME > ’ Z’ . The background process helps by building a dbkey
list using the EMP_LAST_NAME index. The dbkey list contains dbkeys of
all rows that satisfy the LAST_NAME > ’ T’ OR LAST_NAME > ’ Y’ OR
LAST_NAME > ’ Z’ condition. Because the background index scan starts

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–33

with values greater than ’ T’ , the background has fewer dbkeys to process
and finishes before the foreground. The foreground process now filters its
dbkeys through the dbkey list and avoids unnecessary row fetches.

Using the sorted order leaf strategy, the outer loop passes one E.EMPLOYEE_
ID value at a time to the inner loop.

' The table assigned to the inner loop is scanned next. The zigzag strategy is
applied to the inner loop.

(The optimizer chose indexed access to the JOB_HISTORY table for the
inner loop.

) The optimizer uses the index JH_EMPLOYEE_ID to access the table JOB_
HISTORY. The [0:0] notation indicates the entire index must be scanned.
Using the E.EMPLOYEE_ID value from the outer loop, the optimizer
searches for all matching values in the JH_EMPLOYEE_ID index.

• If no matching value or values are found, the next highest
JH.EMPLOYEE_ID value is returned to the outer loop, where it is
compared with the next E.EMPLOYEE_ID value found by the sorted
order leaf scan.

• If values match (JH_EMPLOYEE_ID = EMP_EMPLOYEE_ID), the
row in the JOB_HISTORY table is fetched (indicated by the Get in
the previous line) and the optimizer continues scanning the JH_
EMPLOYEE_ID index for any duplicate JH.EMPLOYEE_ID values.

EMPLOYEE_ID values are passed back and forth (zigzag) between loops
until no more matches are found.

+> The Conjunct notation appears above all match strategies. In this example,
it is not necessary because the zigzag match strategy has filtered the
delivered rows to avoid duplicates. Sometimes, however, if the data types of
the columns are different, the match strategy performs a rougher equality
check, and the Conjunct is required to filter out possible extra pairs of
match keys coming from each loop.

+? The foreground process delivers this row before the background process
completes its scan.

+@ The background process finishes first, having scanned its index, EMP_
LAST_NAME, to completion (EofData). The background process found nine
dbkeys, which required one I/O operation for the index scan. A dbkey list
containing nine dbkeys is delivered to the foreground process just as the
foreground process starts to scan its index. The foreground process fetches
and delivers one row (RecsOut=1). From this point on, the foreground
process considers only the nine background dbkeys for fetching rows.

C–34 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

+A These rows are delivered by the foreground process.

+B The foreground process now uses the dbkey list created by the background
process and no longer needs to fetch every row from the table. The dbkeys
from the foreground index are filtered through the dbkey list; if the dbkey
is there, the foreground process fetches the row and matches it against the
complete query selection. If the dbkey is not in the dbkey list, the row is
not fetched.

The foreground process filters the EMP_EMPLOYEE_ID index dbkeys
through the background process’ dbkey list and outputs nine rows
(RecsOut=9), which requires seven page I/O operations (Fetches=0+7).

Notice that the nine output rows (RecsOut=9) do not match the actual total
output of 20 rows. The inner loop must have output the other rows, and
this is confirmed by the results, which show duplicate EMPLOYEE_ID
values (00164 and 00186).

+C The final output line is always printed after the execution trace line
responsible for its delivery.

C.7 Displaying Sort Statistics with the R Flag
OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, Oracle Rdb displays sort statistics upon completion of a sorting
operation when the Oracle Rdb logical name RDMS$DEBUG_FLAGS is defined
as R or when the SET FLAGS statement with the SORT_STATISTICS keyword
is enabled during query execution. ♦

Digital UNIX The SORT_STATISTICS keyword and the R debug flag are ignored on
Digital UNIX. ♦

OpenVMS
VAX

OpenVMS
Alpha

SQL often performs sorting for the ORDER BY clause and the implicit sorting
required for the UNION and GROUP BY clauses. If possible, the optimizer
avoids sorting data when an appropriate sorted index is available, or when
a sort operation is redundant. In these cases, the optimizer may choose an
alternate strategy to retrieve the rows in the correct order without requiring
the sorting operation.

Oracle Corporation recommends that the R debug flag always be used in
conjunction with the S debug flag (or STRATEGY keyword of the SET FLAGS
statement). This allows the sort statistics to be correlated with a known query
which is possibly a constraint, trigger, system, or user query. In addition, the
SORT_STATISTICS keyword causes the STRATEGY output to contain extra
descriptive information.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–35

The sorting operation can consume both CPU and I/O resources. You can use
the output of the debug flags to tune the number and location of sort work files,
the sort virtual memory, and to help analyze system parameter requirements
for some queries.

Example C–16 shows the sort statistics from the WORK_STATUS table in the
mf_personnel database.

Example C–16 Strategy Display for Sample Query

SQL> SET FLAGS ’STRATEGY’;
SQL> SELECT STATUS_CODE FROM WORK_STATUS ORDER BY STATUS_CODE;
Sort
Get Retrieval sequentially of relation WORK_STATUS

STATUS_CODE
0
1
2

3 rows selected

The SORT statistics are generated only if one or more of the "Sort" keywords
appears in the strategy display.

If this query is executed in interactive SQL or dynamic SQL, it is likely that
SQL system queries (used to load and validate metadata) might also display
strategy and sort statistics. Therefore, it is important to differentiate the SQL
queries from the user queries.

Example C–17 shows the use of both the STRATEGY and SORT_STATISTICS
keywords.

Example C–17 Sort Statistics for Sample Query

SQL> SET FLAGS ’STRATEGY, SORT_STATISTICS’;
SQL> SELECT STATUS_CODE FROM WORK_STATUS ORDER BY STATUS_CODE;
Sort
SortId# 4., # Keys 2 !

Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1 "
Item# 2, Dtype: 14, Order: 0, Off: 1, Len: 1 #
LRL: 24, NoDups:0, Blks:5, EqlKey:0, WkFls: 2 $

Get Retrieval sequentially of relation WORK_STATUS
STATUS_CODE
0
1

(continued on next page)

C–36 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Example C–17 (Cont.) Sort Statistics for Sample Query

SORT(2) SortId# 4, --------------------- Version: V5-000 %
Records Input: 3 Sorted: 3 Output: 0 &

LogRecLen Input: 24 Intern: 24 Output: 24 '
Nodes in SoTree: 112 Init Dispersion Runs: 0 (
Max Merge Order: 0 Numb.of Merge passes: 0
Work File Alloc: 0)
MBC for Input: 0 MBC for Output: 0 +>
MBF for Input: 0 MBF for Output: 0 +?
Big Allocated Chunk: 88576 idle +@

2
3 rows selected

! When the STRATEGY keyword is used in conjunction with SORT_
STATISTICS, Oracle Rdb displays extra information about the sort
operation. The number of keys (# Keys) indicates that there are two data
items: the NULL indicator, and the column being sorted.

" Item# 1 describes the NULL indicator which is of type UNSIGNED BYTE.
It will be ordered ASCENDING (0) rather than DESCENDING (1). It
occurs at offset 0 in the logical record, and has a length of one byte. Refer
to Table C–4 for the data types used by Oracle Rdb when calling the sort
interface.

Item# 2 describes the column STATUS_CODE which is of type
CHARACTER; it will be ordered ASCENDING (0). It occurs at offset
1 in the logical record, and has a length of one byte. Refer to Table C–4 for
the data types used by Oracle Rdb when calling the sort interface.

$ LRL (logical record length): in this case is 24 bytes. Oracle Rdb allocates
space for the NULL indicator, columns from the table, and room for two
dbkey fields. The dbkeys are aligned on a quadword boundary. If the data
is derived from other sources (such as a UNION), then dbkey access is not
possible and these extra dbkey fields are not part of the logical record.

NoDups: When this value is zero, then the sort allows duplicates. If the
value is one, then duplicates are not allowed. See Example C–18 and
Example C–20, which show how both DISTINCT and UNION set this
attribute to one to force the sort operation to discard duplicate rows.

Blks: This is the estimated size of the data to be sorted. It is based on the
estimated cardinality for the query (displayed by RDMS$DEBUG_FLAGS
O, or the SET FLAGS ESTIMATES option), and the logical record length
(LRL).

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–37

EqlKey: This flag indicates if a specialized equals callback routine is
provided to the sort interface. This flag is currently always zero, indicating
that no special routine is used.

WkFls: This value reflects the number of sort work files established with
the RDMS$BIND_SORT_WORKFILES logical name on OpenVMS.

% SortId# shows that this sort operation is related to the sort operation used
in the strategy display. The Version is the internal Oracle Rdb version of
the sort interface.

& Records Input describes the number of rows passed to the sort interface.
Sorted describes the number of rows actually sorted. The file interface to
the sort operation allows the user to omit rows during input; however, this
value will be identical to the Records Input value for Oracle Rdb because
it uses the record interface. Output will always be zero for Oracle Rdb.

' LogRecLen Input is the logical record length. This can be calculated
based on the column values and NULL indicators used by the query. Note
that the sort operation may be sorting the results of a join or computation.
Intern and Output will always be the same as LogRecLen Input
because Oracle Rdb only uses a record sort algorithm.

(Nodes in SoTree, Init Dispersion Runs, Max Merge Order, and
Numb.of Merge passes describe the sort operations.

) Work File Alloc indicates how many work files were used in the sort
operation. A value of zero indicates that the sort was accomplished
completely in memory.

+> MBC for Input and MBC for Output is the OpenVMS RMS multiblock
count for the input files. It is always zero, because Oracle Rdb uses the
sort record interface, not the file interface.

+? MBF for Input and MBF for Output is the OpenVMS RMS multibuffer
count for the input files. It is always zero, because Oracle Rdb uses the
sort record interface, not the file interface.

+@ Big Allocated Chunk is the amount of virtual memory that has been
allocated to the sorting function. Oracle Rdb retains this memory for
future sort requests, and may grow it if it is too small. By retaining the
allocated memory, Oracle Rdb avoids excessive calls to the OpenVMS
memory system services to allocate and free virtual memory.

"Idle" indicates that this block of memory was not needed for this sort
operation, and "In Use" indicates that the currently described sort
operation made use of some or all of this allocated virtual memory.

C–38 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

The decision of whether or not Oracle Rdb uses the Big Allocated Chunk
and how many bytes to allocate is based on the estimated cardinality of
the query solution (obtained by the RDMS$DEBUG_FLAGS O, or the
SET FLAGS ESTIMATES option). Sort is initialized with this estimated
cardinality before any records are retrieved from the database. In certain
cases, this may cause a large number of page faults when the sort operation
sets up its sort tree in preparation for the actual sorting. As the solution
cardinality is only a mathematical estimate of the number of rows to be
retrieved, it may differ from the actual number of rows returned.

Example C–18 shows the change in output when a DISTINCT clause is used to
reduce the output to a set of distinct rows.

Example C–18 Effect of DISTINCT Clause on Sort Attributes

SQL> SELECT DISTINCT STATUS_CODE
cont> FROM WORK_STATUS WHERE STATUS_CODE >= ’1’ ORDER BY 1;
Reduce Sort
SortId# 8., # Keys 2

Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
Item# 2, Dtype: 14, Order: 0, Off: 1, Len: 1
LRL: 24, NoDups:1, Blks:5, EqlKey:0, WkFls: 2 !

Conjunct Get Retrieval sequentially of relation WORK_STATUS
STATUS_CODE
1

SORT(6) SortId# 8, --------------------- Version: V5-000
Records Input: 2 Sorted: 2 Output: 0

LogRecLen Input: 24 Intern: 24 Output: 24
Nodes in SoTree: 112 Init Dispersion Runs: 0
Max Merge Order: 0 Numb.of Merge passes: 0
Work File Alloc: 0
MBC for Input: 0 MBC for Output: 0
MBF for Input: 0 MBF for Output: 0
Big Allocated Chunk: 88576 idle

2
2 rows selected

! NoDups is set to one to indicate that rows with duplicate values of the sort
key should be discarded. This change is made because of the DISTINCT
clause in the query (indicated by the Reduce keyword in the strategy
display).

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–39

Example C–19 shows the change in output when no sort is needed. The
optimizer generates the access strategy based on estimates and so always
generates the sort operation, even when zero or one row are returned. In such
cases, the sort operation can be avoided, with a small saving of CPU time.

Example C–19 Avoided Sort Operation

SQL> SELECT STATUS_CODE
cont> FROM WORK_STATUS
cont> WHERE STATUS_CODE >= ’4’ ORDER BY 1;
Sort
SortId# 5., # Keys 2

Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
Item# 2, Dtype: 14, Order: 0, Off: 1, Len: 1
LRL: 24, NoDups:0, Blks:5, EqlKey:0, WkFls: 2

Conjunct Get Retrieval sequentially of relation WORK_STATUS

SORT(3), SortId# 5 ---- Avoided !
No records

0 rows selected

SQL> SELECT STATUS_CODE
cont> FROM WORK_STATUS
cont> WHERE STATUS_CODE >= ’2’ ORDER BY 1;
Sort
SortId# 6., # Keys 2

Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
Item# 2, Dtype: 14, Order: 0, Off: 1, Len: 1
LRL: 24, NoDups:0, Blks:5, EqlKey:0, WkFls: 2

Conjunct Get Retrieval sequentially of relation WORK_STATUS

SORT(4), SortId# 6 ---- Avoided !
No records
STATUS_CODE
2

1 row selected

! When the input stream contains one or zero rows, the entire sort operation
can be avoided.

Example C–20 shows an example of a UNION generating sort calls.

C–40 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Example C–20 Query Using UNION Generating SORT

SQL> SELECT LAST_NAME FROM EMPLOYEES
cont> UNION
cont> SELECT LAST_NAME FROM CANDIDATES
cont> LIMIT TO 10 ROWS;
Firstn Reduce Sort !
SortId# 3., # Keys 2

Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
Item# 2, Dtype: 14, Order: 0, Off: 1, Len: 14
LRL: 15, NoDups:1, Blks:6, EqlKey:0, WkFls: 2

Merge of 2 entries
Merge block entry 1
Get Retrieval sequentially of relation EMPLOYEES
Merge block entry 2
Get Retrieval sequentially of relation CANDIDATES

LAST_NAME
Ames
Andriola
Babbin
Bartlett
Belliveau
Blount
Boswick
Boyd
Brown

SORT(1) SortId# 3, --------------------- Version: V5-000
Records Input: 103 Sorted: 103 Output: 0 "

LogRecLen Input: 15 Intern: 15 Output: 15
Nodes in SoTree: 212 Init Dispersion Runs: 0
Max Merge Order: 0 Numb.of Merge passes: 0
Work File Alloc: 0
MBC for Input: 0 MBC for Output: 0
MBF for Input: 0 MBF for Output: 0
Big Allocated Chunk: 88576 idle

Burton
10 rows selected #

! UNION is defined as returning a unique set of rows. Therefore, in this
example, the merged set of rows are sorted (the Sort keyword), then
reduced to a distinct set of rows (the Reduce keyword), and finally
delivered to the application.

The UNION ALL clause returns all rows from the two selection statements
and will not normally include a sort operation.

" This shows that the exact number of records passed to the sort operation
was 103 rows.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–41

The output from interactive SQL shows that only 10 rows were returned.
The LIMIT TO clause was used to limit the amount of output for this
example. The LIMIT TO (see the Firstn keyword in !) is always
performed last, after all sorting is completed.

Table C–4 shows the data types used with the sort interface.

Table C–4 Data Types Used with Sort Interface

Type Name Value SQL Data Types

DSC$K_DTYPE_ADT 35 DATE (VMS and ANSI), TIME, TIMESTAMP

DSC$K_DTYPE_B 6 TINYINT

DSC$K_DTYPE_BU 2 used for the NULL indicator

DSC$K_DTYPE_F 10 REAL

DSC$K_DTYPE_G 27 DOUBLE PRECISION

DSC$K_DTYPE_L 8 INTEGER

DSC$K_DTYPE_Q 9 BIGINT, INTERVAL

DSC$K_DTYPE_T 14 CHARACTER

DSC$K_DTYPE_VT 37 CHARACTER VARYING (VARCHAR)

DSC$K_DTYPE_W 7 SMALLINT

♦

C.8 Displaying Transaction Activity with the T Flag
When you define the RDMS$DEBUG_FLAGS logical name or the RDB_
DEBUG_FLAGS configuration parameter as T, Oracle Rdb dumps the
transaction parameter block generated by the SET (or DECLARE)
TRANSACTION statement and also displays transactions when they are
committed or rolled back. This information is valuable when tracing the
transaction activity of an application. Example C–21 shows a sample display.

Example C–21 Displaying Transaction Activity with the Transaction (T) Flag

SQL> SET TRANSACTION
cont> READ WRITE
cont> WAIT 30

(continued on next page)

C–42 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Example C–21 (Cont.) Displaying Transaction Activity with the Transaction
(T) Flag

cont> RESERVING EMPLOYEES FOR PROTECTED READ,
cont> DEPARTMENTS FOR EXCLUSIVE WRITE,
cont> WORK_STATUS FOR SHARED READ
cont> ISOLATION LEVEL SERIALIZABLE
cont> EVALUATING EMPLOYEES_PRIMARY_EMPLOYEE_ID AT COMMIT TIME;

Compile transaction on db: X00000001
~T Transaction Parameter Block: (len=6)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_ISOLATION_LEVEL3 (serializable)
0002 (00002) TPB$K_WAIT_INTERVAL 30 seconds
0005 (00005) TPB$K_WRITE (read write)

Start_transaction on db: X00000001
Commit_transaction on db: X00000001
Prepare_transaction on db: X00000001

~T Transaction Parameter Block: (len=77)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_ISOLATION_LEVEL3 (serializable)
0002 (00002) TPB$K_WAIT_INTERVAL 30 seconds
0005 (00005) TPB$K_WRITE (read write)
0006 (00006) TPB$K_COMMIT_TIME (evaluating) "EMPLOYEES_PRIMARY_EMPLOYEE_ID"
0025 (00037) TPB$K_LOCK_READ (reserving) "EMPLOYEES" TPB$K_PROTECTED
0031 (00049) TPB$K_LOCK_WRITE (reserving) "DEPARTMENTS" TPB$K_EXCLUSIVE
003F (00063) TPB$K_LOCK_READ (reserving) "WORK_STATUS" TPB$K_SHARED
SQL> ROLLBACK;

Rollback_transaction on db: X00000001
SQL>

The start, prepare, commit, and rollback of transactions also indicate the
database handle upon which the transaction is operating.

Table C–5 shows the transaction parameter block code that is generated
when the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is set to ‘‘T’’, and provides a brief description of each
code.

Table C–5 Transaction Parameter Block (TPB) Information

TPB Code Description

TPB$K_WAIT Transaction waits for locks indefinitely;
deadlocks are reported.

(continued on next page)

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–43

Table C–5 (Cont.) Transaction Parameter Block (TPB) Information

TPB Code Description

TPB$K_NOWAIT Transaction does not wait for locks, but reports lock
conflicts.

TPB$K_WAIT_INTERVAL WAIT was specified with timeout interval, so
transaction waits for the specified number of
seconds.

TPB$K_READ A read-only transaction.

TPB$K_WRITE A read/write transaction.

TPB$K_BATCH_UPDATE A batch-update transaction.

TPB$K_LOCK_READ The named table is reserved for READ.
The modes can be SHARED, PROTECTED, or
EXCLUSIVE.

TPB$K_LOCK_WRITE The named table is reserved for WRITE.
The modes can be SHARED, PROTECTED, or
EXCLUSIVE.

TPB$K_VERB_TIME The named constraint has its evaluation time
changed to VERB TIME (NOT DEFERRABLE).

TPB$K_COMMIT_TIME The named constraint has its evaluation time
changed to COMMIT TIME (DEFERRABLE).

TPB$K_ISOLATION_LEVEL1 Isolation level read committed.

TPB$K_ISOLATION_LEVEL2 Isolation level repeatable read.

TPB$K_ISOLATION_LEVEL3 Isolation level serializable.

TPB$K_DEGREE3 CONSISTENCY LEVEL 3 (serializable) is depre-
cated; use ISOLATION LEVEL SERIALIZABLE
instead.

TPB$K_DEGREE2 CONSISTENCY LEVEL 2 (read committed)
is deprecated; use ISOLATION LEVEL READ
COMMITTED instead.

When you define RDMS$DEBUG_FLAGS or RDB_DEBUG_FLAGS as T, the
display indicates when read-only transactions are upgraded to read/write
transactions because the database has snapshot files disabled, as shown in
Example C–22.

C–44 Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer

Example C–22 Displaying Read-Only Transactions Upgraded to Read/Write
Transactions When Snapshot Files Are Disabled

SQL> ALTER DATABASE FILENAME mf_personnel SNAPSHOT DISABLED;
SQL> --
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ ONLY;

Compile transaction on db: X00000002
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_READ (read only)

Start_transaction on db: X00000002
~T Snapshots are disabled, READ ONLY converted to READ WRITE
SQL>

C.9 Logging the TRACE Control Statement with the Xt Flag
The SQL TRACE control statement writes values to a log file after the
RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter is defined as Xt. The TRACE control statement
lets you specify multiple value expressions. It stores a value in a log file for
each value expression it evaluates.

SQL turns on trace logging only if the logical name RDMS$DEBUG_FLAGS
or the configuration parameter RDB_DEBUG_FLAGS is defined to be Xt. The
letter X must be an uppercase letter and the letter t must be in lowercase.
The TRACE control statement has no effect when RDMS$DEBUG_FLAGS or
RDB_DEBUG_FLAGS is not defined as Xt.

Trace logging can help you debug complex multistatement procedures.

See the Oracle Rdb7 SQL Reference Manual for more information on the
TRACE control statement.

Using RDMS$DEBUG_FLAGS and RDB_DEBUG_FLAGS to Analyze the Query Optimizer C–45

Index

A
Access

multiuser, 3–45
to table rows

using the query optimizer, 5–11
Active lock, 3–73
Active user stall message screen, 3–15
Adjustable lock granularity

See ALG
AIJ cache on an electronic disk

improving AIJ performance, 3–38
.aij file, 8–7

backup operations, 4–15
checking file location, 8–8f
disabling journaling for WORM areas, 3–40
increasing performance, 3–34
location, 8–7
procedures, 3–32
recovery, 3–32
statistics, 4–14, 4–15
switch-over operations, 4–15

AIJ log server
See ALS

AIP length, 3–148, 3–149
ALG, 3–82, 8–54

levels, 3–82
lock adjustment, 3–84
tree structure, 3–83f
when to use, 3–84

Allocation
of buffers to processes, 4–27, 4–28, 4–41
of snapshot files, 4–164

Allocation classes
identifier, 6–9
naming conventions, 6–9

ALLOCATION parameter, 4–156
ALS

displaying the setting for, 3–34
eliminating .aij file bottlenecks, 3–34
improving AIJ performance, 3–34
setting mode to automatic start, 3–34
setting mode to manual start, 3–35
starting manually, 3–35
stopping manually, 3–36

ALTER DATABASE statement
cluster configurations, 6–25
disabling snapshot file, 4–120
enabling after-image journaling, 6–25
enabling snapshot file, 4–120
specifying page-level locking, 3–86

ALTER STORAGE MAP statement
disabling data compression, 4–196

Application tuning, 7–10
example, 7–10
implications, 7–10
MRP example, 7–3
risks, 7–10

ASCENDING order
with indexes, C–18

ASTLM parameter
values, 4–215

Asynchronous batch-write operations
benefits of, 3–26
controlling, 3–27
disabling, 3–26
displaying information about, 4–11
reducing write stalls, 3–26

Index–1

Asynchronous batch-write operations (cont’d)
specifying the number of buffers for, 3–27
stalling and, 3–29

Asynchronous IO statistics, 4–11
Asynchronous prefetch of pages

depth of buffers, 3–24
disabling, 3–23
displaying information about, 4–11
enabling, 3–23
reducing read stalls, 3–23
triggering page, 3–24

Atomic transaction, 6–10
Authorize utility (AUTHORIZE), 7–8
AUTOGEN parameters

in a local area VMScluster environment, 6–33
Automatic recovery

See Recovering a database
AWSTIME parameter

reducing CPU resource limitations, 8–49

B
Binary output file

RMU Analyze command, 2–7
RMU Show Statistics command

defining, 2–55
updating, 2–56

BIOLM parameter
values, 4–216

Bitmap compression
byte-aligned, 3–120

Blocking AST
increases due to carry-over lock optimization,

8–54
B-tree index

See Sorted index, Index
Buffer Information screen

displaying global section sizes, 4–53
displaying shared memory partition sizes,

4–53
Buffer object

lock local buffers into physical memory, 4–31,
A–13

Buffers
affecting performance, 4–30
allocate set effectiveness

calculating, 8–25
buffer pool effectiveness, 8–21
changing the number per process, 4–27
changing the size of, 4–25
controlling I/O buffer pool size, 8–19
defining the number per process, 4–27
defining the size of, 4–25
definition of, 4–20
depth of, 3–24
determining the allocation for processes,

4–27, 4–28
determining the maximum number of buffers

per process, 4–41
displaying buffer parameters, 4–22
displaying the number of global buffers per

node, 4–39
effectiveness

calculating, 8–26
enabling global buffers, 4–37
flushing, 3–68, 4–98
global, 4–20

benefits of data persistence, 4–52
benefits of overflow management, 4–48

global buffer parameters, 4–24
global buffer pools, 4–32, 4–33
local, 4–20
quantity

related to response time, 8–21
related to virtual memory, 8–19, 8–20f
related to working set size, 8–20, 8–21f

selecting local or global, 4–20
selecting the proper size, 4–25
setting RDM$BIND_BUFFERS, 8–27, A–12
specifying the number of buffers per process,

4–27
specifying the number of global buffers per

node, 4–38
system space, 4–78
tuning global buffers, 4–46
tuning local buffers, 4–30

Index–2

BUFFER SIZE parameter
default, 4–25
specifying the number of blocks per buffer,

4–24
Bugcheck dump

changing the default location, A–31
identifying process, 3–15

Byte-aligned bitmap compression, 3–120
BYTLM parameter

values, 4–215

C
Cache

See Row cache
Cardinality

index, 5–5, 5–6
table, 5–4, 5–6
used by the query optimizer, 5–4

Carry-over lock optimization, 3–73
disabling, 3–75
for table updates

disabling, 3–77, A–37
enabling, 3–76, A–36

with NOWAIT transactions, 3–75
with WAIT transactions, 3–74

CDD$COMPATIBILITY logical name, 6–22
CDD/Repository

See Oracle CDD/Repository
Change database procedure, 1–14
CHANNELCNT parameter

values, 4–205
Character set

defining, A–1
Checkpoint Information screen, 4–20
Checkpoint interval, 4–102

selecting, 4–105
types, 4–102

Checkpoint record, 4–103
Checkpoint statistics, 4–17
Client/server applications

in VMSclusters, 6–10
Clump of pages

in a uniform format storage area, 4–34

Clustering
See Record clustering

Cluster system
See also VMScluster system
database performance, 1–15

Column duplicity factor, 5–7
Column null factor, 5–7
Commit processing, 4–98

group commit operation, 3–36, A–8, A–15
Commit to journal optimization

See Journal optimization
Common system disk, 6–9
Compatibility lock, 3–71
Compressed index, 3–97

MAPPING VALUES, 3–99
prefix and suffix, 3–98
run-length, 3–100
SIZE IS segment truncation, 3–98
system, 3–106

Concatenated expressions, 5–41
Concurrent access

See Multiuser access
Concurrent transactions

lock conflicts, 3–80
Configuration parameter

RDB_AUTO_READY, 3–76, A–36
RDB_BIND_ABS_LOG_FILE, A–5
RDB_BIND_ABS_OVERWRITE_ALLOWED,

A–5
RDB_BIND_ABS_OVERWRITE_IMMEDIATE,

A–6
RDB_BIND_ABS_QUIET_POINT, A–6
RDB_BIND_ABW_ENABLED, 3–27, A–6
RDB_BIND_AIJ_CHECK_CONTROL_RECS,

A–7
RDB_BIND_AIJ_EMERGENCY_DIR, A–7
RDB_BIND_AIJ_IO_MAX, A–7
RDB_BIND_AIJ_IO_MIN, A–8
RDB_BIND_AIJ_STALL, A–8
RDB_BIND_AIJ_SWITCH_GLOBAL_CKPT,

A–8
RDB_BIND_ALS_CREATE_AIJ, A–9
RDB_BIND_APF_DEPTH, A–10
RDB_BIND_APF_ENABLED, 3–24, A–10

Index–3

Configuration parameter (cont’d)
RDB_BIND_BATCH_MAX, A–11
RDB_BIND_BUFFERS, 4–27, 4–29, A–12
RDB_BIND_CBL_ENABLED, A–13
RDB_BIND_CKPT_BLOCKS, A–14
RDB_BIND_CKPT_TIME, A–14
RDB_BIND_CKPT_TRANS_INTERVAL,

4–106, A–14
RDB_BIND_CLEAN_BUF_CNT, A–14
RDB_BIND_COMMIT_STALL, A–15
RDB_BIND_DAPF_DEPTH_BUF_CNT, A–15
RDB_BIND_DAPF_ENABLED, A–16
RDB_BIND_DAPF_START_BUF_CNT, A–16
RDB_BIND_LOCK_TIMEOUT_INTERVAL,

A–17
RDB_BIND_MAX_DBR_COUNT, A–18
RDB_BIND_OPTIMIZE_AIJ_RECLEN, A–18
RDB_BIND_OUTLINE_FLAGS, A–37
RDB_BIND_OUTLINE_MODE, 5–83, A–38
RDB_BIND_PRESTART_TXN, A–38
RDB_BIND_QG_CPU_TIMEOUT, A–39
RDB_BIND_QG_REC_LIMIT, A–40
RDB_BIND_QG_TIMEOUT, A–40
RDB_BIND_RCACHE_INSERT_ENABLED,

A–19
RDB_BIND_RCACHE_RCRL_COUNT, A–19
RDB_BIND_RCS_BATCH_COUNT, A–19
RDB_BIND_RCS_CHECKPOINT, A–20
RDB_BIND_RCS_CKPT_BUFFER_CNT,

A–20
RDB_BIND_RCS_LOG_FILE, A–20
RDB_BIND_RCS_MAX_COLD, 4–90, A–20
RDB_BIND_RCS_MIN_COLD, 4–90, A–20
RDB_BIND_RCS_SWEEP_INTERVAL, A–21
RDB_BIND_READY_AREA_SERIALLY,

A–21
RDB_BIND_RUJ_ALLOC_BLKCNT, A–22
RDB_BIND_RUJ_EXTEND_BLKCNT, A–22
RDB_BIND_SEGMENTED_STRING_

BUFFER, A–41
RDB_BIND_SEGMENTED_STRING_COUNT,

A–43
RDB_BIND_SEGMENTED_STRING_DBKEY_

SCOPE, A–44
RDB_BIND_SNAP_QUIET_POINT, A–23

Configuration parameter (cont’d)
RDB_BIND_SORT_WORKFILES, A–45
RDB_BIND_STATS_AIJ_ARBS_PER_IO,

A–23
RDB_BIND_STATS_AIJ_BKGRD_ARB_

RATIO, A–23
RDB_BIND_STATS_AIJ_BLKS_PER_IO,

A–24
RDB_BIND_STATS_AIJ_SEC_TO_EXTEND,

A–24
RDB_BIND_STATS_BTR_FETCH_DUP_

RATIO, A–24
RDB_BIND_STATS_BTR_LEF_FETCH_

RATIO, A–24
RDB_BIND_STATS_DBR_RATIO, A–25
RDB_BIND_STATS_ENABLED, 2–17, A–25
RDB_BIND_STATS_FULL_BACKUP_

INTRVL, A–26
RDB_BIND_STATS_GB_IO_SAVED_RATIO,

A–26
RDB_BIND_STATS_GB_POOL_HIT_RATIO,

A–26
RDB_BIND_STATS_LB_PAGE_HIT_RATIO,

A–27
RDB_BIND_STATS_MAX_HASH_QUE_LEN,

A–27
RDB_BIND_STATS_MAX_LOCK_STALL,

A–27
RDB_BIND_STATS_MAX_TX_DURATION,

A–28
RDB_BIND_STATS_PAGES_CHECKED_

RATIO, A–28
RDB_BIND_STATS_RECS_FETCHED_

RATIO, A–28
RDB_BIND_STATS_RECS_STORED_RATIO,

A–28
RDB_BIND_STATS_RUJ_SYNC_IO_RATIO,

A–29
RDB_BIND_STATS_VERB_SUCCESS_RATIO,

A–29
RDB_BIND_TSN_INTERVAL, A–30
RDB_BIND_VALIDATE_CHANGE_FIELD,

A–48
RDB_BIND_VM_SEGMENT, A–30
RDB_BIND_WORK_FILE, 3–20, A–48

Index–4

Configuration parameter (cont’d)
RDB_BIND_WORK_VM, 3–20, A–50
RDB_BUGCHECK_DIR, A–31
RDB_BUGCHECK_IGNORE_FLAGS, A–32
RDB_CREATE_DB, A–4
RDB_DEBUG_FLAGS, 5–7, 5–8, A–50, C–1

case sensitivity, C–2
RDB_DEBUG_FLAGS_OUTPUT, A–50, C–2
RDB_DIAG_FLAGS, A–51
RDB_LIBRARY, A–2
RDB_MONITOR, A–34
RDB_ROUTINES, A–4
RDB_RUJ, A–52
RDB_USE_OLD_CONCURRENCY, A–52
RDB_USE_OLD_COST_MODEL, A–54
RDB_USE_OLD_COUNT_RELATION, A–55
RDB_USE_OLD_SEGMENTED_STRING,

A–55
RDB_USE_OLD_UPDATE_RULES, A–56
RDB_VALIDATE_ROUTINE, A–58
RDM_BIND_HRL_ENABLED, A–17
SQL_DATABASE, A–59
SQL_KEEP_PREP_FILES, A–61
SQL_NETWORK_BUFFER_SIZE, A–3
SQL_NETWORK_NUMBER_ATTACHES,

A–4
tuning and, 2–64t

Conjunct
solving queries, C–21

Consistency lock, 3–45
Constraint

checking, 8–29f
dbkey erasing optimization, 3–45
dbkey retrieval optimization, 3–45
evaluating, 8–28
execution strategy, 5–54
existence optimization, 3–44
modification optimization, 3–44
optimizations, 3–44
uniqueness optimization, 3–44

Contention
adjusting deadlock wait parameter, 8–56
adjusting lock granularity, 8–54
duplicate values, 3–128
moving CDD anchor location, 8–7

Contention (cont’d)
using logical names to reduce, 8–5

Conversion
to VMScluster environment, 6–28

Cost estimates
displaying with RDB_DEBUG_FLAGS, C–21
displaying with RDMS$DEBUG_FLAGS,

C–21
query optimizer and, 5–3

CPU, 7–7
adjusting AWSTIME parameter, 8–49
adjusting QUANTUM parameter, 8–49
checking resources, 8–49f
modes and QUANTUM settings, 8–52f
reviewing resources, 8–48
utilization, 3–29, 7–7

CREATE DATABASE statement
disabling snapshot file, 4–120
enabling snapshot file, 4–120
in VMScluster configurations, 6–23
LOCK PARTITIONING clause, 6–17
RESERVE STORAGE AREAS clause, 4–75
specifying page-level locking, 3–86

CREATE INDEX statement
storing hashed index keys randomly, 3–139
storing hashed index keys uniformly, 3–139

CREATE OUTLINE statement
defining an outline for a stored procedure,

5–66
format of generated outlines, 5–62, 5–64
specifying outline directives, 5–64

CREATE STORAGE AREA statement
disabling data compression, 4–196

CREATE STORAGE MAP statement
PLACEMENT VIA INDEX clause, 3–130

Creating a database
in a VMScluster environment, 6–26
multifile, 4–75

Creating outlines, 5–63

Index–5

D
Data access

cost estimates, C–21
improving with further normalization, 3–22
sequential, C–18

Data access strategies, C–21
displaying with RDB_DEBUG_FLAGS, C–1
displaying with RDMS$DEBUG_FLAGS, C–1
role of the optimizer, 3–143
saving output with RDB_DEBUG_FLAGS_

OUTPUT, C–2
saving output with RDMS$DEBUG_FLAGS_

OUTPUT, C–2
Database

adjusting parameters, 4–3
adjusting storage area parameters, 4–127,

4–129t
adjusting storage map parameters, 4–173t
ALLOCATION parameter, 4–156
avoiding corruption, 3–45
backing up, 3–32
buffers, 8–19
BUFFER SIZE parameter, 4–25
consistency, 3–45
constraints

dbkey erasing optimization, 3–45
dbkey retrieval optimization, 3–45
existence optimization, 3–44
modification optimization, 3–44
uniqueness optimization, 3–44

converting to VMScluster configuration, 6–27
creating

multifile, 4–75
default parameters, 4–4
enabling global buffers, 4–37
error opening, 4–61
evaluating performance

cluster environment, 1–15
hardware resources, 1–11
locking, 3–45
operating system resources, 1–11
sample procedure, 1–14

exporting in VMScluster environment, 6–27

Database (cont’d)
importing in VMScluster environment, 6–27
in a VMScluster system, 6–2
indexes, 3–94
interpreting statistics, 2–46
interrelated database performance parameters,

3–5t
keys, 3–11, 3–12, 3–94
locking, 3–45
locking areas, 3–66
monitoring, 6–34
NUMBER OF BUFFERS parameter, 4–27
obtaining names and numbers of logical and

physical areas, 3–13
on a single node, 6–21
pages, 4–155
PAGE SIZE parameter, 4–155
parameters, 4–3
performance

multifile compared to single-file, 8–2
understanding your data, 3–2t

performance factors, 3–1
performance-related changes, 1–6
physical design

default values
database-wide, 4–2t
storage area parameter, 4–128t

implementing with minimal effort, 4–1t
query optimizer, 5–10
record fragmentation, 4–114
recovery, 6–30
root file location, 8–3
root files, 3–31, 6–20
sample application, 7–3
single-file and multifile, 8–2
space usage, 2–1
statistics, 2–46
storage map parameters, 4–173
tuning, 7–9

parameters, 7–9
risks, 7–9
transaction type, 4–31
using development databases, 7–9

types of statistics, 2–46

Index–6

Database Dashboard facility
Performance Monitor, 2–61

Database key (dbkey)
for a logical area, 3–11
for a physical area, 3–12
hashed index, 3–95, 3–114, 3–136, 4–189
indexes, 2–2, 5–12
queries that use AND or OR logic, 5–41
retrieval by sorted index, 3–94
sorted indexes, 3–95

node links, 3–95
Database pages

sharing among processes, 4–113
Database Parameter Information option, 4–7
Database parameters

default values, 4–2
NUMBER OF BUFFERS, 4–27

Database recovery process
See DBR process

Database root files, 3–31
Database statistics

control the replaying of, 2–21
Data compression

considerations, 4–203
disabling, 4–196
enabling, 4–196, 4–198e

Data dictionary
See Oracle CDD/Repository

Data distribution, 3–22, 8–10
checking, 8–10f

Data page request statistics, 4–9
Data rows

active and inactive, 3–22
disk requirements, 3–22
read-only, 3–22

DBKEY Information screen, 3–14
DBR process

See also Recovering a database
bugcheck dumps, A–31
statistics, 6–32

Deadlock, 8–56
adjusting DEADLOCK_WAIT parameter,

4–211, 8–56
displaying information about, 3–61

DEADLOCK_WAIT parameter, 4–211
Debug flags

See also RDB_DEBUG_FLAGS Oracle Rdb
configuration parameter

See also RDMS$DEBUG_FLAGS Oracle Rdb
logical name

case sensitivity, C–2
displaying access strategies, C–1

Decision trees, 8–1
Depth of buffers

for asynchronous prefetch of pages, 3–24
Derived tables, 5–27
DESCENDING order

with indexes, C–18
Detected asynchronous prefetch of pages, A–16
Determining device I/O information, 4–153,

4–154
Development databases, 7–9
Device-naming conventions, 6–8
Diagnosing

CPU resource problems, 8–48, 8–49f
excessive I/O operations, 8–17, 8–18f

checking constraints, 8–28, 8–29f
checking hashed indexes, 8–40f
checking indexes, 8–30f
checking locks, 8–52, 8–53f
checking node size, 8–33, 8–34f
checking record clustering, 8–35, 8–36f
checking snapshot file, 8–44, 8–45f

I/O load imbalance, 8–4f
checking AIJ, 8–7, 8–8f
checking data distribution, 8–10f
checking Oracle CDD/Repository, 8–7f

I/O resource bottlenecks, 8–2f
checking the application, 8–4

memory resource problems, 8–46, 8–47f
DIOLM parameter

values, 4–216
Disk

active data, 3–22
alternate access path with HSC subsystems,

6–18
common system disk, 6–9
device names, 6–8
dual-ported, 6–6, 6–18

Index–7

Disk (cont’d)
files

cluster-accessible, 6–5
restricted access, 6–5
sharing in VMScluster systems, 6–5

gathering I/O information, 3–8
reducing disk I/O contention, 3–19, 4–163
requirements, 3–22
shared files in a VMScluster system, 6–18
single-ported served, 6–19

Disk page transfers
enabling, 4–113

Displaying data
on all database users for a cluster, 6–35
record order, C–18

Displaying outlines, 5–63
Distributed transactions, 6–10
Dual-pathed disks, 6–7
Dual-ported disks, 6–6
Duplicate chain, 3–125
Duplicate index nodes, 3–123
Dynamic optimization, 5–28

dynamic leaf, 5–33
dynamic OR, 5–29
index placement, 5–43

E
Editor

selecting for interactive RDO queries, A–58
selecting for interactive SQL queries, A–61

ENQLM parameter
effect of enabling global buffers, 4–66, 4–214
values, 4–213

Error message
lock conflict on freeze lock, 3–77

Event flag
RDB$RDBSHR_EVENT_FLAGS logical name,

A–2
Excessive page checking during row storage

finding specific storage areas affected, 3–146
Exclamation point

to invoke Tools facility of Performance
Monitor, 2–39

Exclusive reserving options
exclusive read, 3–71
exclusive write, 3–71

Exclusive resources, 7–3
Export/import procedure, 1–14
EXPORT statement

converting a single-file database, 6–27, 6–28
External function

logical name for location, A–2, A–4

F
Failure See also Recovering a database
Failure

in VMScluster systems, 6–16
of HSC subsystem, 6–31
reducing chances, 6–19

Fast commit transaction processing, 4–98
checkpointing, 4–102
displaying the status of, 4–111
enabling, 4–110
journal optimization option, 4–107
procedure, 4–100
specifying checkpoint intervals, 4–102
time required, 4–102
using RDB_BIND_CKPT_TRANS_INTERVAL,

4–106
using RDM$BIND_CKPT_TRANS_

INTERVAL, 4–106
when to enable, 4–101, 8–9

Fast first optimization, 5–37
specifying

module language programs, 5–46
precompiler programs, 5–45
SELECT statement, 5–45
SET OPTIMIZATION statement, 5–46
singleton SELECT statement, 5–45

File activity statistics, 4–9, 4–14
File I/O statistics, 4–152
File placement

in a VMScluster environment, 6–18 to 6–21
of repository files in VMScluster environment,

6–21

Index–8

FILLM parameter
values, 4–215

Formatted binary file statistics, 2–53
Formatted binary output file

RMU Show Statistics
defining, 2–55
updating, 2–56

Fragmentation
erasing, 4–115
modifying, 4–115
record, 4–114 to 4–115, 4–156
storing, 4–114

Function
external

logical name for location, A–2, A–4

G
GBLPAGES parameter

effect of enabling global buffers, 4–209
effect of modifying global buffers on, 4–55
values, 4–209
verifying the use of, 4–55

GBLPAGFIL parameter
calculating the requirement for, 4–60
determining available entries, 4–61
determining original number of entries, 4–61
when to specify a higher value, 4–61

GBLSECTIONS parameter
effect of modifying global buffers on, 4–55
values, 4–209
verifying the use of, 4–55

Global buffer, 4–20
See also Buffers
account parameter and, 4–216
benefits of data persistence, 4–52
benefits of overflow management, 4–48
ENQLM and, 4–214
system space, 4–78

Global pages
effect of after-image journaling, 4–58
effect of enabling global buffers on, 4–58
effect of increasing the number of database

users, 4–58, 4–59

Global section
calculating the number of pages, 4–54
calculating the size of, 4–53
determining size of on a per node basis, 4–60
extra data structures with global buffers,

4–52
Granted lock mode, 3–55
Graphic display statistics, 2–29
Group commit operation, 3–36, A–8, A–15

H
Hangs

displaying hung processes, 3–9, 3–15
Hardware

capacity, 7–3
checking for problems, 7–6
SHOW DEVICES command, 7–6
SHOW ERROR command, 7–6

Hashed index, 3–95
See also Index
algorithms for storing index keys, 3–139
calculating size

potential problems, 3–136
checking, 8–40f
defining parameters, 3–136, 8–41
effect on performance, 8–40
estimating page size, 8–41
estimating record size, 8–43
gathering information, 3–106, 3–109, 3–111,

3–112, 4–176, 4–181, 4–183, 4–186, 4–192
hash bucket overflow, 4–194
MAPPING VALUES compression, 3–99
performance with mixed storage areas, 8–41
ranked

gathering information, 4–179
related to query type, 8–41
run-length compression, 3–100
shadow pages, 3–138
SPAM intervals, 8–44
SPAM thresholds, 8–44
statistics, 3–118
storage strategy, 8–43
structure, 3–134f
tuning considerations, 3–136

Index–9

HASHED ORDERED option
restrictions, 3–141
SQL CREATE INDEX statement, 3–139
storing hashed index keys, 3–139

HASHED SCATTERED option
CREATE INDEX statement, 3–139
storing hashed index keys, 3–139

Hashing algorithms, 3–139
Help facility, 2–45
HSC subsystem

dual-ported disks, 6–18
failure, 6–31
single-ported disks, 6–18

I
I/O information

for root file, 3–31
I/O operations, 7–7

balancing load, 8–5f
buffer pool size, 8–19

controlling, 8–19
determining cost, C–21
diagnosing resource bottlenecks, 8–2f

checking the application, 8–4
excessive

identifying source of, 3–146
gathering information, 3–8
load balancing, 8–4
RDB_DEBUG_FLAGS, C–21
RDMS$DEBUG_FLAGS, C–21
reducing, 3–19, 4–67, 8–17, 8–18f
reducing contention using multiple disks, 8–3
reducing from system level, 8–19
reviewing resources, 8–2
utilization, 7–7

I/O stall statistics, 3–9
I/O statistics, 3–8, 4–152
Ikey, C–6, C–7, C–21, C–23, C–29, C–33
IMPORT statement

converting a single-file database, 6–27
disabling data compression, 4–196
disabling snapshot file, 4–120
enabling snapshot file, 4–120

IMPORT statement (SQL), 6–28
Index

access clustering, 3–126
algorithms for storing hashed index keys,

3–139
analyzing usage, 8–31
B-tree, 3–119
cardinality, 5–5, 5–6
checking, 8–30f
chronological key, 3–126
clustering with sorted index, 3–130
combining to reduce I/O, 8–31
compression, 3–97

analyzing with RMU Analyze command,
3–110, 3–118

benefits of, 3–97
MAPPING VALUES, 3–99
prefix and suffix, 3–98
run-length, 3–100
SIZE IS segment truncation, 3–98
system, 3–106

contention, 3–128
database keys, 3–94
defining, 8–31
duplicate nodes, 3–123
duplicate values, 3–128
evaluation

related to performance, 8–31
using Performance Monitor, 8–32

gathering information, 4–174
hashed, 3–134, 8–37, 8–40
high Ikey, 3–94, C–6, C–7, C–21, C–29, C–33
load performance, 8–31
locks, 3–119
low Ikey, 3–94, C–6, C–7, C–21, C–29, C–33
multisegmented, 3–127
multiuser access, 3–144
nodes, 3–119, 3–123

checking size, 8–33, 8–34f
overflow nodes, 3–120
placement, 5–43
prefix cardinality, 5–5
primary key, 3–96
sorted, 3–119, 8–36

scanning in forward order, 3–132

Index–10

Index
sorted (cont’d)

scanning in reverse order, 3–132
sorted order, C–18
statistics, 3–118, 3–119
type, 3–95
updating, 3–94
using dynamically, 3–144

Index data clustering factor, 5–8
Index key clustering factor, 5–8
Index key node, 3–123
Initializing snapshot files, 4–163
Inserting rows

analyzing performance problems, 3–144
Stall Messages screen, 3–145

INSFMEM error message, 4–211
Interpreting database statistics, 2–46
IRPCOUNT parameter

values, 4–205
IRPCOUNTV parameter

values, 4–205

J
Join operation

account parameters and, 4–214
cross join strategy, 5–18
match join strategy, 5–19
zigzag strategy, 5–22

Join ordering, 5–24
Journal files

in a VMScluster system, 6–18
Journal optimization, 4–107

requirements, 4–108
specifying a transaction interval, 4–109
when to enable, 4–108

K
Key

multisegmented, 3–127
Key-only Boolean optimization, 5–14

L
Latch

See Lock
Leaf node, 3–119, 3–123
Line index, 4–155
Load balance, 8–4

checking .aij file location, 8–7
checking CDD anchor location, 8–7
checking data distribution, 8–10

Loading the database
clustering with sorted index, 3–130

Local area VMScluster system
AUTOGEN parameters, 6–33

Local buffer, 4–20
See also Buffers
account parameters and, 4–216
buffer pool effectiveness

calculating, 8–23
Lock

See also Locking
adjustable lock granularity, 3–82, 3–83f, 3–95
adjustment, 3–84
carry-over, 3–73
checking, 8–52, 8–53f
compatibility, 3–71
consistency, 3–45
contention

duplicate values, 3–128
database areas, 3–66
duplicate nodes, 3–123
gathering information, 3–15, 3–46, 3–64
indexes, 3–119
information, 3–45
levels, 3–72, 3–85
modes, 3–55
multiuser access, 3–72
page-level

See Page-level locking
partitioning, 6–17
preventing lock starvation, A–22
promotion, 3–143
recoverable latches, 3–91
resources, 3–143

Index–11

Lock (cont’d)
row-level

See Row-level locking
sequential retrieval, 3–143
statistics

displaying deadlock information, 3–61
displaying timeout information, 3–61,

3–63
one lock type, 3–61
one statistics field, 3–61
process, 3–46
summary, 3–57, 3–61

update carry-over for tables, 3–76, 3–77,
A–36, A–37

using UPDATE ONLY cursor, 3–79
utilization, 7–7

Lock conflicts, 3–45
concurrent transactions, 3–80
displaying information on a stalled process,

3–11
‘‘lock conflict on freeze lock error’’, 3–77

Lock conversions
with SNAPSHOT file disabled, 4–121

Locked free space, 3–148
LOCKIDTBL parameter

effect of enabling global buffers, 4–66, 4–208
values, 4–208

LOCKIDTBL_MAX parameter
effect of enabling global buffers, 4–66, 4–208
values, 4–208

Lock information
integrated, 3–57

Locking
See also Lock
intermittent, 8–55

check with RDMS$DEBUG_FLAGS,
8–55e

local buffers into physical memory, 4–31,
A–13

Lock manager, 3–45, 6–10
database recovery, 6–30

Lock partitioning, 6–17
LOCK PARTITIONING clause

of CREATE DATABASE statement, 6–17

Lock tree
partitioned, 6–17

Logical area
finding the physical area for, 3–12
index, 3–96

Logical area names for indexes, 3–96
Logical name

CDD$COMPATIBILITY, 6–22
RDB$CHARACTER_SET, A–1
RDB$LIBRARY, A–2
RDB$RDBSHR_EVENT_FLAGS, A–2
RDB$REMOTE_BUFFER_SIZE, A–3
RDB$REMOTE_MULTIPLEX_OFF, A–4
RDB$ROUTINES, A–4
RDBVMS$CREATE_DB, A–4
RDM$BIND_ABS_LOG_FILE, A–5
RDM$BIND_ABS_OVERWRITE_ALLOWED,

A–5
RDM$BIND_ABS_OVERWRITE_

IMMEDIATE, A–6
RDM$BIND_ABS_QUIET_POINT, A–6
RDM$BIND_ABW_ENABLED, 3–27, A–6
RDM$BIND_AIJ_CHECK_CONTROL_RECS,

A–7
RDM$BIND_AIJ_EMERGENCY_DIR, A–7
RDM$BIND_AIJ_IO_MAX, A–7
RDM$BIND_AIJ_IO_MIN, A–8
RDM$BIND_AIJ_STALL, A–8
RDM$BIND_AIJ_SWITCH_GLOBAL_CKPT,

A–8
RDM$BIND_ALS_CREATE_AIJ, A–9
RDM$BIND_APF_DEPTH, A–10
RDM$BIND_APF_ENABLED, 3–24, A–10
RDM$BIND_BATCH_MAX, A–11
RDM$BIND_BUFFERS, 4–27, 4–29, A–12
RDM$BIND_BUFOBJ_ENABLED, A–13
RDM$BIND_CBL_ENABLED, A–13
RDM$BIND_CKPT_BLOCKS, A–14
RDM$BIND_CKPT_TIME, A–14
RDM$BIND_CKPT_TRANS_INTERVAL,

4–106, A–14
RDM$BIND_CLEAN_BUF_CNT, A–14
RDM$BIND_COMMIT_STALL, A–15
RDM$BIND_DAPF_DEPTH_BUF_CNT,

A–15

Index–12

Logical name (cont’d)
RDM$BIND_DAPF_ENABLED, A–16
RDM$BIND_DAPF_START_BUF_CNT, A–16
RDM$BIND_HRL_ENABLED, A–17
RDM$BIND_LOCK_TIMEOUT_INTERVAL,

A–17
RDM$BIND_MAX_DBR_COUNT, A–18
RDM$BIND_OPTIMIZE_AIJ_RECLEN, A–18
RDM$BIND_RCACHE_INSERT_ENABLED,

A–19
RDM$BIND_RCACHE_RCRL_COUNT, A–19
RDM$BIND_RCS_BATCH_COUNT, A–19
RDM$BIND_RCS_CHECKPOINT, A–20
RDM$BIND_RCS_CKPT_BUFFER_CNT,

A–20
RDM$BIND_RCS_LOG_FILE, A–20
RDM$BIND_RCS_MAX_COLD, 4–90, A–20
RDM$BIND_RCS_MIN_COLD, 4–90, A–20
RDM$BIND_RCS_SWEEP_INTERVAL, A–21
RDM$BIND_READY_AREA_SERIALLY,

A–21
RDM$BIND_RUJ_ALLOC_BLKCNT, A–22
RDM$BIND_RUJ_EXTEND_BLKCNT, A–22
RDM$BIND_SNAP_QUIET_POINT, A–23
RDM$BIND_STATS_AIJ_ARBS_PER_IO,

A–23
RDM$BIND_STATS_AIJ_BKGRD_ARB_

RATIO, A–23
RDM$BIND_STATS_AIJ_BLKS_PER_IO,

A–24
RDM$BIND_STATS_AIJ_SEC_TO_EXTEND,

A–24
RDM$BIND_STATS_BTR_FETCH_DUP_

RATIO, A–24
RDM$BIND_STATS_BTR_LEF_FETCH_

RATIO, A–24
RDM$BIND_STATS_DBR_RATIO, A–25
RDM$BIND_STATS_ENABLED, 2–17, A–25
RDM$BIND_STATS_FULL_BACKUP_

INTRVL, A–26
RDM$BIND_STATS_GB_IO_SAVED_RATIO,

A–26
RDM$BIND_STATS_GB_POOL_HIT_RATIO,

A–26
RDM$BIND_STATS_LB_PAGE_HIT_RATIO,

A–27

Logical name (cont’d)
RDM$BIND_STATS_MAX_HASH_QUE_LEN,

A–27
RDM$BIND_STATS_MAX_LOCK_STALL,

A–27
RDM$BIND_STATS_MAX_TX_DURATION,

A–28
RDM$BIND_STATS_PAGES_CHECKED_

RATIO, A–28
RDM$BIND_STATS_RECS_FETCHED_

RATIO, A–28
RDM$BIND_STATS_RECS_STORED_RATIO,

A–28
RDM$BIND_STATS_RUJ_SYNC_IO_RATIO,

A–29
RDM$BIND_STATS_VERB_SUCCESS_

RATIO, A–29
RDM$BIND_SYSTEM_BUFFERS_ENABLED,

A–29
RDM$BIND_TSN_INTERVAL, A–30
RDM$BIND_VM_SEGMENT, A–30
RDM$BUGCHECK_DIR, A–31
RDM$BUGCHECK_IGNORE_FLAGS, A–32
RDM$MAILBOX_CHANNEL, A–33
RDM$MONITOR, A–34
RDM$MON_USERNAME, A–35
RDMS$AUTO_READY, 3–76, A–36
RDMS$BIND_OUTLINE_FLAGS, 5–83, A–37
RDMS$BIND_OUTLINE_MODE, 5–83, A–38
RDMS$BIND_PRESTART_TXN, A–38
RDMS$BIND_QG_CPU_TIMEOUT, A–39
RDMS$BIND_QG_REC_LIMIT, A–40
RDMS$BIND_QG_TIMEOUT, A–40
RDMS$BIND_SEGMENTED_STRING_

BUFFER, A–41
RDMS$BIND_SEGMENTED_STRING_

COUNT, A–43
RDMS$BIND_SEGMENTED_STRING_

DBKEY_SCOPE, A–44
RDMS$BIND_SORT_WORKFILES, A–45
RDMS$BIND_VALIDATE_CHANGE_FIELD,

A–48
RDMS$BIND_WORK_FILE, 3–20, A–48
RDMS$BIND_WORK_VM, 3–20, A–50
RDMS$DEBUG_FLAGS, 5–7, 5–8, A–50, C–1

Index–13

Logical name
RDMS$DEBUG_FLAGS (cont’d)

case sensitivity, C–2
RDMS$DEBUG_FLAGS_OUTPUT, A–50,

C–2
RDMS$DIAG_FLAGS, A–51
RDMS$KEEP_PREP_FILES, A–52
RDMS$RUJ, A–52
RDMS$USE_OLD_CONCURRENCY, A–52
RDMS$USE_OLD_COST_MODEL, A–54
RDMS$USE_OLD_COUNT_RELATION,

A–55
RDMS$USE_OLD_SEGMENTED_STRING,

A–55
RDMS$USE_OLD_UPDATE_RULES, A–56
RDMS$VALIDATE_ROUTINE, A–58
RDO$EDIT, A–58
RDOINI, A–59
RMU$EDIT, A–59
SORTWORKn, A–45
SQL$DATABASE, A–59
SQL$DISABLE_CONTEXT, A–60
SQL$EDIT, A–61
SQL$KEEP_PREP_FILES, A–61
SQLINI, A–61
statistics, 2–76
SYS$COMMON, 6–22
tuning and, 2–64t

LRPCOUNT parameter
values, 4–206

LRPCOUNTV parameter
values, 4–206

M
MAPPING VALUES index compression, 3–99

hashed index, 3–99
sorted index, 3–99

MAXBUF parameter
values, 4–210

Membership data structure, 3–13
Memory, 7–7, 8–19

checking resources, 8–46, 8–47f
checking working set extent, 8–48
utilization, 7–7
utilization limit, 8–47

Memory page transfers
enabling, 4–113

mf_personnel database
creating in a VMScluster environment, 6–22

MIN/MAX aggregate optimization, 5–15
Monitor process

database recovery, 6–30
in VMScluster configurations, 6–12
multiple processes in VMScluster systems,

6–16
specifying the appropriate quotas for, 4–64
VMScluster configuration, 6–30

Monitor utility (MONITOR), 4–208, 7–6
Moving snapshot files, 4–164
MRP (Manufacturing resource planning

database), 7–3, 7–5
Multifile database, 4–75
Multiuser access

enabling snapshot file, 4–119
locks, 3–72
protected reserving option, 3–70, 3–71
sequential access, 3–143
share modes, 3–68
with indexes, 3–144
with transactions, 3–80

N
Naming convention

allocation class, 6–9
node class, 6–8

Node class naming, 6–8
Nodes

index, 3–119, 3–123
Non-ranked sorted index, 3–123
NPAGEDYN parameter values, 4–208
NPAGEVIR parameter values, 4–209
NUMBER IS parameter

specifying the number of global buffers per
node, 4–24

NUMBER OF BUFFERS parameter
default, 4–27
specifying the default number of buffers per

process, 4–24

Index–14

O
Object

root file, 3–31
Objects (one stat field) screen

analyzing root file I/O, 3–32
Objects (one stat type) screen

analyzing root file I/O, 3–32
Online Analysis facility

Performance Monitor, 2–63
Online statistics, 2–20
Operating system parameters, 4–204
Optimization

See Dynamic optimization
Optimization mode

specifying fast first
module language programs, 5–46
precompiler programs, 5–45
SELECT statement, 5–45
SET OPTIMIZATION statement, 5–46
singleton SELECT statement, 5–45

specifying total time
module language programs, 5–46
precompiler programs, 5–45
SELECT statement, 5–45
SET OPTIMIZATION statement, 5–46
singleton SELECT statement, 5–45

OPTIMIZE AS clause, 5–82
Optimizer

See Query optimizer
OPTIMIZE USING clause

choosing an outline for a query, 5–79, 5–82
Optimizing performance

using RMU Analyze, 2–1
Oracle CDD/Repository, 8–7

anchor directory, 8–7
requirements, 6–21

Oracle Expert for Rdb, 1–9
collecting workload data for, 2–95
improving report performance, 2–101

Oracle Rdb monitor log file, 8–4
Oracle Rdb Windows client

Query Performance Tuner (QPT), 5–57

Oracle Trace, 1–8, 2–78
ALL collection class, 2–93
collecting workload information for Oracle

Expert for Rdb, 2–95
creating a customized report, 2–99
creating a report, 2–98

formatting and merging data files, 2–97
from collected data, 2–97

creating a summary report
specifying the statistics, 2–98

data collection
event-based and timer-based, 1–8

gathering statistics on Oracle Rdb
applications, 2–78

improving report performance, 2–101
Oracle Rdb database tables

in PERFORMANCE collection classes,
B–1

in RDBEXPERT collection classes, B–8
PERFORMANCE collection class, 2–91
PERFORMANCE_NO_CF collection class,

2–92
RDBEXPERT collection class, 2–92
RDBEXPERT_NO_CF collection class, 2–92
scheduling data collection, 2–94
stopping a collection, 2–95
table of items in Oracle Rdb DATABASE

event, 2–90
table of items in Oracle Rdb REQUEST_

ACTUAL event, 2–90
table of items in Oracle Rdb REQUEST_BLR

event, 2–90
table of items in Oracle Rdb TRANSACTION

event, 2–91
table of Oracle Rdb AREA_ITEMS group,

2–88
table of Oracle Rdb DATABASE_ITEMS

group, 2–88
table of Oracle Rdb data items, 2–80
table of Oracle Rdb events, 2–79
table of Oracle Rdb RDB_CROSS_FAC group,

2–89
table of Oracle Rdb resource utilization items,

2–80
using registration IDs, 2–95

Index–15

Outlines
choosing an outline for, 5–79
choosing for a query, 5–79
complete, 5–71
controlling with configuration parameters,

5–83
controlling with logical names, 5–83
creating from optimizer output, 5–63
creating many for one query, 5–69
defining for stored procedures, 5–66
defining from output generated from the

optimizer, 5–57
deleting, 5–85
determining if an outline is invalid, 5–84
displaying, 5–63
explicitly specifying for query, 5–79
format of, 5–62, 5–64
listing invalid outlines, 5–85
mandatory compliance, 5–73
modifying, 5–67
optional compliance, 5–75
Oracle Rdb RDB_DEBUG_FLAGS

configuration parameter, C–13
Oracle Rdb RDMS$DEBUG_FLAGS logical

name, C–13
partial, 5–72
providing a comment for, 5–63
RDB_BIND_OUTLINE_MODE configuration

parameter, 5–83
RDMS$BIND_OUTLINE_FLAGS logical

name, 5–83
RDMS$BIND_OUTLINE_MODE logical name,

5–83
RDMS$DEBUG_FLAGS logical name, 5–57
RDMS$DEBUG_FLAGS_OUTPUT logical

name, 5–57
specifying directives for, 5–64
storing outlines generated from optimizer

output, 5–63
Output file

RMU Show Statistics
defining, 2–55
updating, 2–56

Overflow chain, 3–122
Overflow index nodes, 3–120

P
Page file limit, 4–61
Page format

mixed, 4–157
uniform, 4–157

Page headers, 4–155
Page-level locking, 3–85

restrictions, 3–90
specifying, 3–86

Page size
for hashed indexes, 8–41

PAGE SIZE parameter, 4–155
Page space management, 3–139
PAGE TRANSFER VIA DISK clause

enabling disk page transfers, 4–113
PAGE TRANSFER VIA MEMORY clause

enabling memory page transfers, 4–113
Paging

indexed retrieval, 4–31
sequential retrieval, 4–31

Parameters
ALLOCATION, 4–156
ASTLM, 4–215
AWSTIME, 8–49
BIOLM, 4–216
BUFFER SIZE, 4–25
BYTLM, 4–215
CHANNELCNT, 4–205
database, 4–3
database storage area, 4–127
database storage map, 4–173
DEADLOCK_WAIT, 4–211
DIOLM, 4–216
ENQLM, 4–213
FILLM, 4–215
GBLPAGES, 4–209
GBLSECTIONS, 4–209
IRPCOUNT, 4–205
IRPCOUNTV, 4–205
LOCKIDTBL, 4–208
LOCKIDTBL_MAX, 4–208

Index–16

Parameters (cont’d)
LRPCOUNT, 4–206
LRPCOUNTV, 4–206
MAXBUF, 4–210
NPAGEDYN, 4–208
NPAGEVIR, 4–209
NUMBER IS, 4–37
NUMBER OF BUFFERS, 4–27
PAGE SIZE, 4–155
PGFLQUOTA, 3–21, 4–217
PRCLM, 4–217
PROCSECTCNT, 4–210
QUANTUM, 8–49
SRPCOUNT, 4–204, 4–207
SRPCOUNTV, 4–204, 4–207
SYSMWCNT, 4–209
tuning buffer size for transaction type, 4–31
user account, 4–213 to 4–217
USER LIMIT IS, 4–37
VCC_FLAGS, 4–211
VCC_MAXSIZE, 4–211
VIRTUALPAGECNT, 4–210
WSDEFAULT, 4–214
WSEXTENT, 4–214
WSMAX, 4–210
WSQUOTA, 4–214

Partitioned data access
in VMSclusters, 6–10

Partitioned lock tree, 6–17
Performance

adjusting operating system parameters,
4–204

adjusting storage area parameters, 4–127,
4–129t

adjusting storage map parameters, 4–173t
PLACEMENT VIA INDEX option, 4–195

after-image journaling strategy, 3–32
.aij file extents, 4–118
allocation for .aij file, 4–116
allocation for snapshot file, 4–117
analyzing space usage, 1–10
analyzing with RDB_DEBUG_FLAGS, 5–50
analyzing with RDMS$DEBUG_FLAGS, 5–50
CPU resource problems, 8–48
data compression

Performance
data compression (cont’d)

considerations, 4–203
enabling and disabling, 4–196

defined, 1–1
degradation threshold, 7–7
disabling snapshot file, 4–119
dumping database files, 1–10
establishing context, 1–12
evaluating, 1–2, 1–12

for a test database, 1–12
problem areas, 1–3t

fragmentation, 4–156
hardware resources, 1–11
I/O resource problems, 8–2
improving, 7–7f

by data distribution, 3–22
range retrieval

clustering with sorted index, 3–130
using sorted placement index, 3–132

reducing .ruj file I/O operations, 4–98
understanding your data, 3–2
using fast commit transaction processing,

4–98
improving response time, 8–19
improving transaction throughput, 4–98
in a cluster environment, 1–15
in a VMScluster environment, 6–28
interrelated database parameters, 3–5t
locking information, 3–45
making changes in order of difficulty, 1–13
memory resource problems, 8–46
modifying the test database, 1–13
monitoring tools

Monitor utility, 4–204
monitoring with RMU Show Statistics

command, 4–3
number of recovery buffers, 4–115
operating system resources, 1–11
operating system utilities, 1–7
optimizing using RMU Analyze, 2–1
page format, 4–157
performance factors, 3–1
performance-related database changes, 1–6
problems, 1–2t

Index–17

Performance
problems (cont’d)

application design, 1–5
caused by incorrect row lengths in area

inventory pages, 3–148
caused by incorrect threshold settings,

3–148
caused by locked free space, 3–148
caused by SPAM pages not reflecting

actual free space, 3–145
database design, 1–5
memory management, 1–4, 4–212
Oracle Rdb parameters, 1–5
process parameters, 1–4
storing rows using a sorted index, 3–131
system parameters, 1–4
system resources, 1–4
while inserting rows, 3–144
while storing rows, 3–144

reducing disk I/O contention, 4–163, 8–3
reducing disk I/O operations, 3–19
role of the query optimizer, 5–10
sample evaluation procedure, 1–14
selecting threshold values for SPAM pages,

4–157
sizing SPAM intervals, 4–162
snapshot file extents, 4–118
statistics, 2–16
tuning working set parameters, 4–212
using deferred snapshots, 4–124
using export/import procedures, 1–14
utilities and tools, 1–7

Performance Monitor
Active User Stall Messages screen, 3–15,

3–57
AIJ Analysis screen, 2–63, A–23, A–24
AIJ Journal Information screen, 4–15
AIJ Statistics screen, 4–14
Area Analysis screen, 2–63
Asynchronous IO Statistics screen, 4–11
Buffer Analysis screen, 2–63, A–26, A–27
Buffer Information screen, 4–8
Checkpoint Information screen, 4–20
Checkpoint Statistics screen, 4–17
CPU Utilization screen, 3–29

Performance Monitor (cont’d)
Database Dashboard facility, 2–61
Database Parameter Information submenu,

4–7
DBKEY Information screen, 3–14
DBR Activity screen, 6–32
Defined Logicals screen, 2–76
Device Information screen, 4–154
Device IO Overview screen, 4–153
displaying CPU utilization of database

processes, 3–29
displaying global section sizes, 4–53
displaying lock information, 3–57
displaying shared memory partition sizes,

4–53
displaying the maximum number of buffers

per process, 4–42
displaying the number of global buffers per

node, 4–39
display modes, 2–20
display options, 2–32
Fast Commit Information screen, 4–111
File IO Overview screen, 3–146
General Information screen, 4–127
getting online help, 2–45
Hash Index Statistics screen, 3–118
I/O Statistics screen, 4–152
Index Analysis screen, 2–63, A–24, A–25
index information, 3–118
Index Statistics (Insertion) screen, 3–119
Index Statistics (Removal) screen, 3–119
Index Statistics (Retrieval) screen, 3–119
invoking, 2–17
invoking commands, 2–39
IO Stall Time screen, 3–9
IO Statistics screen, 8–10, 8–11e
Journaling Information screen, 3–34
Lock Deadlock History screen, 3–61
Locking Analysis screen, 2–63, A–27
Lock Statistics (by file) screen, 3–61
Lock Statistics (one lock type) screen, 3–61
Lock Statistics (one stat field) screen, 3–61
Lock Timeout History screen, 3–61, 3–63
monitor locks, 3–45, 4–208
notepad support for, 2–39

Index–18

Performance Monitor (cont’d)
Objects screen, 3–32
Online Analysis facility, 2–63
PIO Statistics–Data Fetches screen, 4–9,

8–21, 8–22e, 8–24e
PIO Statistics–Data Writes screen, 4–9
PIO Statistics–SPAM Fetches screen, 4–10,

8–21, 8–22e, 8–24e
Process Accounting screen, 4–12
Record Analysis screen, 2–63, A–28, A–29
Record Statistics screen, 3–144, 4–14
Recovery Analysis screen, 2–63
Recovery Statistics screen, 6–31
report format options, 2–39
Row Cache Analysis screen, 2–63
Row caching screens, 4–95
RUJ Analysis screen, 2–63, A–25, A–26, A–29
selecting a screen, 2–23
Snapshot Statistics screen, 4–16
Stall Messages screen, 3–9, 8–54
Storage Area Information screen, 4–151
Summary IO Statistics screen, 3–8
Summary Locking Statistics screen, 3–61,

8–54e
Summary Object Statistics screen, 3–31
support for invoking commands, 2–39
tools facility, 2–39, 3–11
tools for, 2–39
Transaction Analysis screen, 2–63, A–27,

A–28, A–29
Transaction Duration screen, 3–17
Virtual Memory Statistics screen, 4–204
zoom option, 2–37

PGFLQUOTA parameter, 4–65
values, 4–217

Physical area
getting the area name from the area number,

3–13
Physical design

implementing with minimal effort, 4–1t
PRCLM parameter

values, 4–217
Predicate selectivity

definition of, 5–2

Prefix and suffix index compression
sorted index, 3–98

Prestarted transactions
disabling, 4–173
effect on I/O, 4–166
effect on snapshot file growth, 4–166
enabling, 4–172

Primary key
indexing, 3–96, 3–127

Process accounting statistics, 4–12
Process quotas, 4–204
PROCSECTCNT parameter

values, 4–210
PRODUCT_DB, 7–3

tables, 7–4
Projection operation

account parameters and, 4–214
Protected reserving option

protected read, 3–70
protected write, 3–71

Q
QPT, 5–57
QUANTUM parameter

effect on workload response time, 8–51f
reducing CPU resource limitations, 8–49
settings and CPU modes, 8–52f

Query
multisegmented key

avoid OR condition, 5–42
Query execution

role of the query optimizer, 5–10
Query flattening, 5–28
Query governor, 5–48
Query naming, 5–82
Query optimizer

access strategies, 3–143
analyzing the RDB_DEBUG_FLAGS display,

C–17
analyzing the RDMS$DEBUG_FLAGS display,

C–17
capturing outline output from, 5–57, C–13
column duplicity factor defined, 5–7
column null factor defined, 5–7

Index–19

Query optimizer (cont’d)
concatenated expressions, 5–41
cross join strategy, 5–18
determining access strategy with SE flags,

C–21
determining access strategy with S\ flags,

C–22
determining optimization cost with O flag,

C–15
determining strategy with S flag, C–4
displaying constraint names with the Sn flag,

C–14
displaying transaction activity with T flag,

C–42
dynamic leaf-level optimization

background process, 5–34
foreground process, 5–36

dynamic leaf optimization, 5–33
dynamic optimization, 5–1, 5–28
dynamic OR optimization, 5–29
estimating cost, 5–3
estimating page size when table rows can be

stored in multiple storage areas, 5–3
function, 5–1
index cardinality defined, 5–5
index data clustering factor defined, 5–8
index key clustering factor defined, 5–8
index placement, 5–43
index prefix cardinality defined, 5–5
index retrieval, 5–12
join ordering, 5–24
joins, C–32
leaf-level dynamic optimization

background only, 5–36
fast first, 5–37
index only, 5–38
sorted order, 5–39

match, zigzag strategy, 5–22
match join, general strategy, 5–19
merge strategy, 5–23
multiple table retrieval methods, 5–17
operators that override the specified

optimization mode, 5–44
optimization cost

determining, C–15

Query optimizer (cont’d)
OR index retrieval, 5–12
output

creating outlines from, 5–57, C–13
overview, 5–10
performance hints

index placement, 5–43
predicate selectivity, 5–2
processing queries, 5–10
query governor, 5–48
RDB_DEBUG_FLAGS output

cross retrieval, C–12e
fast first retrieval, C–27e
index access with dynamic OR, C–11e
index access with OR, C–10e
indexed access, C–8e
index only access, C–9e
index only leaf retrieval, C–30e
join using sorted order leaf, C–32e
sequential access, C–7e
sorted order leaf retrieval, C–29e

RDMS$DEBUG_FLAGS output
cross retrieval, C–12e
fast first retrieval, C–27e
index access with dynamic OR, C–11e
index access with OR, C–10e
indexed access, C–8e
index only access, C–9e
index only leaf retrieval, C–30e
join using sorted order leaf, C–32e
sequential access, C–7e
sorted order leaf retrieval, C–29e

retrieving data, 5–12
dbkey retrieval, 5–12
dynamic leaf retrieval, 5–13
index only retrieval, 5–12
index retrieval, 5–12
key-only Boolean, 5–14
MIN/MAX aggregate optimization, 5–15
sequential retrieval, 5–11

single table retrieval methods, 5–11
specifying optimization mode, 5–43
specifying outline directives, 5–64
static optimization, 5–1
strategy, 5–2

Index–20

Query optimizer (cont’d)
table cardinality defined, 5–4
table row clustering factor defined, 5–9
terminology, 5–2
using a multisegmented index, 5–41
using query cost estimates, 5–52
using views, 5–40

Query outlines
See Outlines

Query Performance Tuner
See QPT

R
Ranked sorted index, 3–119
RDB$CHARACTER_SET Oracle Rdb logical

name, A–1
RDB$LIBRARY Oracle Rdb logical name, A–2
RDB$RDBSHR_EVENT_FLAGS Oracle Rdb

logical name, A–2
RDB$REMOTE_BUFFER_SIZE Oracle Rdb

logical name, A–3
RDB$REMOTE_MULTIPLEX_OFF Oracle Rdb

logical name, A–4
RDB$ROUTINES Oracle Rdb logical name, A–4
RDB$SYSTEM

read-only, 3–92
RDB$SYSTEM_RECORD logical area

excluding information from RMU Analyze
output, 2–7

RDBVMS$CREATE_DB Oracle Rdb logical name,
A–4

RDB_AUTO_READY Oracle Rdb configuration
parameter, 3–76, A–36

RDB_BIND_ABS_LOG_FILE Oracle Rdb
configuration parameter, A–5

RDB_BIND_ABS_OVERWRITE_ALLOWED
Oracle Rdb configuration parameter, A–5

RDB_BIND_ABS_OVERWRITE_IMMEDIATE
Oracle Rdb configuration parameter, A–6

RDB_BIND_ABS_QUIET_POINT Oracle Rdb
configuration parameter, A–6

RDB_BIND_ABW_ENABLED Oracle Rdb
configuration parameter, 3–27, A–6

RDB_BIND_AIJ_CHECK_CONTROL_RECS
Oracle Rdb configuration parameter, A–7

RDB_BIND_AIJ_EMERGENCY_DIR Oracle Rdb
configuration parameter, A–7

RDB_BIND_AIJ_IO_MAX Oracle Rdb
configuration parameter, A–7

RDB_BIND_AIJ_IO_MIN Oracle Rdb
configuration parameter, A–8

RDB_BIND_AIJ_STALL Oracle Rdb
configuration parameter, A–8

RDB_BIND_AIJ_SWITCH_GLOBAL_CKPT
Oracle Rdb configuration parameter, A–8

RDB_BIND_ALS_CREATE_AIJ Oracle Rdb
configuration parameter, A–9

RDB_BIND_APF_DEPTH Oracle Rdb
configuration parameter, A–10

RDB_BIND_APF_ENABLED Oracle Rdb
configuration parameter, 3–24, A–10

RDB_BIND_BATCH_MAX Oracle Rdb
configuration parameter, A–11

RDB_BIND_BUFFERS Oracle Rdb configuration
parameter, 4–27, 4–29, 8–19, A–12

specifying the number of buffers for a process,
4–27

RDB_BIND_CBL_ENABLED Oracle Rdb
configuration parameter, A–13

RDB_BIND_CKPT_BLOCKS Oracle Rdb
configuration parameter, A–14

RDB_BIND_CKPT_TIME Oracle Rdb
configuration parameter, A–14

RDB_BIND_CKPT_TRANS_INTERVAL
Oracle Rdb configuration parameter, 4–106

RDB_BIND_CKPT_TRANS_INTERVAL Oracle
Rdb configuration parameter, A–14

RDB_BIND_CLEAN_BUF_CNT Oracle Rdb
configuration parameter, A–14

RDB_BIND_COMMIT_STALL Oracle Rdb
configuration parameter, A–15

RDB_BIND_DAPF_DEPTH_BUF_CNT Oracle
Rdb configuration parameter, A–15

Index–21

RDB_BIND_DAPF_ENABLED Oracle Rdb
configuration parameter, A–16

RDB_BIND_DAPF_START_BUF_CNT Oracle
Rdb configuration parameter, A–16

RDB_BIND_LOCK_TIMEOUT_INTERVAL
Oracle Rdb configuration parameter, A–17

RDB_BIND_MAX_DBR_COUNT Oracle Rdb
configuration parameter, A–18

RDB_BIND_OPTIMIZE_AIJ_RECLEN Oracle
Rdb configuration parameter, A–18

RDB_BIND_OUTLINE_FLAGS Oracle Rdb
configuration parameter, A–37

RDB_BIND_OUTLINE_MODE Oracle Rdb
configuration parameter, 5–83, A–38

RDB_BIND_PRESTART_TXN Oracle Rdb
configuration parameter, A–38

RDB_BIND_QG_CPU_TIMEOUT Oracle Rdb
configuration parameter, A–39

RDB_BIND_QG_REC_LIMIT Oracle Rdb
configuration parameter, A–40

RDB_BIND_QG_TIMEOUT Oracle Rdb
configuration parameter, A–40

RDB_BIND_RCACHE_INSERT_ENABLED
Oracle Rdb configuration parameter, A–19

RDB_BIND_RCACHE_RCRL_COUNT Oracle
Rdb configuration parameter, A–19

RDB_BIND_RCS_BATCH_COUNT Oracle Rdb
configuration parameter, A–19

RDB_BIND_RCS_CHECKPOINT Oracle Rdb
configuration parameter, A–20

RDB_BIND_RCS_CKPT_BUFFER_CNT Oracle
Rdb configuration parameter, A–20

RDB_BIND_RCS_LOG_FILE Oracle Rdb
configuration parameter, A–20

RDB_BIND_RCS_MAX_COLD Oracle Rdb
configuration parameter, 4–90, A–20

RDB_BIND_RCS_MIN_COLD Oracle Rdb
configuration parameter, 4–90, A–20

RDB_BIND_RCS_SWEEP_INTERVAL Oracle
Rdb configuration parameter, A–21

RDB_BIND_READY_AREA_SERIALLY Oracle
Rdb configuration parameter, A–21

RDB_BIND_RUJ_ALLOC_BLKCNT Oracle Rdb
configuration parameter, A–22

RDB_BIND_RUJ_EXTEND_BLKCNT Oracle
Rdb configuration parameter, A–22

RDB_BIND_SEGMENTED_STRING_BUFFER
Oracle Rdb configuration parameter, A–41

RDB_BIND_SEGMENTED_STRING_COUNT
Oracle Rdb configuration parameter, A–43

RDB_BIND_SEGMENTED_STRING_DBKEY_
SCOPE Oracle Rdb configuration parameter,
A–44

RDB_BIND_SNAP_QUIET_POINT Oracle Rdb
configuration parameter, A–23

RDB_BIND_SORT_WORKFILES Oracle Rdb
configuration parameter, 8–5, A–45

RDB_BIND_STATS_AIJ_ARBS_PER_IO Oracle
Rdb configuration parameter, A–23

RDB_BIND_STATS_AIJ_BKGRD_ARB_RATIO
Oracle Rdb configuration parameter, A–23

RDB_BIND_STATS_AIJ_BLKS_PER_IO Oracle
Rdb configuration parameter, A–24

RDB_BIND_STATS_AIJ_SEC_TO_EXTEND
Oracle Rdb configuration parameter, A–24

RDB_BIND_STATS_BTR_FETCH_DUP_RATIO
Oracle Rdb configuration parameter, A–24

RDB_BIND_STATS_BTR_LEF_FETCH_RATIO
Oracle Rdb configuration parameter, A–24

RDB_BIND_STATS_DBR_RATIO Oracle Rdb
configuration parameter, A–25

RDB_BIND_STATS_ENABLED Oracle Rdb
configuration parameter, 2–17, A–25

RDB_BIND_STATS_FULL_BACKUP_INTRVL
Oracle Rdb configuration parameter, A–26

RDB_BIND_STATS_GB_IO_SAVED_RATIO
Oracle Rdb configuration parameter, A–26

RDB_BIND_STATS_GB_POOL_HIT_RATIO
Oracle Rdb configuration parameter, A–26

RDB_BIND_STATS_LB_PAGE_HIT_RATIO
Oracle Rdb configuration parameter, A–27

RDB_BIND_STATS_MAX_HASH_QUE_LEN
Oracle Rdb configuration parameter, A–27

RDB_BIND_STATS_MAX_LOCK_STALL Oracle
Rdb configuration parameter, A–27

Index–22

RDB_BIND_STATS_MAX_TX_DURATION
Oracle Rdb configuration parameter, A–28

RDB_BIND_STATS_PAGES_CHECKED_RATIO
Oracle Rdb configuration parameter, A–28

RDB_BIND_STATS_RECS_FETCHED_RATIO
Oracle Rdb configuration parameter, A–28

RDB_BIND_STATS_RECS_STORED_RATIO
Oracle Rdb configuration parameter, A–28

RDB_BIND_STATS_RUJ_SYNC_IO_RATIO
Oracle Rdb configuration parameter, A–29

RDB_BIND_STATS_VERB_SUCCESS_RATIO
Oracle Rdb configuration parameter, A–29

RDB_BIND_TSN_INTERVAL Oracle Rdb
configuration parameter, A–30

RDB_BIND_VALIDATE_CHANGE_FIELD
Oracle Rdb configuration parameter, A–48

RDB_BIND_VM_SEGMENT Oracle Rdb
configuration parameter, A–30

RDB_BIND_WORK_FILE Oracle Rdb
configuration parameter, 3–21, 8–5, 8–6,
A–48

RDB_BIND_WORK_VM Oracle Rdb configuration
parameter, 3–20, 8–27, A–50

RDB_BUGCHECK_DIR Oracle Rdb configuration
parameter, A–31

RDB_BUGCHECK_IGNORE_FLAGS Oracle Rdb
configuration parameter, A–32

RDB_CREATE_DB Oracle Rdb configuration
parameter, A–4

RDB_DEBUG_FLAGS Oracle Rdb configuration
parameter, 5–7, 5–8, 8–55, A–50, C–1

analyzing display, C–17
case sensitivity, C–2
conjunct, C–21
displaying access strategies, C–1
displaying transaction activity with T flag,

C–42
E flag display notation, C–22t
index segments, C–21
logging TRACE control statement, C–45
O flag, C–15
optimization access strategy with "\" debug

flag, C–22
optimization access strategy with E debug,

C–21

RDB_DEBUG_FLAGS Oracle Rdb configuration
parameter (cont’d)

optimization cost, C–15
query optimizer strategy, C–4
SE flags, C–21
S flag, C–4
S\ flags, C–22
T flag, C–42
transaction activity, C–42
using the ISs flags, C–13
Xt flag, C–45

RDB_DEBUG_FLAGS_OUTPUT Oracle Rdb
configuration parameter, A–50

saving output access strategies, C–2
RDB_DIAG_FLAGS Oracle Rdb configuration

parameter, A–51
RDB_LIBRARY Oracle Rdb configuration

parameter, A–2
RDB_MONITOR Oracle Rdb configuration

parameter, A–34
RDB_ROUTINES configuration parameter, A–4
RDB_RUJ Oracle Rdb configuration parameter,

3–21, 8–5, 8–6, A–52
RDB_USE_OLD_CONCURRENCY Oracle Rdb

configuration parameter, A–52
RDB_USE_OLD_COST_MODEL Oracle Rdb

configuration parameter, A–54
RDB_USE_OLD_COUNT_RELATION Oracle

Rdb configuration parameter, A–55
RDB_USE_OLD_SEGMENTED_STRING Oracle

Rdb configuration parameter, A–55
RDB_USE_OLD_UPDATE_RULES Oracle Rdb

configuration parameter, A–56
RDB_VALIDATE_ROUTINE Oracle Rdb

configuration parameter, A–58
RDM$BIND_ABS_LOG_FILE Oracle Rdb logical

name, A–5
RDM$BIND_ABS_OVERWRITE_ALLOWED

Oracle Rdb logical name, A–5
RDM$BIND_ABS_OVERWRITE_IMMEDIATE

Oracle Rdb logical name, A–6
RDM$BIND_ABS_QUIET_POINT Oracle Rdb

logical name, A–6

Index–23

RDM$BIND_ABW_ENABLED Oracle Rdb logical
name, 3–27, A–6

RDM$BIND_AIJ_CHECK_CONTROL_RECS
Oracle Rdb logical name, A–7

RDM$BIND_AIJ_EMERGENCY_DIR Oracle Rdb
logical name, A–7

RDM$BIND_AIJ_IO_MAX Oracle Rdb logical
name, A–7

RDM$BIND_AIJ_IO_MIN Oracle Rdb logical
name, A–8

RDM$BIND_AIJ_STALL Oracle Rdb logical
name, A–8

RDM$BIND_AIJ_SWITCH_GLOBAL_CKPT
Oracle Rdb logical name, A–8

RDM$BIND_ALS_CREATE_AIJ Oracle Rdb
logical name, A–9

RDM$BIND_APF_DEPTH Oracle Rdb logical
name, A–10

RDM$BIND_APF_ENABLED Oracle Rdb logical
name, 3–24, A–10

RDM$BIND_BATCH_MAX Oracle Rdb logical
name, A–11

RDM$BIND_BUFFERS Oracle Rdb logical name,
4–27, 4–29, 8–19, A–12

setting, 8–27
specifying the number of buffers for a process,

4–27
RDM$BIND_BUFOBJ_ENABLED Oracle Rdb

logical name, A–13
RDM$BIND_CBL_ENABLED Oracle Rdb logical

name, A–13
RDM$BIND_CKPT_BLOCKS Oracle Rdb logical

name, A–14
RDM$BIND_CKPT_TIME Oracle Rdb logical

name, A–14
RDM$BIND_CKPT_TRANS_INTERVAL Oracle

Rdb logical name, 4–106, A–14
RDM$BIND_CLEAN_BUF_CNT Oracle Rdb

logical name, A–14
RDM$BIND_COMMIT_STALL Oracle Rdb logical

name, A–15
RDM$BIND_DAPF_DEPTH_BUF_CNT Oracle

Rdb logical name, A–15

RDM$BIND_DAPF_ENABLED Oracle Rdb
logical name, A–16

RDM$BIND_DAPF_START_BUF_CNT Oracle
Rdb logical name, A–16

RDM$BIND_HRL_ENABLED Oracle Rdb logical
name, A–17

RDM$BIND_LOCK_TIMEOUT_INTERVAL
Oracle Rdb logical name, A–17

RDM$BIND_MAX_DBR_COUNT Oracle Rdb
logical name, A–18

RDM$BIND_OPTIMIZE_AIJ_RECLEN Oracle
Rdb logical name, A–18

RDM$BIND_RCACHE_INSERT_ENABLED
Oracle Rdb logical name, A–19

RDM$BIND_RCACHE_RCRL_COUNT Oracle
Rdb logical name, A–19

RDM$BIND_RCS_BATCH_COUNT Oracle Rdb
logical name, A–19

RDM$BIND_RCS_CHECKPOINT Oracle Rdb
logical name, A–20

RDM$BIND_RCS_CKPT_BUFFER_CNT Oracle
Rdb logical name, A–20

RDM$BIND_RCS_LOG_FILE Oracle Rdb logical
name, A–20

RDM$BIND_RCS_MAX_COLD Oracle Rdb
logical name, 4–90, A–20

RDM$BIND_RCS_MIN_COLD Oracle Rdb logical
name, 4–90, A–20

RDM$BIND_RCS_SWEEP_INTERVAL Oracle
Rdb logical name, A–21

RDM$BIND_READY_AREA_SERIALLY Oracle
Rdb logical name, A–21

RDM$BIND_RUJ_ALLOC_BLKCNT Oracle Rdb
logical name, A–22

RDM$BIND_RUJ_EXTEND_BLKCNT Oracle
Rdb logical name, A–22

RDM$BIND_SNAP_QUIET_POINT Oracle Rdb
logical name, A–23

RDM$BIND_STATS_AIJ_ARBS_PER_IO Oracle
Rdb logical name, A–23

RDM$BIND_STATS_AIJ_BKGRD_ARB_RATIO
Oracle Rdb logical name, A–23

Index–24

RDM$BIND_STATS_AIJ_BLKS_PER_IO Oracle
Rdb logical name, A–24

RDM$BIND_STATS_AIJ_SEC_TO_EXTEND
Oracle Rdb logical name, A–24

RDM$BIND_STATS_BTR_FETCH_DUP_RATIO
Oracle Rdb logical name, A–24

RDM$BIND_STATS_BTR_LEF_FETCH_RATIO
Oracle Rdb logical name, A–24

RDM$BIND_STATS_DBR_RATIO Oracle Rdb
logical name, A–25

RDM$BIND_STATS_ENABLED Oracle Rdb
logical name, 2–17, A–25

RDM$BIND_STATS_FULL_BACKUP_INTRVL
Oracle Rdb logical name, A–26

RDM$BIND_STATS_GB_IO_SAVED_RATIO
Oracle Rdb logical name, A–26

RDM$BIND_STATS_GB_POOL_HIT_RATIO
Oracle Rdb logical name, A–26

RDM$BIND_STATS_LB_PAGE_HIT_RATIO
Oracle Rdb logical name, A–27

RDM$BIND_STATS_MAX_HASH_QUE_LEN
Oracle Rdb logical name, A–27

RDM$BIND_STATS_MAX_LOCK_STALL Oracle
Rdb logical name, A–27

RDM$BIND_STATS_MAX_TX_DURATION
Oracle Rdb logical name, A–28

RDM$BIND_STATS_PAGES_CHECKED_RATIO
Oracle Rdb logical name, A–28

RDM$BIND_STATS_RECS_FETCHED_RATIO
Oracle Rdb logical name, A–28

RDM$BIND_STATS_RECS_STORED_RATIO
Oracle Rdb logical name, A–28

RDM$BIND_STATS_RUJ_SYNC_IO_RATIO
Oracle Rdb logical name, A–29

RDM$BIND_STATS_VERB_SUCCESS_RATIO
Oracle Rdb logical name, A–29

RDM$BIND_SYSTEM_BUFFERS_ENABLED
Oracle Rdb logical name, A–29

RDM$BIND_TSN_INTERVAL Oracle Rdb logical
name, A–30

RDM$BIND_VM_SEGMENT Oracle Rdb logical
name, A–30

RDM$BUGCHECK_DIR Oracle Rdb logical
name, A–31

RDM$BUGCHECK_IGNORE_FLAGS Oracle Rdb
logical name, A–32

RDM$MAILBOX_CHANNEL Oracle Rdb logical
name, A–33

RDM$MONITOR Oracle Rdb logical name, A–34
RDM$MON_USERNAME Oracle Rdb logical

name, 4–64, A–35
RDMS$AUTO_READY Oracle Rdb logical name,

3–76, A–36
RDMS$BIND_OUTLINE_FLAGS Oracle Rdb

logical name, 5–83, A–37
RDMS$BIND_OUTLINE_MODE Oracle Rdb

logical name, 5–83, A–38
RDMS$BIND_PRESTART_TXN Oracle Rdb

logical name, A–38
RDMS$BIND_QG_CPU_TIMEOUT Oracle Rdb

logical name, A–39
RDMS$BIND_QG_REC_LIMIT Oracle Rdb

logical name, A–40
RDMS$BIND_QG_TIMEOUT Oracle Rdb logical

name, A–40
RDMS$BIND_SEGMENTED_STRING_BUFFER

Oracle Rdb logical name, A–41
RDMS$BIND_SEGMENTED_STRING_COUNT

Oracle Rdb logical name, A–43
RDMS$BIND_SEGMENTED_STRING_DBKEY_

SCOPE Oracle Rdb logical name, A–44
RDMS$BIND_SORT_WORKFILES Oracle Rdb

logical name, 8–5, 8–6, A–45
RDMS$BIND_VALIDATE_CHANGE_FIELD

Oracle Rdb logical name, A–48
RDMS$BIND_WORK_FILE Oracle Rdb logical

name, 3–21, 8–5, 8–6, A–48
using, 8–6e

RDMS$BIND_WORK_VM Oracle Rdb logical
name, 3–20, 8–27, A–50

RDMS$DEBUG_FLAGS Oracle Rdb logical
name, 5–7, 5–8, 8–55, 8–56, A–50, C–1

analyzing display, C–17
case sensitivity, C–2
conjunct, C–21
displaying access strategies, C–1

Index–25

RDMS$DEBUG_FLAGS Oracle Rdb logical name
(cont’d)

displaying transaction activity with T flag,
C–42

E flag display notation, C–22t
index segments, C–21
logging TRACE control statement, C–45
O flag, C–15
optimization access strategy with "\" debug

flag, C–22
optimization access strategy with E debug,

C–21
optimization cost, C–15
query optimizer strategy, C–4
R flag, C–35
SE flags, C–21
S flag, C–4
S\ flags, C–22
sort statistics, C–35
T flag, C–42
transaction activity, C–42
using the ISs flags, C–13
using with outlines, 5–57
Xt flag, C–45

RDMS$DEBUG_FLAGS_OUTPUT Oracle Rdb
logical name, A–50

saving output access strategies, C–2
using with outlines, 5–57

RDMS$DIAG_FLAGS Oracle Rdb logical name,
A–51

RDMS$KEEP_PREP_FILES Oracle Rdb logical
name, A–52

RDMS$RUJ Oracle Rdb logical name, 3–21, 8–5,
8–6, A–52

using to redirect .ruj file, 8–6e
RDMS$USE_OLD_CONCURRENCY Oracle Rdb

logical name, A–52
RDMS$USE_OLD_COST_MODEL Oracle Rdb

logical name, A–54
RDMS$USE_OLD_COUNT_RELATION Oracle

Rdb logical name, A–55
RDMS$USE_OLD_SEGMENTED_STRING

Oracle Rdb logical name, A–55

RDMS$USE_OLD_UPDATE_RULES Oracle Rdb
logical name, A–56

RDMS$VALIDATE_ROUTINE Oracle Rdb logical
name, A–58

RDM_BIND_HRL_ENABLED Oracle Rdb
configuration parameter, A–17

RDO$EDIT Oracle Rdb logical name, A–58
RDOINI Oracle Rdb logical name, A–59
Reading data in share mode, 3–68
Read-only

storage areas, 3–91, 3–92
with snapshot file deferred, 4–124
with snapshot file disabled, 4–121

Record
active, 3–22
fragmentation, 4–114, 4–156
inactive, 3–22
size for hashed indexes, 8–43

Record clustering
checking, 8–36f
reducing I/O, 8–35

using hashed indexes, 8–37
using shadow pages, 8–37
using sorted indexes, 8–36

using shadow pages, 8–39f
Record-level locking

See Row-level locking
Record statistics, 2–20
Recoverable latch

See Lock
Recovering a database

access after failure in VMScluster system,
6–18

checking DBR progress, 6–32
lock manager, 6–30
surviving nodes, 6–30
suspension, 6–30
using .aij files, 3–32

Recovery
using .aij files, 3–32

Recovery Statistics, 6–31
Recovery-unit journal (.ruj) file

transaction scope, 3–81

Index–26

Recursive relationships
setting system parameters, 4–155

Replaying database statistics
RMU Show Statistics Input qualifier, 2–21

Replay mode, 2–53
Replay statistics, 2–20
Requested lock mode, 3–55
RESERVE CACHE SLOTS clause, 4–74, 4–75
Reserving options

access conflicts, 3–67
multiuser access, 3–67
transactions, 3–67

Resources
analyzing use of, 7–5f
exclusive, 7–3
shared, 7–3

Retrieval
access strategies, 3–143
dbkey, 5–12
index, 3–94
indexed, 4–31
primary key, 3–96
sequential, 3–143, 4–31, 5–11

RMONSTART.COM procedure, 6–16
RMU$EDIT Oracle Rdb logical name, A–59
RMU Analyze command, 1–10, 2–1 to 2–16

Areas qualifier, 6–34
excluding RDB$SYSTEM_RECORD

information, 2–7
Option=Debug qualifier, 4–144
Option=Full qualifier, 4–137
Option=Normal qualifier, 4–131

Binary_Output qualifier, 2–8
creating a binary output file, 2–2, 2–7
Exclude qualifier, 2–7
excluding Oracle Rdb logical area information

from output, 2–7
Indexes qualifier, 6–34, 8–32

compressed indexes, 3–110, 3–118
hashed indexes, 3–112
Option=Debug qualifier, 3–112
Option=Full qualifier, 3–111
Option=Normal qualifier, 3–106
sorted indexes, 3–115
using, 8–32e

RMU Analyze command (cont’d)
interpreting output, 2–3
Lareas qualifier, 6–34

Option=Debug qualifier, 4–150
Option=Full qualifier, 4–150
Option=Normal qualifier, 4–149

locking information, 2–6
overview, 2–3
Placement qualifier, 6–34, 8–32

hashed indexes, 4–186
Option=Debug qualifier, 4–186
Option=Full qualifier, 4–181
Option=Normal qualifier, 4–176
sorted indexes, 4–186, 4–190
using, 8–32e

record fragmentation, 4–114
using, 2–3

RMU Backup After_Journal command, 3–33
RMU Collect command

Optimizer_Statistics qualifier
updating cardinalities, 3–93

RMU Dump command, 1–10
locating SPAM pages, 4–156

RMU Dump Users command
displaying all the database users for a cluster,

6–35
RMU Open command

specifying the maximum number of buffers per
process, 4–42

specifying the number of global buffers per
node, 4–39

RMU Optimize command
performance enhancements, 3–41

RMU Performance Monitor
See Performance Monitor, 2–20

RMU Repair command
initializing snapshot files, 4–163
moving snapshot files, 4–164
renaming snapshot files, 4–164

RMU Restore command
changing the number of buffers per process,

4–27
specifying the maximum number of buffers per

process, 4–42

Index–27

RMU Restore command (cont’d)
specifying the number of global buffers per

node, 4–38
RMU Server After_Journal command

starting ALS process, 3–35
stopping ALS process, 3–35, 3–36

RMU Show Locks command, 1–10, 3–46
examples, 3–50
granted lock mode, 3–55
qualifier combinations, 3–49
qualifiers, 3–47
requested lock mode, 3–55

RMU Show Statistics command, 1–10, 2–17
customizing the information display, 2–56
formatted binary output file, 2–53

defining, 2–55
updating, 2–56

Histogram qualifier, 2–30, 2–31
Input qualifier, 2–20, 2–53
Interactive qualifier, 2–20
monitor performance, 4–3
Nohistogram qualifier, 2–30, 2–31
Objects (one stat field), 3–32
Objects (one stat type), 3–32
Output qualifier, 2–20, 2–53
selecting the initial display mode, 2–30, 2–31
Time qualifier, 2–20, 2–54
Until qualifier, 2–20

RMU Show System command, 6–34
RMU Show Users command, 6–34

displaying the maximum number of buffers
per process, 4–42

displaying the number of global buffers per
node, 4–39

Root file
analyzing I/O for, 3–31
in VMScluster systems, 6–20
objects, 3–31

Root files, 3–31
Root header

lock manager, 6–10
Row cache, 4–67

reserving slots for, 4–74, 4–75

Row caching
enabling, 4–69

Row-level locking
specifying, 3–89

Row storage
analyzing performance problems by storage

area, 3–146
Run-length index compression

hashed index, 3–100
sorted index, 3–100
system indexes, 3–106

S
Scatter plot display statistics, 2–33
Scope

of transactions, 3–80
SDA

gathering lock information, 3–64
Segmented strings

using old format, A–55
Sequential access

analyzing strategies, C–18
locks, 3–143
multiuser, 3–143

Served disk
defined, 6–18

Server process
disabling prestarted transaction, 4–168

SET TRANSACTION statement
compatible locks, 3–71
multiuser access, 3–67
reserving options, 3–67

Shadow pages, 8–37
hashed index, 3–138
PLACEMENT VIA INDEX clause, 3–138
using two storage areas, 3–138

Shareable images
in VMScluster systems, 6–11

Shared data access
in VMSclusters, 6–11

Shared memory partition
calculating the size of, 4–53
extra data structures with global buffers,

4–52

Index–28

Shared-read reserving option
concurrent access, 3–68

Shared resources, 7–3
Shared-write reserving option

concurrent access, 3–68
Share mode

exclusive write, 3–71
multiuser access, 3–68
protected read, 3–70
protected write, 3–71
reading data

multiuser access, 3–68
writing data, 3–68

SHOW DATABASE statement
displaying the maximum number of buffers

per process, 4–42
displaying the number of global buffers per

node, 4–39
SHOW DEVICES command, 7–6
SHOW ERROR command, 7–6
SHOW OUTLINES statement

displaying outlines, 5–63
SHOW statement

using to check data compression, 4–202
Single-user access

exclusive mode, 3–71
SIZE IS index segment truncation

index compression, 3–98
sorted index, 3–98

Snapshot file, 8–44
accessing, 4–118
changing the allocation, 4–164
checking access requirements, 8–45f, 8–46
deferred access, 8–46
disabling, 4–119

effect on read-only transactions, 4–121
enabling, 4–119
growth caused by prestarted transactions,

4–166
immediate access, 8–46
initializing, 4–163
moving, 4–164, 8–46
renaming, 4–164
transaction identification number, 4–119
truncating on line, 4–165

Snapshot file (cont’d)
using deferred snapshots, 4–124, 4–125e

Snapshot statistics, 4–16
Sorted index, 3–95

See also Index
access strategy, C–18
avoiding performance degradation when

storing rows, 3–131
clustering, 3–130
gathering information, 3–106
improving range retrieval using a placement

index, 3–132
MAPPING VALUES compression, 3–99
non-ranked, 3–123

gathering information, 3–107, 4–177,
4–182, 4–190

prefix compression, 3–98
ranked, 3–119

gathering information, 3–108, 3–115,
4–178

run-length compression, 3–100
scanning in forward order, 3–132
scanning in reverse order, 3–132
SIZE IS segment compression, 3–98
structure, 3–119
using to reduce I/O, 8–36

Sort operation
account parameters and, 4–214

Sort order default, C–18
SORTWORKn Oracle Rdb logical name, A–45
Space area management (SPAM) pages

intervals for hashed indexes, 8–44
locating, 4–156
page request statistics, 4–10
performance problems and, 3–145
selecting threshold values, 4–157
sizing SPAM intervals, 4–162
thresholds for hashed indexes, 8–44

SQL$DATABASE Oracle Rdb logical name,
A–59

SQL$DISABLE_CONTEXT Oracle Rdb logical
name, A–60

SQL$EDIT Oracle Rdb logical name, A–61

Index–29

SQL$KEEP_PREP_FILES Oracle Rdb logical
name, A–61

SQLINI Oracle Rdb logical name, A–61
SQL_DATABASE Oracle Rdb configuration

parameter, A–59
SQL_KEEP_PREP_FILES Oracle Rdb

configuration parameter, A–61
SQL_NETWORK_BUFFER_SIZE Oracle Rdb

configuration parameter, A–3
SQL_NETWORK_NUMBER_ATTACHES Oracle

Rdb configuration parameter, A–4
SRPCOUNT parameter

effect of enabling global buffers, 4–66, 4–207
values, 4–204, 4–207

SRPCOUNTV parameter
effect of enabling global buffers, 4–66, 4–208
values, 4–204, 4–207

Stall
displaying stalled processes, 3–9, 3–15, 3–64
reducing the number of, 3–23, 3–26

Stall activity statistics, 3–9
Stall message screen, 3–9
START_TRANSACTION statement

compatible locks, 3–71
Statistics

See also Performance Monitor, Oracle Trace
active user stall messages, 3–15
after-image journal, 4–14, 4–15

backup operations, 4–15
switch-over operations, 4–15

AIJ Journal Information screen, 4–15
asynchronous IO, 4–11
cardinality, 5–4
checkpoint, 4–17
Checkpoint Information screen, 4–20
Database Parameter Information, 4–7
data page requests, 4–9
DBR process, 6–32
disabling for a database, 2–18
disabling for a process, 2–17
display formats, 2–28
displaying DBKEY information, 3–14
displaying deadlock information, 3–61
displaying lock timeout information, 3–61,

3–63

Statistics (cont’d)
event-based data

using Oracle Trace, 2–78
formatted binary file, 2–53
getting online help, 2–45
graphic display format, 2–29
hashed index, 3–118
I/O screen, 3–8
I/O stall, 3–9
index (insertion), 3–119
index (removal), 3–119
index (retrieval), 3–119
lock, 3–57, 3–61
locks for one statistics field, 3–61
logical names, 2–76
monitoring, 2–47
moving between screens, 2–24
numbers display format, 2–30
one lock type, 3–61
online mode, 2–20
PIO file activity, 4–9
process accounting, 4–12
record activity, 4–14
record mode, 2–20
replay mode, 2–20
reset option, 2–32
sample rate, 2–20
scatter plot, 2–33
set rate option, 2–32
snapshot, 4–16
SPAM page requests, 4–10
stall messages, 3–9
stopping collection of, 2–20
storage, 5–8, 5–9
table display, 2–37
time plot display, 2–32
transaction duration, 3–17
types of, 2–46, 5–4
virtual memory use, 4–204
workload, 5–6, 5–9
writing output to a file, 2–39
zoom option, 2–37

Statistics collection
stopping, 2–17, A–25

Index–30

Storage area
adjusting parameters, 4–127, 4–129t
calculating size

potential problems, 3–136
displaying characteristics of, 4–151
fragmented records, 4–114
hashed indexes

shadow pages, 3–138
page format, 4–157
read-only, 3–91

RDB$SYSTEM, 3–92
updating cardinalities, 3–93

stable data
read-only, 3–22

uniform, 3–130
Storage map

adjusting parameters, 4–173t
data compression

considerations, 4–203
parameters

default values, 4–173
PLACEMENT VIA INDEX option, 4–195

Storage statistics, 5–8
Storing rows

analyzing performance problems, 3–144
Strategy

access, 3–126
constraints, 5–54
displaying with RDB_DEBUG_FLAGS, C–1
displaying with RDMS$DEBUG_FLAGS, C–1
optimizer, 3–143
query optimizer, 5–2, 5–11
retrieval, 3–143
saving output with RDB_DEBUG_FLAGS_

OUTPUT, C–2
saving output with RDMS$DEBUG_FLAGS_

OUTPUT, C–2
Summary Object Statistics screen

analyzing root file I/O, 3–31
SYS$COMMON logical name, 6–22
SYSGEN, 7–8
SYSMWCNT parameter

values, 4–209

SYSTARTUP.COM procedure, 6–16
SYSTARTUP_V5.COM procedure, 6–24
SYSTARTUP_VMS.COM procedure, 6–24
System

common disks, 6–9
index compression, 3–106
monitoring, 7–1
tuning, 7–1, 7–8, 8–1

advantages, 7–8
parameters, 7–8

System Dump Analyzer utility
See SDA

SYSTEM INDEX COMPRESSION clause, 3–106
System space buffer, 4–78
SYSTEM-W-POOLEXPF error message, 4–211
SYSUAF.DAT

common, 6–18, 6–26
VAX and Alpha process limits and quotas,

6–9, 6–26
VMScluster system, 6–9

T
Table cardinality, 5–4, 5–6
Table display statistics, 2–37
Table locking, 3–71
Table row clustering factor, 5–9
Threshold values

selecting for logical areas, 3–150
selecting for mixed format pages, 4–158
selecting for SPAM pages, 4–157
selecting for uniform format pages, 4–160

Timeouts
due to locking

displaying information, 3–61, 3–63
Tools facility

of Performance Monitor, 2–39
Total time optimization, 5–36

specifying
module language programs, 5–46
precompiler programs, 5–45
SELECT statement, 5–45
SET OPTIMIZATION statement, 5–46
singleton SELECT statement, 5–45

Index–31

Trace
See Oracle Trace

TRACE control statement
logging with RDB_DEBUG_FLAGS Xt, C–45
logging with RDMS$DEBUG_FLAGS Xt,

C–45
Transaction

atomic, 6–10
batch-update, 3–79
compatible locks, 3–71
distributed, 6–10
duration statistics, 3–17
effect on read-only when snapshot files are

disabled, 4–121
multiuser access, 3–80
prestarted

See Prestarted transactions
recovery-unit journal, 3–81
reserving for shared read, 3–68
reserving for shared write, 3–68
scope, 3–80

effect on long and short transactions,
3–81t

using deferred snapshots, 4–125e
volume, 3–32

Transaction parameter block (TPB)
options, C–43t

Transaction sequence number (TSN), 4–108,
4–119, 4–166

Triggering page
for asynchronous prefetch of pages, 3–24

Tuning
See also Tuning methodology
adjusting global buffer values, 4–46
adjusting local buffer values, 4–30
advantage of multifile database, 8–3
allocation size, 4–156
application, 7–10
areas for improvement, 7–7f
buffer size, 4–25
correcting record fragmentation, 4–114
database, 7–9
defined, 1–2, 7–1
due to added capacity, 7–3
due to workload changes, 7–2

Tuning (cont’d)
enabling global buffers, 4–37
fast commit processing, 4–98
guidelines, 1–4, 1–11
multifile database, 8–3
number of user buffers, 4–27
page size, 4–155
process quotas, 4–204
system, 7–8, 8–1
using Oracle Rdb configuration parameters,

2–64
using Oracle Rdb logical names, 2–64
what to tune, 7–7
when to tune, 7–1
working set parameters, 4–212

Tuning methodology, 7–4
categorizing the problem, 7–7
examining hardware, 7–6
examining workloads, 7–5
isolating the problem, 7–7
monitoring the results, 7–7
selecting a solution, 7–7

U
Updating

of indexes, 3–94
using RDMS$USE_OLD_UPDATE_RULES

Oracle Rdb logical name, A–56
using RDMS$VALIDATE_ROUTINE Oracle

Rdb logical name, A–58
using UPDATE ONLY cursor, 3–79

USER LIMIT parameter
active value, 4–28
defined, 4–41
specifying the maximum number of buffers per

process, 4–41
specifying the maximum number of global

buffers per process, 4–24

Index–32

V
VCC_FLAGS parameter, 4–211
VCC_MAXSIZE parameter, 4–211
Views

used for query optimization, 5–40
Virtual I/O cache

VCC_FLAGS parameter, 4–211
VCC_MAXSIZE parameter, 4–211

Virtual memory, 8–27
number of buffers and, 8–20f
problems, 4–62

Virtual memory statistics, 4–204
VIRTUALPAGECNT parameter, 4–62

effect of enabling global buffers, 4–210
values, 4–210

VMScluster system
cluster-accessible disks, 6–5
common system disk, 6–9
converting databases to, 6–27
creating a database, 6–22, 6–26
creating mf_personnel, 6–22
database access, 6–12, 6–18
database recovery, 6–18, 6–30
definition, 6–2
device-naming conventions, 6–8
dual-ported served disks, 6–6
exporting database, 6–27
failure, 6–16
file placement, 6–18
importing database, 6–27
journal files, 6–18
local area

AUTOGEN parameters, 6–33
lock partitioning, 6–17
monitor processes, 6–16, 6–30
node failure, 6–18
Oracle CDD/Repository placement, 6–21
overview, 6–2
partitioned data access, 6–10
reducing loss of database access, 6–19
sample hardware, 6–23
shareable images, 6–11
shared data access, 6–11

VMScluster system (cont’d)
sharing disk files, 6–5
specifying maximum number of nodes, 6–13
SYSUAF.DAT, 6–9
terms, 6–2
using client/server applications, 6–10

W
Working set size, 4–210, 8–20, 8–48

number of buffers and, 8–21f
Workload

changes, 7–2f
statistics, 5–6, 5–9
understanding, 7–5

Workload statistics, 5–6, 5–9
WORM storage area

disabling journaling for, 3–40
preventing loss of data, 3–41

WSDEFAULT parameter values, 4–214
WSEXTENT parameter values, 4–214
WSMAX parameter

values, 4–210
WSQUOTA parameter values, 4–214

Index–33

